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OUTLINE

* Brief discussion/review of single molecule fluorescence

- Statistical analysis of your fluorescence data
* Where could we go from here
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Why single molecules?

|. For your system, you gather a distribution as opposed to an
ensemble average.
- gives you information about inhomogeneities in your
system, including the “nanoenvironment”

2. No need to synchronize a system when you are measuring a time
dependent process.

3. Can observe new effects.




Important moments in single molecule optical detection

T. Hirschfield, Appl. Opt. |5,2965 (1976).

Detected a single antibody labeled with 80-100 fluorophores

Moerner and Kador, Phys Rev Lett. 62,2535 (1989).
M.Orrit and J. Bernard, Phys. Rev. Lett. 65,2716 (1990).

Detection of a single dopant molecules in a host
molecular crystal at cryogenic temperatures - pentacene
in p-terphanyl crystals.

Moerner et al - absorbance

Orrit et al - fluorescence




Important moments in single molecule optical detection

E. B. Shera, N. K. Seizinger, L. M. Davis, R.A. Keller and S.A. Soper, Chem.
Phys. Lett. 174,553 (1990).

Observed Rhodamine-6G in aqueous solution at room
temperature using a pulsed laser

* 100 im R6G IN WATER




Single molecule fluorescence

Jablonski Energy Diagram
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Single molecule fluorescence

Jablonski Energy Diagram
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How to make single molecule fluorescence possible

» High-efficiency, low background fluorescence detection
-APD single photon counting module.

* Bright (high quantum efficiency) dyes

- Alexa 488 dye.
- High efficiency optics (objectives, filters, lenses) - remove Raman

scattering and scattered excitation light
- Nikon optics, Chroma filters.

- High numerical aperture objectives collect a significant number of the

emitted photons.
* Minimal detection volume (Background photons are a function of the

detection volume)
- Confocal microscopy




Your experimental setup
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experimental setup




Experimental time trace
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What affects the frequency of photon counts!?

|. How often a fluorophore enters the confocal volume.
2. How often a fluorophore absorbs and emits a photons.
3. How often a fluorophore exits the confocal volume.

4. Background - “Dark counts” from detection device, light from the
rooom, scattered light.




We assume these are Poisson processes

Random independent process - the occurrence of one event has no
effect on the occurrence of another.

- N events are detected in measurement time

interval dT.

- The expected rate of a Poisson process is J.
N
_ ) = u
dl

How can you tell whether a process is Poissonian?

Measure N/dT again and again.
Does the rate of occurrence change?




The time scale is important

Soccer game analogy redux:

EVENT = soccer ball
crosses the center line

Appears Poissonian if you
look long enough.




The time scale is important

Soccer game analogy redux:
How often does the ball
cross the center line?

No longer appears
Poissonian when you
reach half-time or the end
of a game.
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The time scale is important

Soccer game analogy redux:
How often does the ball
cross the center line?
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The time scale is important

Soccer game analogy redux:
How often does the ball
cross the center line?

No longer appears
Poissonian when you
change seasons.
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The time scale is important

Soccer game analogy redux:
How often does the ball
cross the center line?

No longer appears
Poissonian when you the
zombies take over.
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What is the probability of a
particular value of N?

Even though the rate appears constant over time, the
value of NV is not always the same.
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k - number of events occuring during dt
P(k) - probability of k events during dt
dl' - measurement time interval

e " u’
P(k) = r

Poisson processes

Siméon Poisson

N "Research on the Probability of
AT = U Judgments in Criminal and Civil
Matters"

variance = mean




Sampling bin is an important variable

¢

= 05/ ‘ A =1 event every | ps
dT = 100 ns
*
I S-S S-S
K

_,(ﬂ 2 & & . . &
-
g 1.5¢
L,; Total time = 100 ps

1 [ - B B SR S S e D B W A N
3
ED.S-
=0
=z  ee————————————————————

0 200 400 600 800 1000
measurement #




Sampling bin is an important variable
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Sampling bin is an important variable
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Modeling our data as multiple
poisson processes

A Data must be binned
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We would like information about how long
the fluorophore stays in the confocal volume
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We would like information about how long
the fluorophore stays in the confocal volume

Poisson processes:

noise +
Poisson process: fluorescence
noise
A
Photon

Count

PN
R . ,0).0

measurement #




We would like information about how long
the fluorophore stays in the confocal volume

Poisson process:
frequency of
events
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Count

Our simplistic approach: can our data be
described by a single Poisson distribution?
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Our simplistic approach: can our data be
described by a single Poisson distribution?

E. B. Shera, N. K. Seizinger, L. M. Davis, R.A. Keller and ok
S.A. Soper, Chem. Phys. Lett. 174,553 (1990). S
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What are we missing?
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Jablonski Energy Diagram
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