Increasing your confidence Proving that data is single molecule

Chem 184 Lecture David Altman 5/27/08

OUTLINE

- Brief discussion/review of single molecule fluorescence
- Statistical analysis of your fluorescence data
- Where could we go from here

		technique	experimental observable	resolution of experimental observable	time resolution
	(local) orientation	polarization	polarization or anisotropy	> 5	ms
structure	short distance	quenching, ET, optical switch	intensity lifetime	< 30 Å	ms
	long distance	magnetic tweezer	force	> sub pN	ms
molecular forces/potential		optical tweezer	force	> sub pN	μs
		AFM	force	> pN	ms
binding and assembly		FRET	intensity lifetime	30 – 100 Å	ms
		FCS	correlation function	ns	ns
		coincidence	coincidence		ms
position/m	novement	particle tracking	PSF	> 1 nm	> ms

Single molecule studies come in all flavors

Why single molecules?

- I. For your system, you gather a distribution as opposed to an ensemble average.
 - gives you information about inhomogeneities in your system, including the "nanoenvironment"
- 2. No need to synchronize a system when you are measuring a time dependent process.
- 3. Can observe new effects.

Important moments in single molecule optical detection

T. Hirschfield, Appl. Opt. 15, 2965 (1976).

Detected a single antibody labeled with 80-100 fluorophores

Moerner and Kador, Phys Rev Lett. 62, 2535 (1989).

M.Orrit and J. Bernard, Phys. Rev. Lett. 65, 2716 (1990).

Detection of a single dopant molecules in a host molecular crystal at cryogenic temperatures - pentacene in p-terphanyl crystals.

Moerner et al - absorbance Orrit et al - fluorescence

Important moments in single molecule optical detection

E. B. Shera, N. K. Seizinger, L. M. Davis, R.A. Keller and S.A. Soper, *Chem. Phys. Lett.* 174, 553 (1990).

Observed Rhodamine-6G in aqueous solution at room temperature using a pulsed laser

Single molecule fluorescence

Single molecule fluorescence

(Absorption) 10⁻¹⁵ Seconds

The rate and number of photons emitted by a fluorophore is limited.

Figure 1

How to make single molecule fluorescence possible

- High-efficiency, low background fluorescence detection
 - APD single photon counting module.
- Bright (high quantum efficiency) dyes
- Alexa 488 dye.
 High efficiency optics (objectives, filters, lenses) remove Raman scattering and scattered excitation light
 - Nikon optics, Chroma filters.
 - High numerical aperture objectives collect a significant number of the emitted photons.
- Minimal detection volume (Background photons are a function of the detection volume)
 - Confocal microscopy

Your experimental setup

Your experimental setup

Experimental time trace

What affects the frequency of photon counts?

- I. How often a fluorophore enters the confocal volume.
- 2. How often a fluorophore absorbs and emits a photons.
- 3. How often a fluorophore exits the confocal volume.
- 4. Background "Dark counts" from detection device, light from the rooom, scattered light.

We assume these are Poisson processes

Random independent process - the occurrence of one event has no effect on the occurrence of another.

- N events are detected in measurement time interval dT.
- The expected rate of a Poisson process is μ .

$$\left\langle \frac{N}{dT} \right\rangle = \mu$$

How can you tell whether a process is Poissonian?

Measure N/dT again and again.

Does the rate of occurrence change?

Soccer game analogy redux:

EVENT = soccer ball crosses the center line

Appears Poissonian if you look long enough.

Soccer game analogy redux: How often does the ball cross the center line?

Soccer game analogy redux: How often does the ball cross the center line?

No longer appears Poissonian when you change seasons.

Soccer game analogy redux: How often does the ball cross the center line?

No longer appears
Poissonian when you the
zombies take over.

Time (years)

What is the probability of a particular value of N?

Even though the rate appears constant over time, the value of N is not always the same.

Poisson processes

k - number of events occurring during dt P(k) - probability of k events during dt dT - measurement time interval

$$P(k) = \frac{e^{-\mu}\mu^k}{k!}$$

$$\left\langle \frac{N}{dT} \right\rangle = \mu$$

Siméon Poisson

"Research on the Probability of Judgments in Criminal and Civil Matters"

variance = mean

Sampling bin is an important variable

 $\lambda = I$ event every I μ s dT = I00 ns

Total time = $100 \mu s$

Sampling bin is an important variable

100

measurement #

 $\lambda = I$ event every I μ s dT = 1000 ns

Total time = $100 \mu s$

Sampling bin is an important variable

 $\lambda = I$ event every I μ s dt = I0,000 ns

Total time = $100 \mu s$

Modeling our data as multiple poisson processes

We would like information about how long the fluorophore stays in the confocal volume

We would like information about how long the fluorophore stays in the confocal volume

We would like information about how long the fluorophore stays in the confocal volume

Poisson process:

measurement #

Our simplistic approach: can our data be described by a single Poisson distribution?

Photon Count

measurement #

Our simplistic approach: can our data be described by a single Poisson distribution?

E. B. Shera, N. K. Seizinger, L. M. Davis, R.A. Keller and S.A. Soper, *Chem. Phys. Lett.* 174, 553 (1990).

Photon Count

measurement #

What are we missing?

What are we missing?

