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Problem 1: Serializing Strings [10 points] 

You’re working with a custom string data type defined as follows: 
 

struct string { 
 size_t length; 
 char chars[16]; 
}; 

 
The string record is 24 bytes in size and allows for the storage of arbitrarily long strings, 
where the full length of the string is always stored in the length field.  When the string 
itself is of length 15 or less, all characters—including the '\0' are stored in the string’s 
chars field.  So, the strings "", "puzzled", "pulchritude", and "juxtapositional" 
could be represented in memory as: 
 
 
 
 
 
 
Note that I use 0 to represent a '\0', and uninitialized characters or characters that don’t 
matter are left as blank in the drawing. 
 
When the string is of length 16 or more, the storage format is different. Specifically, the first 
8 characters are stored in indices 0 through 7, inclusive, but the remaining eight characters—
equivalently, the remaining sizeof(char *) bytes—collectively store the address of a 
traditional C string external to the struct.  That C string stores all remaining characters—i.e., 
the characters at indices 8 and higher. So, "abstemiousnesses", 
"palaeoanthropology", and the infamous "antidisestablishmentarianism" 
would be represented as: 
 
 
 
 
 
 
 
 
You’re to implement a function called serialize, which accepts an array of these 
structs and returns a single, traditional, dynamically allocated C string that’s the ordered 
concatenation of all the strings stored in the array.  So, given the following array of length 5: 
 
 
 
 
 
 
 

00000000 

0 

 

puzzled0 

7 

 

pulchrit 

11 

ude00000 

juxtapos 

15 

itional0
0000 

abstemio 

16 

 

palaeona 

18 

 

antidise 

28 

 

usnesses0 nthropology0 stablishmentarianism0 

bumfuzzl 

9 

e0000000 

18 

 

nthropology0 

palaeona equitabi 

12 

lity0000
0 sage0000 

4 

000000 

antidise 

28 

 

stablishmentarianism0 
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your serialize function should return a dynamically allocated C string—namely, a heap-
based C string: 
 

"bumfuzzlepalaeoanthropologyequitabiltysageantidisestablishmentarianism" 
 
Your implementation should make a single pass over the array, reallocating the initially 
strdup’ed empty string and appending the characters of each struct string in turn. 
 
Use the rest of this page to provide your implementation: 
 

char *serialize(struct string strings[], size_t length) { 
 
 char *serialization = strdup(""); 
 // any other variable declarations below 
 
 
 
 for (int i = 0; i < length; i++) { 
  // complete the body of the for loop 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 } 
  

 return serialization; 
} 
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Problem 2: x86-64 and gcc Optimizations [20 points] 

The assembly code presented on the upper right was 
generated by compiling a function called allspice 
without optimization—i.e., using -Og.   
 
a) [12 points] First, fill in the blanks below so that 

allspice is programmatically consistent with the 
unoptimized assembly you see on the right. Note that 
the C code is nonsense and should just be a faithful 
reverse engineering of the assembly. You may not 
typecast anything. 

 

Note: printf is a special function that expects its 
first three arguments to be passed through %rsi, 
%rdx, and %rcx, in that order. %rdi isn’t used to 
pass traditional parameters when printf is called.   

 

 

 

 

size_t allspice(char *mustard, char *cardamon[]) { 
 

    size_t cinnamon = _______________________________; 
 

    for (size_t i = ______________; _____________________; _______________) { 

 
        printf(__________________, _______________, _______________); 

 
        if (______________________) _______________; 

 
        cinnamon = allspice(_______________, _______________); 
    } 

 
    return _____________; 

}  

0x1149 <+0>: push   %rbp 
0x114a <+1>: push   %rbx 
0x114b <+2>: sub    $0x28,%rsp 
0x114f <+6>: mov    %rdi,%rbp 
0x1152 <+9>: mov    %rsi,0x8(%rsp) 
0x1157 <+14>: mov    (%rsi),%rbx 
0x115a <+17>: sub    %rdi,%rbx 
0x115d <+20>: mov    %rbx,0x18(%rsp) 
0x1162 <+25>: mov    0x18(%rsp),%rax 
0x1167 <+30>: add    %rax,%rax 
0x116a <+33>: cmp    %rbx,%rax 
0x116d <+36>: jbe    0x11af <allspice+102> 
0x116f <+38>: lea    0x18(%rsp),%rcx 
0x1174 <+43>: lea    0x8(%rsp),%rdx 
0x1179 <+48>: mov    %rbp,%rsi 
0x117c <+51>: mov    $0x1,%edi 
0x1181 <+56>: mov    $0x0,%eax 
0x1186 <+61>: callq  0x1050 <printf@plt> 
0x118b <+66>: mov    0x18(%rsp),%rax 
0x1190 <+71>: not    %rax 
0x1193 <+74>: test   $0x7,%al 
0x1195 <+76>: je     0x11af <allspice+102> 
0x1197 <+78>: mov    0x8(%rsp),%rsi 
0x119c <+83>: mov    0x8(%rsi),%rdi 
0x11a0 <+87>: callq  0x1149 <allspice> 
0x11a5 <+92>: mov    %rax,0x18(%rsp) 
0x11aa <+97>: add    %rax,%rbx 
0x11ad <+100>: jmp    0x1162 <allspice+25> 
0x11af <+102>: mov    0x18(%rsp),%rax 
0x11b4 <+107>: add    $0x28,%rsp 
0x11b8 <+111>: pop    %rbx 
0x11b9 <+112>: pop    %rbp 
0x11ba <+113>: retq   
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Now, study the more aggressively optimized version of 
allspice presented on the right, and answer the 
questions below. 

b) [2 points] Note that both the unoptimized and 
optimized versions some caller-owned registers to 
the stack but then proceeds to modify %rsp without 
having pushed its value to the stack. However, you 
also know that %rsp is caller-owned as well, even 
though it’s not being pushed to the stack. Why does, 
say, %rbp needs to be pushed to the stack while 
%rsp doesn’t need to be? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) [2 points] It should be evident that the number of instructions emitted when -O2 is used is 
much higher than the number emitted with -Og. Explain why the number of instructions 
executed by a typical call to allspice will, in practice, still be smaller. 
 
 
 
 
 
 
 

  

0x1170 <+0>: push   %r13 
0x1172 <+2>: push   %r12 
0x1174 <+4>: push   %rbp 
0x1175 <+5>: push   %rbx 
0x1176 <+6>: sub    $0x28,%rsp 
0x117a <+10>: mov    (%rsi),%rbx 
0x117d <+13>: mov    %rsi,0x8(%rsp) 
0x1182 <+18>: sub    %rdi,%rbx 
0x1185 <+21>: lea    (%rbx,%rbx,1),%rax 
0x1189 <+25>: mov    %rbx,0x18(%rsp) 
0x118e <+30>: cmp    %rax,%rbx 
0x1191 <+33>: jae    0x11f0 <allspice+128> 
0x1193 <+35>: mov    %rdi,%rbp 
0x1196 <+38>: lea    0x18(%rsp),%r13 
0x119b <+43>: lea    0x8(%rsp),%r12 
0x11a0 <+48>: mov    %r12,%rdx 
0x11a3 <+51>: xor    %eax,%eax 
0x11a5 <+53>: mov    %r13,%rcx 
0x11a8 <+56>: mov    %rbp,%rsi 
0x11ab <+59>: mov    $0x1,%edi 
0x11b0 <+64>: callq  0x1050 <printf@plt> 
0x11b5 <+69>: mov    0x18(%rsp),%rax 
0x11ba <+74>: mov    %rax,%rdx 
0x11bd <+77>: not    %rdx 
0x11c0 <+80>: and    $0x7,%edx 
0x11c3 <+83>: je     0x11e4 <allspice+116> 
0x11c5 <+85>: mov    0x8(%rsp),%rsi 
0x11ca <+90>: mov    0x8(%rsi),%rdi 
0x11ce <+94>: callq  0x1170 <allspice> 
0x11d3 <+99>: add    %rax,%rbx 
0x11d6 <+102>: lea    (%rax,%rax,1),%rdx 
0x11da <+106>: mov    %rax,0x18(%rsp) 
0x11df <+111>: cmp    %rbx,%rdx 
0x11e2 <+114>: ja     0x11a0 <allspice+48> 
0x11e4 <+116>: add    $0x28,%rsp 
0x11e8 <+120>: pop    %rbx 
0x11e9 <+121>: pop    %rbp 
0x11ea <+122>: pop    %r12 
0x11ec <+124>: pop    %r13 
0x11ee <+126>: retq    
0x11ef <+127>: nop 
0x11f0 <+128>: add    $0x28,%rsp 
0x11f4 <+132>: mov    %rbx,%rax 
0x11f7 <+135>: pop    %rbx 
0x11f8 <+136>: pop    %rbp 
0x11f9 <+137>: pop    %r12 
0x11fb <+139>: pop    %r13 
0x11fd <+141>: retq 
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d) [2 points] Notice that 5 of the final 6 instructions 
appear earlier, in the same order, at offsets +116 
through +126, and that the mov %rbx, %rax at 
offset +132 is the only one not replicated. Knowing 
that you could, in theory, implement the allspice 
directly in x86-64 yourself, by hand, explain how 
you might use most of what’s presented to the right 
(which is a copy of what’s on the previous page) 
while reordering a few instructions and updating 
one or more jump offsets so that only one copy of 
these five instructions is needed instead of two. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e) [2 points] At offset +51, you’ll see an xor 
instruction. What line in the unoptimized version 
does that correspond to? In what sense is the xor 
alternative considered an optimization? 

 

 
  

0x1170 <+0>: push   %r13 
0x1172 <+2>: push   %r12 
0x1174 <+4>: push   %rbp 
0x1175 <+5>: push   %rbx 
0x1176 <+6>: sub    $0x28,%rsp 
0x117a <+10>: mov    (%rsi),%rbx 
0x117d <+13>: mov    %rsi,0x8(%rsp) 
0x1182 <+18>: sub    %rdi,%rbx 
0x1185 <+21>: lea    (%rbx,%rbx,1),%rax 
0x1189 <+25>: mov    %rbx,0x18(%rsp) 
0x118e <+30>: cmp    %rax,%rbx 
0x1191 <+33>: jae    0x11f0 <allspice+128> 
0x1193 <+35>: mov    %rdi,%rbp 
0x1196 <+38>: lea    0x18(%rsp),%r13 
0x119b <+43>: lea    0x8(%rsp),%r12 
0x11a0 <+48>: mov    %r12,%rdx 
0x11a3 <+51>: xor    %eax,%eax 
0x11a5 <+53>: mov    %r13,%rcx 
0x11a8 <+56>: mov    %rbp,%rsi 
0x11ab <+59>: mov    $0x1,%edi 
0x11b0 <+64>: callq  0x1050 <printf@plt> 
0x11b5 <+69>: mov    0x18(%rsp),%rax 
0x11ba <+74>: mov    %rax,%rdx 
0x11bd <+77>: not    %rdx 
0x11c0 <+80>: and    $0x7,%edx 
0x11c3 <+83>: je     0x11e4 <allspice+116> 
0x11c5 <+85>: mov    0x8(%rsp),%rsi 
0x11ca <+90>: mov    0x8(%rsi),%rdi 
0x11ce <+94>: callq  0x1170 <allspice> 
0x11d3 <+99>: add    %rax,%rbx 
0x11d6 <+102>: lea    (%rax,%rax,1),%rdx 
0x11da <+106>: mov    %rax,0x18(%rsp) 
0x11df <+111>: cmp    %rbx,%rdx 
0x11e2 <+114>: ja     0x11a0 <allspice+48> 
0x11e4 <+116>: add    $0x28,%rsp 
0x11e8 <+120>: pop    %rbx 
0x11e9 <+121>: pop    %rbp 
0x11ea <+122>: pop    %r12 
0x11ec <+124>: pop    %r13 
0x11ee <+126>: retq    
0x11ef <+127>: nop 
0x11f0 <+128>: add    $0x28,%rsp 
0x11f4 <+132>: mov    %rbx,%rax 
0x11f7 <+135>: pop    %rbx 
0x11f8 <+136>: pop    %rbp 
0x11f9 <+137>: pop    %r12 
0x11fb <+139>: pop    %r13 
0x11fd <+141>: retq 
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Problem 3: Runtime Stack [10 points] 

a) [5 points] You’ve been hired as a security engineer to scrutinize some crucial authentication 
code to see how someone might access a website even though they don’t have the proper 
credentials to do so. The key function to examine is below: 

 
#define MAX_ATTEMPTS 3 
bool login() { 
    size_t canary1 = rand_size_t(); // generates random size_t 
    char actual[16]; 
    size_t canary2 = canary1; 
    char supplied[16]; 
     
    strcpy(actual, retrieve_password()); // assume no issues 
    size_t attempts = 0; 
 while (attempts < MAX_ATTEMPTS) { 
        printf("Enter password: "); 
        gets(supplied); 
        if (canary1 != canary2) { 
            printf("Hacking attempt! Aborting login!\n"); 
            return false; 
        } 
        if (strncmp(supplied, actual, 16) == 0) return true; 
        printf("Supplied password failed. Try again!\n"); 
        attempts++; 
    } 
    printf("Max attempts exceeded.\n"); 
    return false; 
} 

 
Note the truly daft use of gets, which reads a line from stdin and places whatever is typed 
into the supplied character array, where no checks for overflow are performed whatsoever.  
In the context of login, if the user types in the seven-letter "abcdefg" or even the 15-letter 
"abcdefghijklmno", there’s enough space for the 8 or 16 bytes needed to store them. 
However, if the user types in the full lowercase alphabet, 27 bytes would be written to flood the 
supplied array and overflow beyond its last allocated byte. 

 
You admire, however, the use of canaries, which are special values used to 
detect buffer overflow.  In this case, canary1 and canary2 are set to the 
same randomly generated 64-bit value. The assumption here is that any 
overflow of supplied—intentional or not—changes canary2 and prompts 
login to return false right away after printing a panicky message. 

 
By examining the assembly code for the login function, you determine the 
five local variables are laid out as presented as drawn in the diagram on the 
right. The smaller rectangles are 8-byte size_ts, larger rectangles are 16-byte 

ret addr 

canary1 

actual 

canary2 

supplied 

attempts 
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char arrays. And note that the return address—that is, the saved rip value necessary for 
function call and return to work—rests right on top of the stack frame.  
 
Referring to the login implementation and the stack diagram of locals, you explain to those 
who’ve hired you that someone can be granted access to the website—that is, fool login to 
return true—regardless of whatever retrieve_password returns (save that it returns a C 
string of length 15 or less, which you can assume to be the case). 
 

• [3 points] You have the idea of entering 47 '0's as the first password and then 23 '0's 
as the second password, and you try. How far do you get? Leveraging your 
understanding of how the stack organizes login’s local variables as per the diagram on 
the prior page, explain why this won’t work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• [2 points] Now explain why a single supplied password of 48 'a'’s in a row might 
allow login to stage a true as a return value, only to crash or cause other problems as 
it attempts to pass control back to the caller. But also explain why entering 48 'a'’s 
might actually work without a problem, and what must be true for that to happen. 
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b) [5 points] You learn of a nifty get_function_by_address with the following prototype: 
 

struct func_info { 
 char *name;    // e.g., main, printf, mymalloc, level_1, etc. 
 void *start;   // address of first x86-64 instruction 
    void *end;     // address of last x86-64 instruction 
}; 
 
bool get_function_by_address(void *addr, struct func_info *info); 
 

get_function_by_address accepts an arbitrary memory address and returns true if and 
only if the supplied address is that of an assembly code instruction in the code segment, and 
false otherwise. When true is returned, the record addressed by info is populated with 
information about the function itself. (When false is returned, the struct addressed by 
info is unchanged.) 
 
You’re inspired to implement a backtrace function to imitate the functionality of gdb’s 
backtrace command. Your backtrace function identifies the sequence of currently active 
function calls that have yet to return and prints their names.  This is your implementation: 
 
void backtrace() { 

  struct func_info info; 
  void **start = &info; 
  while (true) { 
   if (get_function_by_address(*start, &info)) { 
    printf("%s\n", info.name); 
    if (strcmp(info.name, "main") == 0) return; 
   } 
   start++; 
  } 
} 

 
So, if main calls foo calls bar calls baz calls pop calls backtrace, the call to backtrace 
would print: 
 
 pop 
 baz 
 bar 
 foo 
 main 
 
and then return. 
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After studying the implementation on the prior page, answer the following questions, limiting 
your responses to at most 75 words. 
 

• [3 points] Briefly explain how and why the backtrace function works. Specifically, 
explain what types of values on the stack prompt the get_function_by_address to 
return true, and also explain why start is initialized to &info. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

• [2 points] You’re convinced the general implementation is pretty good, but then you 
realize that function pointers can be passed as parameters and stored in local variables, 
and you don’t want the names of the functions they address to be printed just because 
they’re stored on the stack.  Describe how you might change the implementation of 
get_function_by_address to only print the names of functions that are currently 
executing without printing the names of functions simply function pointers are passed as 
parameters or stored as local variables. 
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Problem 4: stop-and-copy Heap Compaction [20 points] 

Some custom allocators optimize to solve the heap compaction problem by maintaining two 
heaps instead of one. Only one heap is active at any one moment, but when heap compaction 
is invoked, the ordered concatenation of all allocated blocks is written to the inactive heap, all 
internal pointers aliasing active heap memory are rewritten to reference the inactive heap 
clone, and then the active heap is rendered inactive and vice versa.  
 
All pointers—whether stored in the heap, on the stack, or in global variables—would need to 
be updated, but here we’ll assume all pointers into the active heap are stored within the active 
heap itself and nowhere else and that all such pointers always address the first byte of an 
allocated node’s payload. Throughout the problem, we’ll assume we’re working with a 64-bit 
system where all size_t’s and pointers are eight bytes long. The active heap is 
sizeof(size_t)-aligned, is subdivided into nodes that are always a multiple of eight bytes, 
and nodes always have enough space for at least eight bytes of payload. The header is an 
eight-byte size_t, where the most significant bit is 1 for allocated nodes and 0 for free nodes, 
and the other 63 bits encode the node size, in bytes—that is, the header size plus the payload 
size, which is understood to be a multiple of 8.  
 
The free list is always implicit, so there are no next or previous pointers to worry about. For 
simplicity, we’ll assume each of the two heaps are the same size, and that the bases of the two 
heaps are stored in global variables, as with: 
 

static size_t *active_start; 
static size_t *inactive_start; 
#define HEADER_SIZE sizeof(size_t); 
#define HEAP_SIZE (1L << 28) // 256 megabytes 
 

The goal of this problem is to take a picture like so, the base address of which is stored 
active_start: 
 
 

 
 
and replicate the in-use nodes to look like this, the base address of which is stored in 
inactive_start. 
 

 
 

928 

 

0 
32 

somewhere in stack segment 

 
1 1 1 

40 16 16 
abcdefgh 

 
1 1 0 0 1 

16 40 16 16 928 
16 abcdefgh 

somewhere in stack segment 
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The whole process looks like a loop of memcpy calls, but with the added complexity that comes 
because pointers in the payloads of active nodes that appear to be active heap addresses need to 
be recalculated when dropped in the inactive-but-soon-to-be-made-active heap. 
 
For this problem, you’ll implement this heap compaction algorithm, affectionately known as 
the stop-and-copy algorithm. You’ll be led through a series of steps—less efficient than it could 
be, but easier to do if carefully managed across several steps. 

 
 

a) [3 points] Implement the node_is_allocated predicate function, which accepts the address 
of a node header as a size_t * and returns true if and only if the node is allocated. Recall 
that the most significant bit is 1 for allocated nodes and 0 for free nodes.  Your implementation 
should be very short. 
 

bool node_is_allocated(size_t *header) { 
 
 
 
 
 
 
 
 

 
 

b) [3 points] Implement the node_get_size, which accepts the address of a node header as a 
size_t * and returns the number of bytes—header and payload included—making up the 
node.  Note that the node may or may not be allocated.  This should also be very short. 

 
size_t node_get_size(size_t *header) { 
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c) [8 points] Implement the replicate_active_heap function, which verbatim replicates 
all of the active heap’s allocated nodes—and just the allocated nodes—by copying them, 
in order, to the inactive heap, and then taking care to properly mark the last node of the 
inactive heap as unallocated. 
 
While you shouldn’t worry about rewriting the pointers within the payloads just yet, you 
should update the first eight bytes of each active heap node’s payload to store the offset, in 
bytes, from the base address of the inactive heap where the corresponding payload was 
copied. In the figure below, note that each of the eight-byte words following allocated 
node headers in the active heap have been updated with the numbers 8, 24, and 64. That’s 
because their payloads have been copied to addresses inactive_heap + 8, 
inactive_heap + 24, and inactive_heap + 64, respectively. 
 
Place your implementation on the next page. The above problem statement has been 
repeated on the next page as well in a smaller font to you needn’t flip back and forth 
between that page and this one. 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
	  

928 

 

0 
32  

1 1 1 
40 16 16 

abcdefgh 

 
1 1 0 0 1 

16 40 16 16 16 

stack location 

8 

 

24 64 

The above figure reflects the state of the active heap (top) and the inactive heap (bottom) after the 
replicate_active_heap function you’re implementing for part c has executed. The empty boxes in the 

active heap aren’t filled in because their contents don’t matter after everything has been replicated. 
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Implement the replicate_active_heap function, 
which verbatim replicates all of the active heap’s 
allocated nodes—and just the allocated nodes—by 
copying them, in order, to the inactive heap, and then 
taking care to properly mark the last node of the inactive 
heap as unallocated. 
 
While you shouldn’t worry about rewriting the pointers 
within the payloads just yet, you should update the first 
eight bytes of each active heap node’s payload to store 
the offset, in bytes, from the base address of the inactive 
heap where the corresponding payload was copied. In 
the figure on the right, note that each of the eight-byte words following allocated node headers in the active heap have been updated with the 
numbers 8, 24, and 64. That’s because the payloads have been copied to addresses inactive_heap + 8, inactive_heap + 24, and 
inactive_heap + 64, respectively. 

 
void replicate_active_heap() { 
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d) [6 points] Finally, implement the rewrite_addresses function, which walks through all 
the payload words in the inactive heap, and rewrites any pointer addressing a word in the 
active heap with the corresponding address in the inactive heap.  If the eight-byte figure 
doesn’t look like a pointer within the active heap—that is, it’s outside the regional between 
active_start and some active_end you’ll need to compute—then you can ignore it 
and simply move onto the next eight bytes of payload. Note that if a figure looks to be an 
address within the active heap, then it is guaranteed to be the base address of an allocated 
node’s payload. 

 
void rewrite_addresses() { 

 


