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Problem 1: Serializing Strings [10 points] 
 

char *serialize(struct string strings[], size_t len) { 
 char *serialization = strdup(""); 
  size_t length = 0; 
  for (size_t i = 0; i < len; i++) { 
   serialization = realloc(serialization,  
                          length + strings[i].length + 1); 
 
   if (strings[i].length <= 15) { 
   strcpy(serialization + length, strings[i].chars); 
   } else { 
   strncpy(serialization + length, strings[i].chars, 8); 
      strcpy(serialization + length + 8,  
             *(char **) &strings[i].chars[8]); 
    } 
 
     length += strings[i].length; 
  } 
 
   return serialization; 
} 
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Problem 2: x86-64 and gcc Optimizations [20 points] 

 
a) First, fill in the blanks below so that allspice is programmatically consistent with the 

unoptimized assembly you see on the right. Note that the C code is nonsense and should just 
be a faithful reverse engineering of the assembly. You may not typecast anything. 
 
size_t allspice(char *mustard, char *cardamon[]) { 
    size_t cinnamon = cardamon[0] - mustard; 
    for (size_t i = cinnamon; i < 2 * cinnamon; i += cinnamon) { 
        printf(mustard, &cardamon, &cinnamon); 
        if ((~cinnamon & 0x7) == 0) break; 
        cinnamon = allspice(cardamon[1], cardamon); 
    } 
    return cinnamon; 
} 

 
b) Note that both the unoptimized and optimized versions some caller-owned registers to the 

stack but then proceeds to modify %rsp without having pushed its value to the stack. However, 
you also know that %rsp is caller-owned as well, even though it’s not being pushed to the 
stack. Why does, say, %rbp needs to be pushed to the stack while %rsp doesn’t need to be? 

 
The callee’s only responsibility it to ensure that a caller-owned register is restored to its 
original value prior to exit should the callee change it during its own execution.  As you see 
from the assembly, %rsp is demoted by several bytes to make space for local variables, but 
prior to any call to retq, it’s promoted to its original value. There’s no specific obligation to 
use pushq and popq. 

c) It should be evident that the number of instructions emitted when -O2 is used is much 
higher than the number emitted with -Og. Explain why the number of instructions 
executed by a typical call to allspice will, in practice, still be smaller. 

The real win here is that the number of instructions within the loop has gone down 
dramatically. Compilers typically assume a loop will iterate many, many times, so if 
static instruction goes up but dynamic instruction count goes down, then that’s still a 
substantial optimization. 
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d) Notice that 5 of the final 6 instructions appear 
earlier, in the same order, at offsets +116 through 
+126, and that the mov %rbx, %rax at offset +132 
is the only one not replicated. Knowing that you 
could, in theory, implement allspice directly in 
x86-64 yourself, by hand, explain how you might 
use most of what’s presented to the right (which is a 
copy of what’s on the previous page) while 
reordering a few instructions and updating one or 
more jump offsets so that only one copy of these 
five instructions is needed instead of two. 

The mov instruction at +132 could be replicated 
to appear in between what’s currently at +114 
and +116.  Then update the jae at +33 to jump 
to this replicated mov instruction and the update 
the je at +83 to jump to the instruction after this 
replicated move.  You can then get rid of the 
nop orginally at +147 and everything beyond it. 

e) At offset +51, you’ll see an xor instruction. What 
line in the unoptimized version does that 
correspond to? In what sense is the xor alternative 
considered an optimization? 

Any bit pattern exclusive-or’ed with itself 
generates a zero, so that xor instruction has the 
effect of zeroing out %eax.  The unoptimized 
code achieves the same thing using a mov $0, 
%eax instruction.  So, what’s the optimization? 
That xor instruction is encoded in just two 
bytes, and the mov instruction is encoded as a five-byte instruction. 

 

 
  

0x1170 <+0>: push   %r13 
0x1172 <+2>: push   %r12 
0x1174 <+4>: push   %rbp 
0x1175 <+5>: push   %rbx 
0x1176 <+6>: sub    $0x28,%rsp 
0x117a <+10>: mov    (%rsi),%rbx 
0x117d <+13>: mov    %rsi,0x8(%rsp) 
0x1182 <+18>: sub    %rdi,%rbx 
0x1185 <+21>: lea    (%rbx,%rbx,1),%rax 
0x1189 <+25>: mov    %rbx,0x18(%rsp) 
0x118e <+30>: cmp    %rax,%rbx 
0x1191 <+33>: jae    0x11f0 <allspice+128> 
0x1193 <+35>: mov    %rdi,%rbp 
0x1196 <+38>: lea    0x18(%rsp),%r13 
0x119b <+43>: lea    0x8(%rsp),%r12 
0x11a0 <+48>: mov    %r12,%rdx 
0x11a3 <+51>: xor    %eax,%eax 
0x11a5 <+53>: mov    %r13,%rcx 
0x11a8 <+56>: mov    %rbp,%rsi 
0x11ab <+59>: mov    $0x1,%edi 
0x11b0 <+64>: callq  0x1050 <printf@plt> 
0x11b5 <+69>: mov    0x18(%rsp),%rax 
0x11ba <+74>: mov    %rax,%rdx 
0x11bd <+77>: not    %rdx 
0x11c0 <+80>: and    $0x7,%edx 
0x11c3 <+83>: je     0x11e4 <allspice+116> 
0x11c5 <+85>: mov    0x8(%rsp),%rsi 
0x11ca <+90>: mov    0x8(%rsi),%rdi 
0x11ce <+94>: callq  0x1170 <allspice> 
0x11d3 <+99>: add    %rax,%rbx 
0x11d6 <+102>: lea    (%rax,%rax,1),%rdx 
0x11da <+106>: mov    %rax,0x18(%rsp) 
0x11df <+111>: cmp    %rbx,%rdx 
0x11e2 <+114>: ja     0x11a0 <allspice+48> 
0x11e4 <+116>: add    $0x28,%rsp 
0x11e8 <+120>: pop    %rbx 
0x11e9 <+121>: pop    %rbp 
0x11ea <+122>: pop    %r12 
0x11ec <+124>: pop    %r13 
0x11ee <+126>: retq    
0x11ef <+127>: nop 
0x11f0 <+128>: add    $0x28,%rsp 
0x11f4 <+132>: mov    %rbx,%rax 
0x11f7 <+135>: pop    %rbx 
0x11f8 <+136>: pop    %rbp 
0x11f9 <+137>: pop    %r12 
0x11fb <+139>: pop    %r13 
0x11fd <+141>: retq 
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Problem 3: Runtime Stack [10 points] 

a) The key function to examine is below: 
 

#define MAX_ATTEMPTS 3 
bool login() { 
    size_t canary1 = rand_size_t(); // generates random size_t 
    char actual[16]; 
    size_t canary2 = canary1; 
    char supplied[16]; 
     
    strcpy(actual, retrieve_password()); // assume no issues 
    size_t attempts = 0; 
 while (attempts < MAX_ATTEMPTS) { 
        printf("Enter password: "); 
        gets(supplied); 
        if (canary1 != canary2) { 
            printf("Hacking attempt! Aborting login!\n"); 
            return false; 
        } 
        if (strncmp(supplied, actual, 16) == 0) return true; 
        printf("Supplied password failed. Try again!\n"); 
        attempts++; 
    } 
    printf("Max attempts exceeded.\n"); 
    return false; 
} 

 
• You have the idea of entering 47 '0's as the first password and then 23 '0's as the 

second password, and you try. How far do you get? Leveraging your understanding of 
how the stack organizes login’s local variables as per the diagram on the prior page, 
explain why this won’t work. 

 
You don’t get very far at all because the last (highest-address) byte of canary1 
would be a true zero-byte—that is, a '\0'—whereas the last byte of canary2 
would store the ASCII code of the digit character '0'. That two canaries would be 
immediately flagged as unequal, and the function would return false after printing 
an angry message. 

 
• Now explain why a single supplied password of 48 'a'’s in a row might allow login 

to stage a true as a return value, only to crash or cause other problems as it attempts to 
pass control back to the caller. But also explain why entering 48 'a'’s might actually 
work without a problem, and what must be true for that to happen. 
 

To write 48 'a'’s is really to write 49, the 49th being a '\0' that gets written in the 
first byte of the return address.  The canaries and passwords match, so true will be 
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staged in %eax, but retq might pop a malformed address!  If the '\0' overwrites a 
nonzero byte, the address might be invalid, and an attempt to execute that 
instruction might cause a crash.  If that '\0'overwrites another '\0', execution 
proceeds as normal.  

 
b) Here’s a reminder of the function of interest: 
 

void backtrace() { 
  struct func_info info; 
  void **start = &info; 
  while (true) { 
   if (get_function_by_address(*start, &info)) { 
    printf("%s\n", info.name); 
    if (strcmp(info.name, "main") == 0) return; 
   } 
   start++; 
  } 
} 

 
• Briefly explain how and why the backtrace function works. Specifically, explain what 

types of values on the stack prompt the get_function_by_address to return true, 
and also explain why start is initialized to &info. 

 
&info is the lowest meaningful stack address at the time info is declared. The stack 
frames of all functions are, well, stacked at higher addresses, and each stack frame is 
separated from the one below by a return address.  The loop in backtrace walks 
the stack as an array of 64-bit values, and each time one is an address within some 
function, the function name gets printed.  Everything stops when that function name 
is "main". 
 

• You’re convinced the general implementation is pretty good, but then you realize that 
function pointers can be passed as parameters and stored in local variables, and you 
don’t want the names of the functions they address to be printed just because they’re 
stored on the stack. Describe how you might change the implementation of 
get_function_by_address to only print the names of functions that are currently 
executing without printing the names of functions simply function pointers are passed as 
parameters or stored as local variables. 

 
Modify   test to check if the return value of get_function_by_address is true 
and that *start is strictly greater than info.start.  If so, then the name of the 
function can be printed as it has been. If *start == info.start, then *start 
is a function pointer and should be skipped. 
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Problem 4: stop-and-copy Heap Compaction [20 points] 

Some custom allocators optimize to solve the heap compaction problem by maintaining two 
heaps instead of one. Only one heap is active at any one moment, but when heap compaction 
is invoked, the ordered concatenation of all allocated blocks is written to the inactive heap, all 
internal pointers aliasing active heap memory are rewritten to reference the inactive heap 
clone, and then the active heap is rendered inactive and vice versa.  
 
All pointers—whether stored in the heap, on the stack, or in global variables—would need to 
be updated, but here we’ll assume all pointers into the active heap are stored within the active 
heap itself and nowhere else and that all such pointers always address the first byte of an 
allocated node’s payload. Throughout the problem, we’ll assume we’re working with a 64-bit 
system where all size_t’s and pointers are eight bytes long. The active heap is 
sizeof(size_t)-aligned, is subdivided into nodes that are always a multiple of eight bytes, 
and nodes always have enough space for at least eight bytes of payload. The header is an 
eight-byte size_t, where the most significant bit is 1 for allocated nodes and 0 for free nodes, 
and the other 63 bits encode the node size, in bytes—that is, the header size plus the payload 
size, which is understood to be a multiple of 8.  
 
The free list is always implicit, so there are no next or previous pointers to worry about. For 
simplicity, we’ll assume each of the two heaps are the same size, and that the bases of the two 
heaps are stored in global variables, as with: 
 

static size_t *active_start; 
static size_t *inactive_start; 
#define HEADER_SIZE sizeof(size_t); 
#define HEAP_SIZE (1L << 28) // 256 megabytes 
 

The goal of this problem is to take a picture like so, the base address of which is stored 
active_start: 
 
 

 
 
and replicate the in-use nodes to look like this, the base address of which is stored in 
inactive_start. 
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The whole process looks like a loop of memcpy calls, but with the added complexity that comes 
because pointers in the payloads of active nodes that appear to be active heap addresses need to 
be recalculated when dropped in the inactive-but-soon-to-be-made-active heap. 
 
For this problem, you’ll implement this heap compaction algorithm, affectionately known as 
the stop-and-copy algorithm. You’ll be led through a series of steps—less efficient than it could 
be, but easier to do if carefully managed across several steps. 

 
 

a) Here’s the implementation of node_is_allocated : 
 

bool node_is_allocated(size_t *header) { 
 return (*header >> 63) == 1; 
} // or, return (*header & (1L << 63)) != 0; 
 

b) Here’s the implementation of node_get_size: 
 

size_t node_get_size(size_t *header) { 
  return *header & ~(1L << 63); 
} 
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c) Implement the replicate_active_heap function, which verbatim replicates all of the 
active heap’s allocated nodes—and just the allocated nodes—by copying them, in order, to 
the inactive heap, and then taking care to properly mark the last node of the inactive heap 
as unallocated. 

 
void replicate_active_heap() { 
 size_t *active_curr = active_start; 
 size_t *inactive_curr = inactive_start; 
 size_t inactive_used = 0; 
 size_t *active_end = active_start + HEAP_SIZE/sizeof(size_t); 
 while (active_curr < active_end) { 
  size_t size = node_get_size(active_curr); 
     if (node_is_allocated(active_curr)) { 
        memcpy(inactive_curr, active_curr, size); 
        *(active_curr + 1) = inactive_used + sizeof(size_t); 
        inactive_curr += size/sizeof(size_t); 
        inactive_used += size; 
     } 
   active_curr += size/sizeof(size_t); 
   } 
  
 size_t inactive_unused = HEAP_SIZE - inactive_used; 
 if (inactive_unused == 0) return; 
 *inactive_curr = inactive_unused; 
} 

 
d) Finally, implement the rewrite_addresses function, which walks through all the 

payload words in the inactive heap, and rewrites any pointer addressing a word in the 
active heap with the corresponding address in the inactive heap.  If the eight-byte figure 
doesn’t look like a pointer within the active heap—that is, it’s outside the regional between 
active_start and some active_end you’ll need to compute—then you can ignore it 
and simply move onto the next eight bytes of payload. Note that if a figure looks to be an 
address within the active heap, then it is guaranteed to be the base address of an allocated 
node’s payload. 

 
bool within_active(size_t *address) { 
 size_t *active_end = active_start + HEAP_SIZE/sizeof(size_t); 
 return address >= active_start && address < active_end; 
} // can make active_end and inactive_end globals if you want 
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void rewrite_addresses() { 
 size_t *inactive_curr = inactive_start; 
    size_t *inactive_end = inactive_start + HEAP_SIZE/sizeof(size_t); 
    while (inactive_curr < inactive_end && 
           node_is_allocated(inactive_curr)) { 
     size_t *payload_curr = inactive_curr + 1; 
  size_t num_words = node_get_size(inactive_curr)/sizeof(size_t); 
    size_t *payload_end = inactive_curr + num_words; 
  while (payload_curr < payload_end) { 
         if (within_active((size_t *)(*payload_curr))) { 
          size_t offset = *(size_t *)(*payload_curr); 
      *payload_curr =  
     (size_t)(inactive_start + offset/sizeof(size_t)); 
            } 
            payload_curr++; 
     } 
     inactive_curr = payload_end; 
   } 

 } 


