
CS106X Handout 42

Autumn 2012 December 5th, 2012

Python Basics

The Crash Course

If you choose, you can hold a conversation with the Python interpreter, where you speak in
expressions and it replies with evaluations. The first block of code here illustrates the
notion of a read-eval-print loop going on in the background. You type something in,
Python digests and evaluates what you type, and in most cases prints something back to
convey the result of its evaluation.

$ python
Python 2.7.3 (default, May 15 2012, 19:59:17)
[GCC 4.2.1 Compatible Apple Clang 3.1 (tags/Apple/clang-318.0.58)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 4 + 15
19
>>> 8 / 2 * 7
28
>>> x = 12
>>> x ** 2
144
>>> y = 9 + 7 * x
>>> y
93
>>> ^D
$

Unlike purely functional languages, Python doesn’t require that every single expression
print a result, which is why you don’t see anything hit the console in response to an
assignment statement. The above examples involve just whole numbers, and much of
what you expect to be available actually is. There’s even built-in exponentiation with **,
though ++ and -- aren't included.

Booleans

The Boolean constants are True and False, and the six relational operators work on all
primitives, including strings. !, ||, and && have been replaced by the more expressive not,
or, and and. And you can chain tests—things like min < mean < max make perfect sense.

>>> 4 > 0
True
>>> "apple" == "bear"
False
>>> "apple" < "bear" < "candy cane" < "dill"
True
>>> x = y = 7
>>> x <= y and y <= x
True
>>> not x >= y
False

 2

Whole Numbers

Integers work as you’d expect, though you’re insulated almost entirely from the fact that
small numbers exist as four-byte figures and super big numbers are managed as longs,
without the memory limits:

>>> 1 * -2 * 3 * -4 * 5 * -6
-720
>>> factorial(6)
720
>>> factorial(5)
120
>>> factorial(10)
3628800
>>> factorial(15)
1307674368000L
>>> factorial(40)
815915283247897734345611269596115894272000000000L

When the number is big, you’re reminded how big by the big fat L at the end. (I defined
the factorial function myself, because it’s not a built-in. We’ll start defining functions
shortly.)

Strings

String constants can be delimited using either double or single quotes. Substring selection,
concatenation, and repetition are all supported.

>>> interjection = "ohplease"
>>> interjection[2:6]
'plea'
>>> interjection[4:]
'ease'
>>> interjection[:2]
'oh'
>>> interjection[:]
'ohplease'
>>> interjection * 4
'ohpleaseohpleaseohpleaseohplease'
>>> oldmaidsays = "pickme" + interjection * 3
>>> oldmaidsays
'pickmeohpleaseohpleaseohplease'
>>> 'abcdefghijklmnop'[-5:] # negative indices count from the end!
'lmnop'

The quirky syntax that’s likely new to you is the slicing, ala [start:stop]. The [2:6]
identifies the substring of interest: character data from position 2 up through but not
including position 6. Leave out the start index and it’s taken to be 0. Leave out the stop
index, it’s the full string length. Leave them both out, and you get the whole string.
(Python doesn’t burden us with a separate character type. We just use one-character
strings where we’d normally use a character, and everything works just swell.)

 3

Strings are really objects, and there are good number of methods. Rather than exhaustively
document them here, I’ll just illustrate how some of them work. In general, you should
expect the set of methods to more or less imitate what strings in other object-oriented
languages do. You can expect methods like find, startswith, endswith, replace,
and so forth, because a string class would be a pretty dumb string class without them.
Python’s string provides a bunch of additional methods that make it all the more useful in
scripting and WWW capacities—methods like capitalize, split, join,
expandtabs, and encode. Here’s are some examples:

>>> 'abcdefghij'.find('ef')
4
>>> 'abcdefghij'.find('ijk')
-1
>>> 'yodelady-yodelo'.count('y')
3
>>> 'google'.endswith('ggle')
False
>>> 'lItTle ThIrTeEn YeAr OlD gIrl'.capitalize()
'Little thirteen year old girl'
>>>
>>> 'Spiderman 3'.istitle()
True
>>> '1234567890'.isdigit()
True
>>> '12345aeiuo'.isdigit()
False
>>> '12345abcde'.isalnum()
True
>>> 'sad'.replace('s', 'gl')
'glad'
>>> 'This is a test.'.split(' ')
['This', 'is', 'a', 'test.']
>>> '-'.join(['ee','eye','ee','eye','oh'])
'ee-eye-ee-eye-oh'

Lists and Tuples

Python has two types of sequential containers: lists (which are read-write) and tuples
(which are immutable, read-only). Lists are delimited by square brackets, whereas tuples
are delimited by parentheses. Here are some examples:

>>> streets = ["Castro", "Noe", "Sanchez", "Church",
 "Dolores", "Van Ness", "Folsom"]
>>> streets[0]
'Castro'
>>> streets[5]
'Van Ness'
>>> len(streets)
7
>>> streets[len(streets) - 1]
'Folsom'

The same slicing that was available to us with strings actually works with lists as well:

 4

>>> streets[1:6]
['Noe', 'Sanchez', 'Church', 'Dolores', 'Van Ness']
>>> streets[:2]
['Castro', 'Noe']
>>> streets[5:5]
[]

Coolest feature ever: you can splice into the middle of a list by identifying the slice that
should be replaced:

>>> streets
['Castro', 'Noe', 'Sanchez', 'Church', 'Dolores', 'Van Ness', 'Folsom']
>>> streets[5:5] = ["Guerrero", "Valencia", "Mission"]
>>> streets
['Castro', 'Noe', 'Sanchez', 'Church', 'Dolores', 'Guerrero',
 'Valencia', 'Mission', 'Van Ness', 'Folsom']
>>> streets[0:1] = ["Eureka", "Collingswood", "Castro"]
>>> streets
['Eureka', 'Collingswood', 'Castro', 'Noe', 'Sanchez', 'Church',
 'Dolores', 'Guerrero', 'Valencia', 'Mission', 'Van Ness', 'Folsom']
>>> streets.append("Harrison")
>>> streets
['Eureka', 'Collingswood', 'Castro', 'Noe', 'Sanchez', 'Church',
 'Dolores', 'Guerrero', 'Valencia', 'Mission', 'Van Ness', 'Folsom', 'Harrison']

The first splice states that the empty region between items 5 and 6—or in [5, 5), in
interval notation—should be replaced with the list constant on the right hand side. The
second splice states that streets[0:1]—which is the sublist ['Castro']—should be
overwritten with the sequence ['Eureka', 'Collingswood', 'Castro']. And
naturally there’s an append method.

Note: lists need not be homogenous. If you want, you can model a record using a list,
provided you remember what slot stores what data.

>>> prop = ["355 Noe Street", 3, 1.5, 2460,
 [[1988, 385000],[2004, 1380000]]]
>>> print("The house at %s was built in %d." % (prop[0], prop[4][0][0])
The house at 355 Noe Street was built in 1988.

The list’s more conservative brother is the tuple, which is more or less an immutable list
constant that’s delimited by parentheses instead of square brackets. It’s supports read-only
slicing, but no clever insertions:

>>> cto = ("Will Shulman", 154000, "BSCS Stanford, 1997")
>>> cto[0]
'Will Shulman'
>>> cto[2]
'BSCS Stanford, 1997'
>>> cto[1:2]
(154000,)
>>> cto[0:2]
('Will Shulman', 154000)
>>> cto[1:2] = 158000

 5

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object doesn't support slice assignment

Defining Functions

In practice, I’d say that Python walks the fence between the procedural and object-oriented
paradigms. Here’s an implementation of a standalone gatherDivisors function. This
illustrates if tests, for-loop iteration, and most importantly, the dependence on white
space and indentation to specify block structure:

Function: gatherDivisors

Accepts the specified number and produces
a list of all numbers that divide evenly
into it.

def gatherDivisors(num):
 """Synthesizes a list of all the positive numbers
 that evenly divide into the specified num."""
 divisors = []
 for d in xrange(1, num/2 + 1):
 if (num % d == 0):
 divisors.append(d)
 return divisors

The syntax takes some getting used to. We don’t really miss the semicolons (and they’re
often ignored if you put them in by mistake). You’ll notice that certain parts of the
implementation are indented one, two, even three times. The indentation (which comes in
the form of either a tab or four space characters) makes it clear who owns what. You’ll
notice that def, for, and if statements are punctuated by colons: this means at least one
statement and possibly many will fall under its jurisdiction.

Note the following:
• The # marks everything from it to the end of the line as a comment. I bet you figured

that out already.
• None of the variables—neither parameters nor locals—are strongly typed. Of course,

Python supports the notion of numbers, floating points, strings, and so forth. But it
doesn’t require you state why type of data need be stored in any particular variable.
Identifiers can be bound to any type of data at any time, and it needn’t be associated
with the same type of data forever. Although there’s rarely a good reason to do this, a
variable called data could be set to 5, and reassigned to "five", and later reassigned
to [5, "five", 5, [5]] and Python would approve.

• The triply double-quote delimited string is understood to be a string constant that’s
allowed to span multiple lines. In particular, if a string constant is the first expression
within a def, it’s taken to be a documentation string explaining the function to the
client. It’s not designed to be an implementation comment—just a user comment so
they know what it does.

 6

• The for loop is different than it is in other languages. Rather than counting a specific
numbers of times, for loops iterate over what are called iterables. The iterator (which
in the gatherDivisors function is d) is bound to each element within the iterable
until it’s seen every one. Iterables take on several forms, but the list is probably the
most common. We can also iterate over strings, over sequences (which are read-only
lists, really), and over dictionaries (which are Python’s version of CS106’s Map)

Packaging Code In Modules

Once you’re solving a problem that’s large enough to require procedural decomposition,
you’ll want to place the implementations of functions in files—files that operate either as
modules (sort of like Java packages, C++ libraries, etc) or as scripts.

This gatherDivisors function above might be packaged up in a file called
divisors.py. If so, and you launch python from the directory storing the
divisors.py file, then you can import the divisors module, and you can even import
actual functions from within the module. Look here:

$ python
Python 2.7.3 (default, May 15 2012, 19:59:17)
[GCC 4.2.1 Compatible Apple Clang 3.1 (tags/Apple/clang-318.0.58)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import divisors
>>> divisors.gatherDivisors(54)
[1, 2, 3, 6, 9, 18, 27]
>>> gatherDivisors(216)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: name 'gatherDivisors' is not defined
>>> from divisors import gatherDivisors
>>> gatherDivisors(216)
[1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108]
>>> "neat"
'neat'
$

If everything you write is designed to be run as a standalone script—in other words, an
independent interpreted program—then you can bundle the collection of meaningful
functions into a single file, save the file, and mark the file as something that’s executable
(i.e. chmod a+x narcissist.py in a Unix environment).

 7

Here’s a fairly involved program that prints out the first 15 (or some user-supplied number
of) narcissistic numbers (just Google narcissistic numbers if you miss the in-class
explanation):

#!/usr/bin/env python
encoding: utf-8
Here's a simple script (feels like a program, though) that prints out
the first n narcissistic numbers, where n is provided on the command line.
import sys

def numDigits(num):
 """Returns the number of digits making
 up a number, not counting leading zeroes,
 except for the number 0 itself."""
 if (num == 0): return 1
 digitCount = 0
 while (num > 0):
 digitCount += 1
 num /= 10
 return digitCount

def isNarcissistic(num):
 """Returns True if and only if the
 number is a narcissistic number."""
 originalNum = num
 total = 0
 exp = numDigits(num)
 while (num > 0):
 digit = num % 10
 num /= 10
 total += digit ** exp
 return total == originalNum

def listNarcissisticNumbers(numNeeded):
 """Searches for an prints out the first 'numNeeded'
 narcissistic numbers."""
 numFound = 0;
 numToConsider = 0;
 print "Here are the first %d narcissistic numbers." % numNeeded
 while (numFound < numNeeded):
 if (isNarcissistic(numToConsider)):
 numFound += 1
 print numToConsider
 numToConsider += 1
 print "Done!"

def getNumberNeeded():
 """Parses the command line arguments to the extent necessary to determine
 how many narcissistic numbers the user would like to print."""
 numNeeded = 15; # this is the default number
 if len(sys.argv) > 1:
 try:
 numNeeded = int(sys.argv[1])
 except ValueError:
 print "Non-integral argument encountered... using default."
 return numNeeded

listNarcissisticNumbers(getNumberNeeded())

Required so that we can parse the command line via variables defined by the sys module. The slash-bang is usually the first line of a script, and it tells us what
environment to run the script in. The encoding thing is optional, but standard.

One-liner slave expressions can be on the same line as
their owner, like this.

The equivalent of System.out.println, but with printf’s
substitution strategy. The exposed % marks the
beginning of the expressions that should fill in the %d
and %s placeholders.

No ++ An exposed function call, which gets evaluated as
the script runs. This is effectively your main
program, except you get to name your top-level
function in Python.

 8

View the script on the previous page as a module with five expressions. The first four are
def expressions—function definitions—that when evaluated have the side effect of binding
the name of the function to some code. The fifth expression is really a function call whose
evaluation generates the output we’re interested in. It relies on the fact that the four
expressions that preceded it were evaluated beforehand, so that by the time the Python
environment gets around to the listNarcissisticNumbers call,
listNarcissisticNumbers and getNumbersNeeded actually mean something and
there’s code to jump to.

Quicksort and List Comprehensions

Here’s an implementation of a familiar sorting algorithm that illustrates an in-place list
initialization technique:

Illustrates how list slicing, list concatentation, and list
comprehensions work to do something meaningful.
This is not the most efficient version of quicksort available, because
each level requires two passes instead of just one.

def quicksort(sequence):
 """Classic implementation of quicksort using list
 comprehensions and assuming the traditional relational
 operators work. The primary weakness of this particular
 implementation of quicksort is that it makes two passes
 over the sequence instead of just one."""

 if (len(sequence) == 0): return []
 front = quicksort([le for le in sequence[1:] if le <= sequence[0]])
 back = quicksort([gt for gt in sequence[1:] if gt > sequence[0]])
 return front + [sequence[0]] + back

>>> from quicksort import quicksort
>>> quicksort([5, 3, 6, 1, 2, 9])
[1, 2, 3, 5, 6, 9]
>>> quicksort(["g", "b", "z", "k", "e", "a", "y", "s"])
['a', 'b', 'e', 'g', 'k', 's', 'y', 'z']

The [le for le in sequence[1:] if le <= sequence[0]] passed to the first
recursive call is called a list comprehension, which is a quick, one line way to create one
list out of another piece of data. You can include an arbitrary number of iterations in a list
comprehension, as with:

>>> [(x, y) for x in xrange(1, 3) for y in xrange(4, 8)]
[(1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 5), (2, 6), (2, 7)]
>>> [(x, y, z) for x in range(1, 5)
 for y in range(1, 5)
 for z in range(1, 6) if x < y <= z]
[(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 3), (1, 3, 4),
 (1, 3, 5), (1, 4, 4), (1, 4, 5), (2, 3, 3), (2, 3, 4), (2, 3, 5),
 (2, 4, 4), (2, 4, 5), (3, 4, 4), (3, 4, 5)]

 9

Dictionaries

We know enough to start talking about Python’s Holy Grail of data structures: the dictionary. The
Python dictionary is little more than a hash table, where the keys are anything that’s hashable
(which is most primitives) and the values are anything we want. Here’s the interactive build up of
a single dictionary instance modeling the house I grew up in:

>>> primaryHome = {} # initialize empty dictionary, add stuff line by line
>>> primaryHome["phone"] = "609-786-06xx"
>>> primaryHome["house-type"] = "rancher"
>>> primaryHome["address"] = {}
>>> primaryHome["address"]["number"] = 2210
>>> primaryHome["address"]["street"] = "Hope Lane"
>>> primaryHome["address"]["city"] = "Cinnaminson"
>>> primaryHome["address"]["state"] = "New Jersey"
>>> primaryHome["address"]["zip"] = "08077"
>>> primaryHome["num-bedrooms"] = 3
>>> primaryHome["num-bathrooms"] = 1.5
>>> primaryHome
{'num-bathrooms': 1.5, 'phone': '609-786-06xx', 'num-bedrooms': 3, 'house-
type': 'rancher', 'address': {'city': 'Cinnaminson', 'state': 'New Jersey',
'street': 'Hope Lane', 'number': 2210, 'zip': '08077'}}
>>> primaryHome["address"]["street"]
'Hope Lane'

You can think of this as some method-free object that’s been populated with a bunch of
properties. Although, building up a dictionary like this needn’t be so tedious. If I wanted, I
could initialize a second dictionary by typing out the full text representation of a dictionary
constant:

>>> vacationHome = {'phone': '717-581-44yy', 'address': {'city': 'Jim
Thorpe', 'state': 'Pennsylvania', 'number': 146, 'street':'Fawn Drive',
'zip': '18229'}}
>>> vacationHome["address"]["city"]
'Jim Thorpe'

 10

Defining Objects

Here’s a simple lexicon class definition:

from bisect import bisect
class lexicon:
 def __init__(self, filename = 'words.txt'):
 """Constructs a raw lexicon by reading in the
 presumably alphabetized list of words in the
 specified file. No error checking is performed
 on the file, though."""
 infile = open(filename, 'r')
 words = infile.readlines() # retains newlines
 self.__words = map(lambda w: w.rstrip(), words)

 def containsWord(self, word):
 """Implements traditional binary search on the
 lexicon to see if the specified word is present."""
 pos = bisect(self.__words, word) - 1
 return pos >= 0 and self.__words[pos] == word

 def wordContainsEverything(self, word, characterset):
 """Returns True if and only if the specified word
 contains every single character in the specified
 character set."""
 for i in range(len(characterset)):
 if (word.find(characterset[i]) < 0):
 return False
 return True

 def listAllWordsContaining(self, characterset):
 """Brute force lists all of the words in the lexicon that
 contain each and every character in the character set."""
 matchingWords = []
 for word in self.__words:
 if (self.wordContainsEverything(word, characterset)):
 matchingWords.append(word)

 if (len(matchingWords) == 0):
 print "We didn't find any words that contained all those characters."
 print "Try a less constraining character set."
 return

 print "Listing all words with the letters \"%s\"" % characterset
 print ""
 for word in matchingWords:
 print "\t%s" % word
 print ""

The __init__ method is the Python equivalent of a constructor.
It’s optional, but since there’s typically at least one attribute
that needs to be initialized (else why do we have a class?), it’s
unusual to not have a constructor for any meaningful object
type.

Here’s a normal
method. Note
that all methods
(and the special
__init__
method) all take
an exposed self
pointer.

