
CS106X Handout 41

Autumn 2012 December 3rd, 2012

Section Handout

Discussion Problem 1: Muppet Inheritance

Consider the following set of class definitions (assume that all methods are public):

class Kermit {
 virtual void animal() = 0;
 void beaker() { muppet("Kermit::beaker"); animal(); }
 virtual void fozzie() { muppet("Kermit::fozzie"); rowlf(); }
 virtual void misspiggy() = 0;
 void rowlf() { muppet("Kermit::rowlf"); misspiggy(); }
 void muppet(string s) { cout << s << endl; }
};

class Statler : public Kermit {
 void beaker() { muppet("Statler::beaker"); rowlf(); }
 virtual void misspiggy() { muppet("Statler::misspiggy"); rowlf(); }
 void rowlf() { muppet("Statler::rowlf"); animal(); }
};

class Waldorf : public Statler {
 virtual void animal() { muppet("Waldorf::animal"); rowlf(); }
 void rowlf() { muppet("Waldorf::rowlf"); }
};

class Gonzo : public Kermit {
 virtual void animal() { muppet("Gonzo::animal"); rowlf(); }
 virtual void misspiggy() { muppet("Gonzo::misspiggy"); beaker(); }
 void rowlf() { muppet("Gonzo::rowlf"); }
};

Now consider the following function:

void muppetShow(Kermit *kermit) {
 kermit->fozzie();
}

What type of object can kermit legitimately address during execution? For each object
type, list the output that would be produced by calling muppetShow against that type.

Lab Problem 1: JavaScript Object Notation Take II

For your one C++ lab problem this week, you’re to rewrite the JSON parsing application
you wrote three weeks ago, this time modeling the type hierarchy not using unions, but
using inheritance. The problem domain should be familiar to you, but the implementation
is new and leverages your newborn understanding of OOP and class design with parent
and child classes.

 2

There is a single file called json-lite-inheritance.cpp that currently processes
integers just perfectly, but pretends that strings, Booleans, arrays, and dictionaries are all
gibberish and ignores them. You should repurpose your previous implementation (or just
rewrite it—it’s really not that much code) to model the four outstanding types as subclasses
of JSONElement, making using of the virtual keyword and runtime method resolution
to implement an object-oriented JSON parser.

As part of the experiment, and after you’ve got everything working, you should remove the
virtual keyword everywhere, provide dummy implementations instead of allowing = 0
(which is off limits to non-virtual methods) and run the application to see what
happens.

