
CS106X Handout 40

Autumn 2012 December 3rd, 2012

Assignment 7: Stanford 1-2-3
Excellent assignment by Julie Zelenski, with minor revisions by Jerry.

This is your last CS106X assignment! It is a chance to pull together your stellar C++ skills,
design a complicated data structure, use a variety of existing classes, design and implement
a few new ones, and build an awesome piece of productivity software. It's a wonderful
and sophisticated task that is a capstone to all you've done so far. I can't think of a better
way to top off our intense journey. When you look back at where you started in
September, did you imagine you'd be ready for something this fancy just 2 months later?

Due: Thursday, December 13th at 11:30 a.m.1

The Assignment

Your mission is to build a simple spreadsheet, starting with a slightly modified version of
the expression evaluator presented in Chapter 19. This assignment is designed to
accomplish the following objectives:

o To more fully explore the notion of object-oriented programming. The program is
broken down into classes that cooperatively interact. Almost every one of the
classes we studied this quarter has a role to play.

o To learn how C++ inheritance can be used for expression trees and how to
implement simple recursive-descent parsing.

o To give you even more practice working with graphs and graph algorithms.
o To get a taste of the Model/View/Controller (MVC) structure used by many modern

applications.
o To learn how to adapt existing code (in this case, the expression interpreter) to solve

a different but related task. The majority of programming people do in the industry
consists of modifying existing systems rather than creating them from scratch.

o To experience the joys and frustration of designing a class interface/implementation.
o To create your own design rather than having the decisions made before you even

start!

The task may sound a bit daunting, but never fear, there is a fair amount of infrastructure in
place already. However, there is still much for you to do, so don't delay getting started.
Make it your personal goal to have your final project be one that genuinely rocks.

1 Note that no late days can be used on this last assignment. All submissions must come in by the 11:30 a.m.

deadline.

 2

A note on open-ended design

Although we give you a lot of starter code and tons of suggestions, this assignment is more
open-ended than most and offers you the freedom to design things the way you want.
There are a few isolated tasks for which we mandate a particular implementation strategy,
but other than that, it's up to you to make sensible decisions. Your program is expected to
have the external behavior we describe and work comparably to the demo version, but
you’re being given broad authority over the choices you make to build a working product.
This kind of open-ended design can be creative and fun, but there is also is potential to go
astray with suboptimal choices that you later have to live with. We recommend starting
the design process early and carefully thinking through the alternatives and their tradeoffs.
We also strongly encourage you to run your design by your section leader—over email is
fine—before you start coding to help you identify and correct potential problems earlier
rather than later.

The Goal

One of the most important commercial programs to emerge from the personal computer
revolution was the electronic spreadsheet. The original VisiCalc system was a runaway
success for Apple computers in the early 1980s, and many more advanced packages, such
as Lotus 1-2-3 and Microsoft Excel, have extended that basic idea so that spreadsheet
programs are now used as the basis for an astonishing wide range of commercial
applications. At its core, a spreadsheet consists of a two-dimensional grid of cells, each
indicated by a letter representing a column and a number representing a row, as illustrated
in the diagram below:

 3

In the spreadsheet, each cell contains a value, which can be:

• a string, such as "Item" in A1 or "French hens" in A4.
• a number, such as the quantities in column B or the prices in column C. Note that

these values can have decimal fractions and must therefore be represented using
type double. (And the expression hierarchy has been updated to accommodate this
change).

• a formula linking other items in the spreadsheet. Presumably, cell D2 was set so
that its value is calculated by multiplying the values in cells B2 and C2. Similarly,
cell D14 is the sum of the values in cells D2 through D13. Cells that reference other
cells are said to have dependencies. If the value in B2 or C2 changes, D2 will also
need to be updated since it depends on those inputs.

Commands for the Spreadsheet Controller

Let's first examine the program from the user's perspective, and postpone discussing its
internals until we know what the program does. It opens with a new empty spreadsheet.
Using a simple command-line interpreter interface reminiscent of a bad flashback to the
70s, the user can enter text commands that operate on the spreadsheet.

The command

load <filename>
reads the contents of a previously saved spreadsheet from the named file.

The command

save <filename>
writes the current contents of the spreadsheet to the named file.

The command

clear
clears the current contents of the spreadsheet.

The command

set <cellname> = <value>
sets the current contents for the given cell, replacing any previous contents for that cell.
The cell name is specified by column and row such as A3. The value can be a string
enclosed in double-quotes or a numeric expression. Below are some examples:

 Set A2 = "Beat Cal"
 Set B2 = 13.5
 Set C2 = B2 * (3 + A1)

 4

If the cell name or value is invalid or malformed, an error is reported and the command
discarded. Otherwise, the new contents are displayed and all cells that depend on the
updated value are updated.

The command

get <cellname>
prints information for a given cell which include its contents and a list of the cell's
dependencies: both those cells that this one directly depends on and those cells that
directly depend on it. (We'll explain more about dependencies later in this handout). For
example, given the cell contents above in the set command, set C2 would print:

C2 = (B2 * (3 + A1))
Cells that C2 directly depends on: A1 B2
Cells that directly depend on C2:

You are also welcome to use the get command to print any additional cell information
(such as the indirect dependents) useful to your development and debugging. In fitting
with our general philosophy for this assignment, your output doesn’t have to match this
output exactly; you just need to ensure that all our required information is present.

The command

help

prints a simple help message describing the available commands.

The command

quit

exits from the program. Duh.

Overview: Program Structure

The spreadsheet program is internally structured using the Model/View/Controller (MVC)
design pattern favored by modern GUI applications. The model manages the data being
stored. A view displays a visual representation of the model. The controller provides a
user interface (be it graphical widgets or a retro command-line) that offers the user a way to
make changes to the model. The controller responds to the user actions by messaging the
model to update the data. When the model is changed, it notifies its view(s) to show the
new data. The benefit of MVC is that it divides the code into clean areas of responsibility,
makes it possible to have multiple views/controllers on the same model, and allows you to
easily try out different implementations for each component.

In the case of the spreadsheet, we supply the controller (the command-line interface) and
the view (the graphical display). The model is left for you to design and implement. This

 5

class is where you will concentrate your efforts, while making compatible modifications to
some of the other modules as well.

To get oriented, here is a summary of the program structure:

sscontroller This module houses the main program, which is responsible for the text-

based interface. It uses a TokenScanner to break apart the command
line and messages the spreadsheet model with the changes. Most of
this module is written, but you’ll need to extend it to support one
additional command.

SSView This class provides a graphical spreadsheet display. We provide the
complete class and you will not need to make changes to it unless you
want to.

SSModel This class manages the spreadsheet and cell data model. We provide a
skeletal public interface and you will finish the design and provide the
class implementation.

Expression The project uses the exp and parser modules from the Chapter 19
expression evaluator with a few adjustments. Most of this code will be
used as is, but you will make additional modifications to support
features required for the spreadsheet formulas.

ssutil This module provides a few utility functions and the range formula
functions (median, sum, max, etc.) for use in formulas. You may or may
not need to make modifications to this module.

The rest of this handout focuses on the modules that you’ll work on and then gives you a
suggested course of action as to how you might go about tackling this assignment. We’ve
put the task breakdown last this time for a reason; we strongly suggest you read this
handout thoroughly and get an idea of how all the pieces mesh together before you start
doing any design or coding!

The sscontroller, ssview, and ssutil modules

We provide these three modules to you in complete (or near-complete) form.

The sscontroller module contains the main program loop that interacts with the user,
reading and acting on commands. It uses a TokenScanner to process the user's input
and determines the appropriate action using a little command-dispatch table. Our code
correctly implements the controller responsibilities, except that it is missing the clear
command, which clears the current spreadsheet contents. You’re to add this command to
the controller.

 6

Note that controller is tightly coupled to the expression evaluator code in Chapter 19. One
difference from the code given in the reader is that the interpreter loop for the spreadsheet
controller contains additional code to recover from errors. If you are entering a formula
and make a syntax error, you do not want your entire spreadsheet to bomb out with an
error. Even so, it is extremely convenient in the code to call error to produce the error
messages. Our implementation of the error function—which you’ve been seduced into
believing automatically terminates program execution—actually throws an exception that’s
caught in the primary repl.

The ssview module provides the class that manages the appearance of the spreadsheet in
the graphics window. It includes member functions for displaying an empty spreadsheet
and displaying the contents of a cell. Your model should send messages to the view as
needed to update the display when changes are made to the model. Comments in the
ssview.h file describe the public features of the class.

The ssutil module has a few little utilities that didn't quite fit anywhere else. It defines
location and range types, functions to convert a cell name to location and vice versa, and
code for the range formula functions (average, sum, max, etc.). You are free to extend,
change, or cannibalize the code in this module in any way you find helpful.

Hints and requirements for these modules:

Adding the clear command to the controller requires just a few lines of code, but you
must first work through the controller code to understand how to fit the required code into
the overall program architecture.

A range represents a set of cells between a start and stop cell inclusively. A range can span
just one row or column or enclose a two-dimensional rectangular block of cells. Thus,
ranges like A1:A4, A1:A1, A1:D1, and A1:D6 are valid. One thing to note is that a valid
range is required to be non-empty, which means the stop cell must be at position that at
least equal to the row and column of the start cell.

The range record defined in ssutil stores a location for start and stop. An alternative
definition might represent the start and stop as string cell names. In some places, you refer
to a cell by its string name, other times you need its components, so either approach will
require translation and ssutil supplies simple conversion functions.

You can modify the supplied range formula functions to fit with your mechanism to access
a range of cells (e.g. have the functions directly operate on your model) or just use the
functions as given (you first extract the needed values into a Vector). Either approach is
fine with us.

 7

Matching a range formula function name "median" to the appropriate function to execute
should be implemented using the command table approach, like that used in the controller
module. It should be a simple task to add new range formula functions if you've designed
it well.

Expressions and Parsing

Cell formulas can be built out of real numbers, references to other cells, parentheses, the
four operators +, -, *, and /, as well as built-in functions applied to cell ranges. Here are
examples of some possible cell formulas:

 5 * 1.08
 A1 + A2
 "Beat Cal!"
 SUM(B1:B5)
 (3 + A5)/average(A1:B5) + D10 - 5.5

With a few modifications, the Expression classes are the perfect mechanism for
managing cell contents. We give you the code from Chapter 19 as your starting point, with
our changes to allow real-value constants instead of integer constants and to add string
literals enclosed in double-quotes as a new expression type. Although most of the
expression code will be used as is, you do need to understand it thoroughly so you can
properly adapt it for your purposes where necessary.

The changes you are to make:

1. Adapt expressions to work in the context of the spreadsheet model. Whereas the ordinary

expression evaluator allows arbitrary use of identifier names for variables through a
variable table, variables now must be references to spreadsheet cells. Modify the
parsing code so it accepts only cell names as identifiers, and update the evaluation
code to retrieve the values for cells from the spreadsheet model.

2. Add support for a new expression type of a function applied to a range. A range function
expression apply a named function to a cell range, e.g. sum(A1:A5) applies the sum
function to all cells from A1 to A5 inclusive. The modified grammar for terms
becomes:
 T -> "string"
 T -> number
 T -> cellname
 T -> function(cellname:cellname)
 T -> (E)

 This will require adding a new Expression subclass and making changes to the

parsing code. The named functions that you are required to support are listed in the
ssutil.h interface file.

 8

3. Add support for identifying dependencies. In order to report cell dependencies, you need
to be able to find the dependent references within an expression. This is a matter of
walking the expression tree and reporting the dependencies found within the sub-
expressions.

Hints and requirements for expressions and parsing:

Starting from a working program that solves a different problem (in this case, the expression
evaluator from the reader) is both a blessing and a curse. The Expression classes and
parsing code will be a great help, but you may find yourself swimming in code at first and
unsure of how to proceed. It is essential that you understand the workings of the given
expression code. We recommend re-reading Chapter 19 and going over the code with a
fine-toothed comb. If there's anything you don't understand, be sure to ask. You do not
need to make significant modifications, but figuring out how and where to make changes
requires that you understand the existing code base.

In the original expression evaluator, the assignment operator = could be part of an
expression. In the spreadsheet, the = is a throwaway character in a set statement, and the
expression that follows it can involve the arithmetic operators but not the = operator. We
already removed that feature from the expression modules we give you to avoid confusion.

When parsing a cell formula, the parser should reject all malformed inputs (improper cell
reference, unknown range formula function, invalid range, and so on). There are a lot of
cases to consider, so do be thoughtful and test carefully. Use error to report the problem
and the exception handling in the controller will catch it and go on.

When evaluating a cell formula, a reference to an empty or string cell is assumed to have
value 0. If A1 = A2 + 5 and A2 = "hello", then A1 will show the result 5. Similarly a
function such as sum applied to a range of string cells would have a zero result.

Formulas should be case-insensitive: cell references A2 and a2 and functions median and
MedIAN are the same thing. Be sure to use the virtual keyword to get the proper
dynamic dispatch for any new member functions added to the base Expression class
that are intended to be overridden by subclasses. Just for reference, the expression/parsing
modifications involve changing/adding about 50 lines of code.

 9

The spreadsheet model

Your main task is designing and implementing the SSModel class to manage the cell data.
We provide a skeletal interface that lists exactly those public features needed to interact
properly with our controller and view. You are to finish the design of the interface and
implement the class. This is an excellent opportunity for you to think through the various
options and make the decisions to suit yourself. In the real world, it is rare that code you
must write comes to you fully specified, and we want you to gain some experience in the
issues and tradeoffs that come up.

In general, the model is responsible for storing the contents of the cells, managing the
relationships between cells, responding to requests from the controller, and notifying the
view when things change. You're likely to find designing this class to be an iterative
process—you sketch out the features, but as you move forward, you discover problems or
unanticipated needs that necessitate changes and/or refinement. Perhaps as the
implementer you find some operations difficult or inefficient to support, or as the client,
you encounter tasks that are awkward or even impossible. Back to the design drawing
board, to make additions and adjustments as needed.

Most of the implementation strategy is left unspecified. Consider the options and make
your own well-reasoned decisions. Keep in mind that you have the full collection of our
classes at your disposal (sets, grids, maps, and so on) and more than one may be useful
here. Here are some questions to get you started thinking about the kind of issues that you
need to address:

o Should cells be created for each cell in the spreadsheet from the start or only on
demand? What reasons are there to prefer one approach to the other?

o What might the model use to store cells: A grid? A set? A map? What supports easy
lookup up by cell name? What about by location? What allows easy
iteration/mapping over the cells? Would two ways of accessing the cells make
sense or would it be overkill?

o How are the contents for each cell stored? What updating needs to happen when a
cell's contents are changed?

o Should a cell cache its computed result or re-compute on the fly? If you store only
the formula, each time you need the result you must re-evaluate it. Instead you
could evaluate the expression once and cached the result, and use it repeatedly,
only discarding and re-computing when a dependency changes. What are the
tradeoffs between the two approaches?

o How might you support accessing the cells/values within a range: an iterator? a
function that returns a set/vector of cell names or values? What is more convenient
to use/implement? Are there good reasons to support more than one technique?

 10

One of your greatest challenges is dealing with cell formulas. The trickiness comes in the
fact that changing a value in one cell may start a chain reaction of updates. A cell that has
a reference to another cell in its formula is said to be dependent on that cell. If the value in
a cell is changed, the cells that depend on it also must be updated. Dependencies can
either be direct (where a cell has an explicit reference to another in its formula), or indirect
(where a cell has a chain of references that eventually lead to that cell). Consider the
following spreadsheet file:

A1 = 10
B1 = A1 * 2
C1 = B1 + 5
D1 = C1 / B1
E1 = SUM(C1:D1)
F1 = 22

B1 directly depends on A1, C1 directly depends on B1, D1 directly depends on B1 and C1,
and E1 directly depends on C1 and D1. Both C1 and D1 indirectly depend on A1 (through
B1), and E1 indirectly depends on A1 and B1. One useful way to visualize the
dependencies is in terms of a directed graph, as shown below:

A1

B1

C1

D1

E1

F1

In this graph, the arcs trace the direction of propagating/outgoing dependencies. The same
arcs in reverse show the incoming dependencies. For example, when A1 changes, it needs
to propagate an update to B1 because the formula for B1 directly references A1. Indirect
dependencies are those cells connected through a longer path. D1 indirectly depends on
A1, since it relies on B1, which in turn relies on A1, this indirect dependency is
represented as a path of arcs from A1 to D1.

When the value of a cell is updated, you must update all cells that depend on it, either
directly or indirectly. Tracing the paths away from A1, you can see that changing the value
in A1 will require four other cells to be updated. Changing F1, on the other hand, requires
no changes to any other cells, since it has no outgoing dependencies. F1 also has no
incoming dependencies, i.e., it is not affected by changes to any other cells.

Traversing the dependent cells sounds suspiciously like depth or breadth-first traversal of
the graph. You can do this recursively or manually using a stack or a queue. A simple
(and acceptable) version might update some cells multiple times because there is more

 11

than one path between them (consider how D1 could be updated twice when traversing
from A1). The really slick way is to do a topological sort to efficiently order the cell
updates so that each dependent cell is updated at most once, only after its dependents have
been updated.

There’s one more bit of trickiness with dependencies. What if the formula for A1 were
sum(A1:E1)? To calculate the value of A1, you need the value of A1, but you don’t know
what it is because you’re still trying to calculate it! This kind of dependency is called a
circular reference, and is bad news in a spreadsheet. You should disallow all circular
references. An obvious circular reference would be an attempt to set A1 = A1, e.g. where a
cell directly references itself. The more sneaky form is via an indirect reference such as
assigning A1 = E1 in the above example, which introduces a cycle in the graph.

Before assigning a new formula to a cell, you should traverse the graph of dependencies to
ensure it will not create a cycle. Consider if the user tried to set A1 = F1 + E1 in the above
graph. The two cells directly referenced by the formula are F1 and E1. We examine the
incoming dependencies for F1 and find none because it has no cells on which it depends,
so this will be no problem. Next we examine the arcs leading to E1, and find that is
directly depends on C1 and D1. So far so good, but when we continue our recursive
traversal to find the cells they depend on, we eventually run into A1, which is exactly what
we didn't want to find. The formula is disallowed because it is circular.

Hints and requirements for ssmodel:

When setting a cell, first check for problems (invalid name, parsing issues, circular
reference, etc.) and if any are found, discard the formula and leave the cell unchanged. It's
best to do all the checks before making any changes, so you don't have to undo it halfway.

o The file format used for the load and save commands is a simple text file
containing a list of all non-empty cells, one cell per line. Here is an excerpt from the
file displayed on page 2:

A2 = "Partridge"
B2 = 1
C2 = 129.99
D2 = B2 * C2

o The ability to load and save files will be an invaluable time-saver for your testing.
We provide some sample saved files in the starting project as test cases. You may
assume that the contents of files being loaded are well formed, unlike the user's
typo-ridden input, which must be gracefully handled at the command line.

o We suggest getting basic cell assignment, display, load/save, etc. all working
without tracking dependencies first. Handle dependencies only after the underlying
infrastructure is implemented and debugged.

 12

o You're free to represent the dependencies in any way you like (using pointers, sets,
vectors, etc). You'll find that you need both outgoing dependencies, i.e., those cells
that must be notified when this one changes, and incoming dependencies, i.e.
which cells when changed require this one to update. (You may need to think for a
bit to see why). The incoming arcs are just the outgoing arcs reversed, so you can
get away with only representing the arcs one-way, but it might be convenient to
store them in such a way to enable easy access in either direction. This little bit of
redundancy makes some tasks easier.

o Make sure you have a basic understanding of graphs and graph traversals. We
recommend drawing pictures to visualize. Accidentally introducing cycles into the
graph will create opportunity for infinite recursion (which may crash or lock up your
computer, sigh), so be extra careful to avoid them.

o The SSModel class has much more room for design decisions than previous
assignments. We provide some starting suggestions, but much of how you structure
things is up to you. You will likely find yourself wrestling with various decisions
and tradeoffs. There is no definitive "right" way, but there are better and worse
choices. Part of your job is brainstorming your options, making thoughtful
decisions, and documenting your reasoning. Taking the time to make good choices
early in the design phase can significantly pay off during implementation. You are
strongly encouraged to ask us for advice along the way— remember it is far easier to
correct a questionable decision early in the process than when the code is further
along.

And don’t forget these:

o Your design may have two or more classes that each depend on each other. An
Expression class uses an SSModel object that in turn stores Expression
objects. Think about the trouble of having ssmodel.h include exp.h while
exp.h tries to include ssmodel.h! In C++, the mechanism for dealing with this is
the forward reference. At the top of the ssmodel.h file, before you declare the
SSModel class interface, you can insert a forward reference to a class it depends
on, such as Expression, with this bit of syntax:

class Expression;

This forward reference informs the compiler that there will be a class named
Expression. This allows the SSModel to happily continue on declaring data
members and method parameter/return types that are of type Expression* since
the compiler has been assured such a class will exist and will be seen later.

o You are expected to properly dispose of any dynamically allocated memory. This is
particularly tricky, because the locations of many dynamically allocated objects are

 13

aliased and held in multiple places, and it’s a struggle to keep tabs on them so that
everything is freed exactly one time!

o In some situations, you’ll benefit from calling an Expression’s getType method
to decide whether or not it’s safe to downcast (e.g. explicitly cast an Expression *
to, say, a TextStringExp *) so that you’re able to invoke a method specific to the
subclass.

o Because this assignment is due at the end of your exam period, it’ll be graded
without an interactive grading session. Feedback will be available by Sunday,
December 16th around 5:00 p.m., and your section leader will email you notice that
your online submissions has been graded.

Good luck with the assignment, and we hope you enjoy it and appreciate it as
something you couldn’t possibly have built 10 weeks ago.

