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CS106X Midterm Examination II Solution 
 

The section leaders sacrificed their rainy Sunday to read over your awesome midterms, and 
I’m happy to report they’re all graded.  Once again, the average performance was pretty 
spectacular, with the median grade of 42.5 and an average of 41.6.  Here’s the histogram: 
 

 
 
Each vertical bar is a single exam score, with scores ranging from 12 (all the way on the left) 
to 49 (all the way on the right). 
 
The exam was more challenging that the first one.  Exams that focus on pointer and memory 
calisthenics are always more demanding, so the fact that the class pulled a median in the low 
40’s is really, really great. 
 
As always, I’m including my own solutions and the criteria we went with while grading.  Look 
over your exam and my solution set, and if you see any obvious grading errors and feel a re-
grade is warranted, come by during my office hours between now and the end of the quarter.  
Understand, however, that all re-grade requests must be managed before winter break, and 
that I need to do the re-grades myself. 
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Solution 1: Equivalence Classes 

a. The problem was designed to be an algorithmically straightforward vehicle for pointer and 
memory jockeying.  I present two solutions here, as I expect to see both of them as we’re 
grading. 
 
 static void computeClassSizes(const int array[], int size,  
                               int d, int **classSizes) { 

  *classSizes = new int[d]; 
  for (int i = 0; i < d; i++) (*classSizes)[i] = 0; 

  for (int i = 0; i < size; i++) (*classSizes)[array[i] % d]++; 
 }  

 
Presumably, the location of some int * has been shared via the classSizes parameter: 
 
 
 
 
 
 
 
  
  
 

 
The first line of the three-line implementation is the tricky part.  That line dynamically 
allocates a new array of integers, and places its base address in the space addressed by 
classSizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second line dereferences classSizes to identify the base address of the array, and 
then further indexes to that base address to figure out where to place all of the zeroes. 

classSizes 

classSizes 
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The third line uses the same technique to identify one of several integers in the array so 
that a ++ can be levied against it.  After the third line’s for loop executes, the state of the 
array might look like this (I’m just making up some positive numbers that might result from 
all of the increments): 
 
 
 
 
 
 
 
 
 

 
If asterisks make you sad, you can always allocate the array, place its address in the space 
addressed by classSizes, and then create a local copy of that base address and work 
through that.  Here’s a second version that’s less intense on the asterisk front: 

 
 static void computeClassSizes(const int array[], int size, 
                                 int d, int **classSizes) { 
   *classSizes = new int[d]; 
  int *sizesArray = *classSizes; 
   for (int i = 0; i < d; i++) sizesArray[i] = 0; 
   for (int i = 0; i < size; i++) sizesArray[array[i] % d]++; 
 } 
 

Problem 1a Criteria: 4 points 

• Makes proper call to operator new: 1 point 
• Properly plants address of dynamically allocated figure in space addressed by 

classSizes: 1 point 
• Understands the syntax needed to write to the dynamically allocated array entries: 1 

point 
• Properly updates the slots to contain the correct numbers (this covers the zeroing and 

++) business: 1 point 
 

classSizes 

0 0 0 

classSizes 

7 11 4 
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b. I’m sure you were all charmed by the triple pointer, but I need to drive home the fact that 
all pointers are, in a sense, single pointers that store the address of something else.  In this 
case, classes stores the address where the base address of a dynamically allocated two-
dimension array should be placed. 

 
My solution is presented here: 

 
static void partitionIntoClasses(const int array[], int size, int d, 
                                 int ***classes, int **classSizes) { 
   computeClassSizes(array, size, d, classSizes); 
   *classes = new int *[d]; 
  for (int i = 0; i < d; i++) (*classes)[i] = new int[(*classSizes)[i]]; 
  for (int i = 0; i < d; i++) (*classSizes)[i] = 0; 
  for (int i = 0; i < size; i++) { 
    (*classes)[array[i] % d][(*classSizes)[array[i] % d]] = array[i]; 
     (*classSizes)[array[i] % d]++; 
  } 
} 

 
Here are some key observations to defend each line of my solution: 
 
• The first line passes the buck to the previously written computeClassSizes 

function.  Conceptually it makes sense, I’m sure, but the hard part was understanding 
what to pass through via the fourth argument.  partitionIntoClasses receives 
the location where the base address of a sizes array should be placed, and that 
location needs to shared with computeClassSizes.  Many of you might have been 
tempted to pass through &classSizes, but that would be passing an int *** where 
an int ** is expected. 

• The second line dynamically allocates the spine of a two-dimensional integer array 
and places it in the space shared via the classes parameter. 

• The third line walks over the vertebrae of the spine and loads each one with the base 
address of another array just big enough to store all of the numbers that fall into the 
corresponding equivalence class. 

• The fourth line—the second for loop—resets all of the slots in the (*classSizes) 
array to be 0 so they can operate as index variables into the equivalence class arrays. 

• The final for loop distributes each of the numbers in array to the correct 
equivalence class, and in the process advances each value of (*classSizes)[i] 
back up to the value it held before we zeroed them all out. 

 
If the repeated application of operator* over and over again seems academic, you can 
go with a similar approach to that used by my second solution to part a. 
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static void partitionIntoClassez(const int array[], int size, int d, 
                                 int ***classes, int **classSizes) { 
   computeClassSizes(array, size, d, classSizes); 
   *classes = new int *[d]; 
  int *sizesArray = *classSizes; 
   int **classesArray = *classes; 
   for (int i = 0; i < d; i++) classesArray[i] = new int[sizesArray[i]]; 
   for (int i = 0; i < d; i++) classesArray[i] = 0; 
   for (int i = 0; i < size; i++) { 
  classesArray[array[i] % d][sizesArray[array[i] % d]] = array[i]; 
   sizesArray[array[i] % d]++; 
  } 
} 

 

Problem 1b Criteria: 6 points 

• Properly calls computeClassSizes with the correct first and fourth arguments 
(array, not &array or *array, and classSizes, not *classSizes or 
&classSizes—just classSizes): 2 points, 1 point for each 

• Properly allocates the spine of the two-dimensional array and places it in the space 
addressed by classes: 1 point 

• Properly allocates the equivalence class arrays and places their base addresses within 
the spine: 1 point 

• Presents an acceptable algorithm to distribute integers across the two-dimensional 
array: 2 points 

o Approach is algorithmically sound: 1 point 
o Approach is properly implemented: 1 point 
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Solution 2: New Jersey Counties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 2 Criteria: 10 points 

The criteria is simple: Take off 0.5 points for each error, save for the following: 
 

• If the array of length 3 is drawn with separations in between the records, just comment 
that they are contiguously laid down, but don’t take off any points. 

• The accumulation of all side effects associated with the line ocean[1][0] = salem[1] 
is worth 1 point. 

• The initialization of bergen’s first and third parameters are worth 0.5 points each (the 
second parameter is immediately reassigned, so it’s impossible to see if it was initialized 
properly.  Just ignore it.) 

• Each error with orphaned memory (e.g. they say memory is orphaned when it isn’t) is 
worth 0.5 points.  There are only two dynamically allocated figures that could be 
identified as orphaned, but just in case, cap deductions related to orphaned memory at 1 
point 

• If you can’t tell the stack from the heap, take off 0.5 points. 

8 

salem[0] salem[2] 

stack heap 

salem[1] 

stack frame for somerset 

stack frame for bergen 

passaic warren sussex 
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Solution 3: Linked Links and Disjoint Sets 

a. I promised the two sets would be nonempty just to reduce the number of special cases.  In 
order to merge two sets, we need to: 

 
• update every node in the second set to point to the leading node of the first (the first 

for loop of my solution below takes care of this), 
• update the non-NULL tail of set1 to point to the leading node of set2 (handled by 

the second to last line of my solution), and set the tail of set1 to be the tail of set2. 
• return the merged set (and because we know set1 and set2 are being cannibalized, 

we can fold everything into set1 and return it as the unioned set) 
 
static set constructUnion(set& set1, set& set2) { 
   for (node *curr = set2.head; curr != NULL; curr = curr->next) { 
    curr->front = set1.head; 
  } 
     
   set1.tail->next = set2.head; 
 set1.tail = set2.tail; 
   return set1; 
} 

 
Problem 3a Criteria: 5 points 

• Properly uses . to access fields of items referenced by set1 and set2, and 
operator-> to access fields of figures addressed by node *s: 1 point 

• Properly iterates over all nodes of second set and updates the front pointers to 
address head of first: 1 point (from this point forward on this problem, forgive mix-ups 
regarding ., *, and ->, since all mistakes will just be the same.  This point is dedicated 
to the proper for loop idiom and accessing front as an l-value and head as an  
r-value.) 

• Properly updates original tail node of first set to point to head of second: 1 point 
• Properly updates tail of the first to be tail of the second: 1 point 
• Properly bundles the union into a new set, or into set1, and returns it without regard 

for destruction of set1 and/or set2: 1 point 
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b. This second part was intended to exercise your ability to synthesize a linked list from 
scratch using operator new. 

 
static node *createNode(node *front, int value, node *next) { 
 node n = {front, value, next}; 
 return new node(n); 
} 
 
static set buildSet(Vector<int>& numbers) { 
 set s; 
 s.head->front = s.head = s.tail = createNode(NULL, numbers[0], NULL); 
  for (int i = 1; i < numbers.size(); i++) { 
    s.tail->next = createNode(s.head, numbers[i], NULL); 
    s.tail = s.tail->next; 
  } 
   return s; 
} 
 

We’re allowed to assume the incoming Vector is nonempty.  And because every node 
needs to point back to the first node, I need to ensure that the leading node exists before I 
create all others (hence the one-off call to createNode before the for loop).  The other 
numbers can be inserted either front to back (as I did above) or back to front, but care 
needs to be taken to make sure the set’s tail pointer ends up pointing to the very last 
node.  Some of you iterated from back to front, which is of course fine as well.  Here’s a 
nice compact way of doing that: 

 
static set buildSet(Vector<int>& numbers) { 
 set s; 
 s.head->front = s.head = s.tail = createNode(NULL, numbers[0], NULL); 
 for (int i = numbers.size() - 1; i > 1; i--) { 

   s.head->next = createNode(s.head, numbers[i], s.head->next); 
   if (i == numbers.size() - 1) s.tail = s.tail->next; 

 } 
 return s; 
} 
 

Wonder section leader Ashwin Siripurapu thought some of you might take a double-
pointer approach, and sent in the following: 

 
static set buildSet(Vector<int>& numbers) { 
  node *head = new node; 
  head->value = numbers[0]; 
  node *tail = head->front = head; 
  node **pnext = &(head->next); 
  for (int i = 1; i < numbers.size(); i++) { 
  node n = {head, numbers[i], NULL}; 
     tail = *pnext = new node(n); 
     pnext = &(tail->next); 
  } 
   *pnext = NULL; 
   set s = {head, tail}; 
   return s; 
} 
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Problem 3b Criteria: 5 points 

Understand that the . and -> business around static sets and node *s can’t be the subject 
of point loss for part b, since I don’t want to double-ding for the same error within the same 
problem over and over. 

• Correctly manages to allocate nodes for all numbers: 1 point 
• Properly wires up all next pointers to address their successor (or NULL): 1 point 
• Properly wires up all front pointers, including that within the leading node, to point 

to the leading node: 1 point (this might just be done in a second pass over the list, 
which is fine) 

• Properly sets head and tail fields of a set and returns it: 1 point 
• Properly manages memory (no orphaned memory), and no new types of syntax errors 

with & or *, etc.: 1 point 
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Solution 4: Tries and Removing Words 

This was the most demanding problem on the entire exam.  To make it easier, you were to 
assume the trie was always well formed in that there are no NULL pointer values in the Maps, 
and that all of the leaf nodes in the trie have their isWord fields set to true. 

 
static bool deleteIfChildless(node *& root) { 
 if (!root->isWord && root->suffixes.isEmpty()) { 
    delete root; 
    root = NULL; 
 } 
 return root == NULL; 
} 
 
static bool removeSuffix(node *& root, const string& suffix) { 
 if (suffix.empty()) { 
   root->isWord = false; 
  } else { 
   char ch = suffix[0]; 
    if (!root->suffixes.containsKey(ch) || 
       !removeSuffix(root->suffixes[ch], suffix.substr(1))) return false; 
   root->suffixes.remove(ch); 
 } 
 
 return deleteIfChildless(root); 
} 
 
static void remove(node *& root, const string& word) { 
  if (root != NULL) { 
   removeSuffix(root, word); 
 } 
} 
 

Problem 4 Criteria: 8 points 

• Using either recursion (via node *& parameters) or iteration (via node ** variables), 
properly discovers the node that represents the word being removed (if it 
exists): 2 points 

o Properly bottoms out when all characters have been accounted for without 
crashes or any serious memory flaws: 1 point 

o Properly bottoms out when the next character isn’t encoded in the suffixes 
Map: 1 point 

• If the node doesn’t exist, then ultimately returns without modifying tree: 1 point 
• If the node exists but it represents a prefix but not a word, then returns without 

modifying the tree: 1 point 
• If the node represents a word, then updates isWord to be false: 1 point 
• If the node represents a word that isn’t a prefix of larger words, correctly codifies the 

removal of all extraneous nodes by deallocating them and removing their footprints 
from the Map in the parent: 2 points (pointes awarded via bucket system) 

o Completing nails the everything about it or misses something trivial that’d be 
detected in a real coding environment): 2 points 
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o Codifies the deallocation, but fails to properly communicate that information to 
the parent so it can remove the entry that led to the now-dead node: 1 point 

o Codifies the deallocation and the upward communication, but accidentally 
deletes parent nodes even when they represent words that are still part of the 
trie: 1 point 

o The back-chaining deallocation effort is missing or woefully incorrect: 0 points 
 

Solution 5: Patricia Tree Traversal 
static void collectAllWords(const node *root,  
                            const string& prefix, Vector<string>& words) { 
  if (root->isWord) words += prefix; 
  foreach (const connection& conn in root->children) { 
   collectAllWords(conn.subtree, prefix + conn.letters, words); 
 } 
} 
 
static void collectAllWords(const node *root, Vector<string>& words) { 

 if (root == NULL) return; // subtree fields are never NULL, but root might be 
 collectAllWords(root, "", words); 
} 
 
Each node in the Patricia tree represents some prefix, and that prefix is the concatenation 
of the letters within the connections that led to it.  If a node’s isWord variable is true, 
then we know the running prefix is actually a word, and that it should be appended to the 
series of words we’re building up in the referenced Vector.  Regardless of isWord’s 
value, we should recursively descend through each of the node’s connections, 
extending the running prefix as appropriate. 
 
While we’re open to other approaches, it looks like the vast majority of you knew to take 
this one.  
 

Problem 5 Criteria: 7 points 

• Properly guards against the empty tree: 1 point (either before the recursion begins, or 
because they have a NULL check at the top of their recursive implementation)  

• Properly frames the original in terms of a wrapper that actually manages the recursion 
and supplies the "" to start: 1 point 

• Properly examines the isWord field within the root, and prints the running prefix if 
it’s true: 1 point 

• Does the above without returning (for a word may be a prefix of a longer word): 1 point 
• Uses the correct idiom (foreach, for loop, while loop) to iterate over all 

connections descending from the root (const connection& isn’t necessary—data 
type of connection is fine): 1 point 

• Makes proper use of *, ., ->, and/or [] as appropriate to access connection fields 
and pass through new arguments to recursive calls: 1 point 

• Correctly passes the correct sub-tree and the corresponding prefix to the recursive call: 
1 point 
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Solution 6: Short Answers 

The criteria should be self-explanatory.  Where only one answer is expected, either 0 or 1 
point should be given.  Where two answers are expected, give 0.5 points for one correct 
response paired with one incorrect, mostly redundant, or completely missing response.  If 
they provide three answers where two are expected, only grade the first two and ignore 
others. 
 
a. There are six insertion orders, and just two of them result in a balanced tree.  2 must be 

inserted first, and then 1 and 3 can be inserted in either order. 
 

b. One of 8 possible answers: 
 
 
 
 
 
 
 
 
 
c. There are several differences, and we’re happy to give credit for any two that didn’t say 

the same thing. 
 

• References are automatically dereferenced, whereas pointers are not and must be 
programmatically dereferenced via operator*. 

• Pointers themselves can be assigned to point to different memory locations during 
the course of execution, whereas references are bound to refer to the same location 
for their entire lifetime.  Along the same lines, pointer variables need not be 
initialized immediately, but reference variables must be associated with some 
figure in memory on the same line they’re declared (e.g. uninitialized pointers 
compile, but uninitialized [or dangling] references do not). 

• One must use operator& to pass the address of a figure in memory, whereas 
operator& is not needed to pass a figure by reference. 

 
d. Merging unsorted vectors, sorted doubly-linked lists, and array-backed binary heaps 

requires that all elements in one or both be manipulated, resulting in an execution time 
that’s proportional to the number of elements in the smaller priority queue.  Merging two 
structurally identical binomial heaps—regardless of their size—requires the examination 
of just two elements and a constant number of pointer updates.  Merging two priority 
queues backed by arrays of binomial heaps takes time proportional to the logarithm of the 
size of the larger heap, which is sub-linear. 
 

d 

1 

c 

2 

 

3 

a 

4 

 

7 

b 

 8 

 

15 
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e. There are several optimizations that are accessible to a week-eight CS106X student.  Two 
of them are: 

 
• Common suffix chains could me merged so that, say, all plurals ending in "es" 

could chain through a single chain of two nodes, as opposed to independent suffix 
chains. 

• A sorted Vector of char/node * pairs could replace the Map<char, node *> 
without compromising the lookup times of needed during a contains or 
containsPrefix call.  The Vector includes a constant number of non-data 
fields, whereas the Map includes two pointers per key-value pair.  By getting rid of 
the two pointers per entry, you can save a lot of memory. 


