
CS106X Handout 39

Autumn 2012 November 28th, 2012

CS106X Midterm Examination II

This is closed book, closed notes, closed reader, closed everything exam. If you’re
taking the exam remotely, you can telephone Jerry at 415-205-2242 while taking the
exam to ask questions.

Good luck!

Section Leader: _____________________

Last Name: _____________________

First Name: _____________________

I accept the letter and spirit of the honor code. I promise to write more neatly than I ever
have before in my entire life.

 (signed) __

 Score Grader

1. Equivalence Classes [10] ______ ______

2. New Jersey Counties [10] ______ ______

3. Linked Lists and Sets [10] ______ ______

4. Tries and Removing Words [8] ______ ______

5. Patricia Tree Traversal [7] ______ ______

6. Short Answer [5] ______ ______

Total [50] ______ ______

 2

Summary of Relevant Data Types
class string {
 bool empty() const;
 int size() const;
 int find(char ch) const;
 int find(char ch, int start) const;
 string substr(int start) const;
 string substr(int start, int length) const;
 char& operator[](int index);
 const char& operator[](int index) const;
};

class Vector {
 bool isEmpty() const;
 int size() const;
 void add(const Type& elem); // operator+= used similarly
 void insert(int pos, const Type& elem);
 void remove(int pos);
 Type& operator[](int pos);
};

class Grid {
 int numRows() const;
 int numCols() const;
 bool inBounds(int row, int col) const;
 Type get(int row, int col) const; // cascade of operator[] also works
 void set(int row, int col, const Type& elem);
};

class Stack {
 bool isEmpty() const;
 void push(const Type& elem);
 Type pop();
};

class Queue {
 bool isEmpty() const;
 void enqueue(const Type& elem);
 Type dequeue();
};

class Map {
 bool isEmpty() const;
 int size() const;
 void put(const Key& key, const Value& value);
 void remove(const Key& key);
 bool containsKey(const Key& key) const;
 Value get(const Key& key) const;
 Value& operator[](const Key& key);
};

class Set {
 bool isEmpty() const;
 int size() const;
 void add(const Type& elem); // operator+= also adds elements
 bool contains(const Type& elem) const;
};

 3

Problem 1: Equivalence Classes [10 points]

Two positive integers m and n are said to be modulo-d equivalent if and only if
���m % d == n % d—that is, both m and n produce the same remainder when divided by d.
When two integers are modulo-d equivalent, we say they fall into the same equivalence class.
Partitioning an array of positive integers into its modulo-d equivalence classes amounts to the
creation of d new arrays and distributing the integers across them. Those integers modulo-d
equivalent to 0 are placed in the 0th array, those modulo-d equivalent to 1 are placed in the
next array, and so forth.

As an illustration, consider the following array of positive integers:

The three modulo-3 classes of this array could be represented by this array of three arrays:

Note the all integers of the original array are represented exactly once, and that the perfect
multiples of 3 were placed in the 0th class, integers one more than a perfect multiple of 3 were
placed in the next class, and those two more than a perfect multiple of three were placed in
the final class. In general, an integer n is placed in the kth class whenever n % 3 equals k.

The five modulo-5 classes of the original array would then be represented by this array of five
arrays:

Again, the generalization here is that an integer n is placed in the kth array whenever n % 5
equals k.

 4

a. [4 points] First, implement the computeClassSizes function, which takes an array, the
array's size, and an integer d, and computes all of the sizes of the modulo-d classes. The
function should dynamically allocate space for an integer array of length d, and should
then go on to write all of the class sizes to that array. The size of the modulo-0 class
should be stored at index 0, the size of the modulo-1 class should be stored at index 1,
and so forth. You may assume that all integer arguments are positive, so that no error
checking is necessary. The base address of the dynamically allocated array should be
placed at the address supplied through the last parameter. You should not use any objects
or records at all, as the intent here to exercise your understanding of primitives and raw
memory. Note that most of the points are dedicated to the memory directives and
syntax—operator new, &, *, ->, etc.—that you’ve learned in CS106X.

static void computeClassSizes(const int array[], int size,
 int d, int **classSizes) {

 5

b. [6 points] Now leverage your computeClassSizes function to implement the
partitionIntoClasses function, which distributes the integers of the specified array
over the d classes. The array of classes is dynamically allocated, and each class is itself
dynamically allocated to store the exact number of integers that fall into that class.
Ultimately, two arrays needs to be returned, so the base address of each should be stored
at the two locations specified via classes and classSizes. Again, the proper use of
&, *, [], and so forth really matter here, so be very careful with them. Don’t use any
objects and records.

static void partitionIntoClasses(const int array[], int size, int d,
 int ***classes, int **classSizes) {

 6

Problem 2: New Jersey Counties [10 points]

Analyze the following code snippet, starting with a call to somerset, and draw the state of
memory at the point indicated—just before the bergen helper function returns. Be sure to
differentiate between stack and heap memory, note values that have not been initialized, and
identify if and where memory has been orphaned. Generate your final diagram on the next
page, and feel free to tear this page out so you can easily refer to it.

struct county {
 int atlantic;
 county *burlington[4];
 county **hudson;
};

static void somerset() {
 county salem[3];
 salem[0].atlantic = 8;
 salem[1].burlington[0] = NULL;
 salem[1].burlington[1] = salem;
 salem[1].burlington[2] = &salem[1];
 salem[1].burlington[3] = salem[1].burlington[1];
 county **ocean = &(salem->burlington[1]);
 ocean = &ocean[1];
 salem[1].hudson = ocean;
 ocean[1] = new county;
 ocean[1][0] = salem[1];
 bergen(salem[1], ocean, ocean);
}

static void bergen(county& passaic, county **warren, county **& sussex) {
 warren = new county *;
 *warren = &passaic;
 passaic.hudson = warren;
 sussex = passaic.burlington;
 *&sussex = NULL;

⇐ Draw the state of memory just before bergen returns.
}

 7

Problem 2: New Jersey County Pointer Trace [continued]

 8

Problem 3: Linked Links and Disjoint Sets [10 points]

Assume an unsorted set of distinct integers is stored in a linked list, where each node in the
list stores not only the address of its successor, but also the address of the list’s front node.
The set itself tracks the addresses of both the head and tail nodes of the list, much like the
Queue template container does.

For example, the set {4, 7, 8, 1} would look like this:

and the set {3, 9, 2} might look like this:

The data structures we’ll use to support the above (we’ll go with exposed structs and not
worry about encapsulation or object orientation) are as follows:

 struct node {
 node *front;
 int value;
 node *next;
 };

One nifty feature of our linked list approach is that set unioning is conceptually trivial—
particularly if we assume that the two sets being unioned are nonempty and have no elements
in common. If, for instance, set1 and set2 as drawn above were unioned into a third set,
that third set would look like this:

4

7

8

1

set1

3

9

2

set2

struct set {
 node *head;
 node *tail;
};

4

7

8

1

set3

3

9

2

 9

In particular, the tail node of the first set is updated to point to the head node of the second,
and all front fields in the second set’s list are updated to point to the front node of the first.
No memory is allocated anywhere, as the nodes of the two original sets are donated to the
third.

a. [5 points] Implement the constructUnion function, which accepts two sets by

reference and returns their union (reusing existing nodes instead of allocating new ones).
Assume the two incoming sets are nonempty and disjoint (e.g. no elements in common),
and don’t worry about cleaning up the two incoming sets in any way, as it’s reasonable to
assume that those two sets won’t be used anymore, as their memory is being cannibalized
and donated to a third one.

static set constructUnion(set& set1, set& set2) {

 10

b. [5 points] Of course, one needs to be able to construct these sets in the first place.
Implement the buildSet function, which accepts the provided Vector<int>—
assumed to be nonempty and free of duplicates—and constructs and returns the
equivalent set as described above. Recall that the linked list backing the set need not be
sorted. You’ll need to dynamically allocate nodes—one for each number in the
referenced Vector<int>—and wire everything up as described above.

static set buildSet(Vector<int>& numbers) {

 11

Problem 4: Tries and Removing Words [8 points]

Recall that the primary, object-oriented data structure we used to build a trie is defined as:

struct node {
 bool isWord;
 Map<char, node *> suffixes;
 node() { isWord = false; }
 ~node() { foreach (char ch in suffixes) delete suffixes[ch]; }
};

Implement the remove function, which
removes the specified word from the trie,
being careful to dispose of any nodes for
prefixes that are no longer prefixes. To
illustrate, let’s inspect the sample trie I
presented in lecture (presented on the right),
which encodes five words: "be", "bed",
"cab", "cage", and "caged". If the
word "be" is removed, then a single true
if changed to false and that’s that. No
nodes are deleted, because all nodes
relevant to "be" are needed to encode
"bed". If after removing "be" we remove
"bed", then we need to remove quite a few
nodes, because "b", "be", and "bed" are
no longer prefixes of anything.
Additionally, the 'b' entry in the root
node’s suffixes map would need to be
removed as well.

Special care must also be taken to see if the
last remaining word is removed, in which
case all remaining nodes would need to be
killed off and the root would need to be set
to NULL. Oh, and if the word isn’t actually
present, then you should just return without
modifying the trie.

Using the next page, present your
implementation of the remove function. Feel free to tear this page out so you can easily refer
to it.

root

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

 12

Problem 4: Tries and Removing Words [continue]

static void remove(node *& root, const string& word) {

 13

Problem 5: Patricia Tree Traversal [7 points]

This problem leverages a data structure introduced in an earlier section handout, but the
theory backing it is reproduced here in its entirety. Let’s again consider the following
illustration:

What’s drawn above is an example of a Patricia tree—similar to a trie in that each node
represents some prefix in a set of words. The child pointers, however, are more elaborate, in
that they not only identify the sub-tree of interest, but they carry the substring of characters
that should contribute to the running prefix along the way. Sibling pointers aren’t allowed to
carry substrings that have common prefixes, because the tree could be restructured so that the
common prefix is merged into its own connection. By imposing that constraint, that means
there’s at most one path that needs to be explored when searching for any given word.

The children are lexicographically sorted, so that all strings can be easily reconstructed in
alphabetical order. When a node contains a true, it means that the prefix it represents is
also a word in the set of words being represented. [The root of the tree always represents the
empty string.]

So, the tree above stores the following words:

cranium, crazy, go, golf, golfing, goober, peg, perky, petulance, pork, and pundit.

root

false

false

"cra"

"nium" "zy"

true true

true

"go"

"lf" "ober"

true true

true

"ing"

false

"p"

false true true

"undit"
"e" "ork"

true true true

"g" "rky" "tulance"

 14

These two type definitions can be used to manage such a tree.

struct connection {
 string letters;
 struct node *subtree; // will never be NULL
};

struct node {
 bool isWord;
 Vector<connection> children; // empty if no children
};

Implement the collectAllWords function, which traverses the supplied tree as necessary
and populates the referenced Vector—assumed to be empty starting out—so that by the end
of execution it contains all of the tree’s strings, sorted low to high. You should use recursion,
and you’ll want to implement this using a wrapper function.

static void collectAllWords(const node *root, Vector<string>& words) {

 15

Problem 6: Short Answers [5 points]

a. [1 point] Assume some permutation of the numbers 1 through 3 are inserted into an
initially empty binary search tree, and further assume that the resulting tree is as balanced
as possible, even though the binary tree doesn’t use any rotation or self-balancing
strategies. How many different permutations of the numbers 1 through 3 result in a
perfectly balanced tree?

b. [1 point] What would the Huffman encoding tree for the string "bbbbaaacdcabbbb"
look like? (Don’t worry about the pseudo-EOF, and understand that there are many
correct encoding trees, not just one.)

c. [1 point] Describe two key differences between a reference and a pointer (e.g. contrast

int& to int*).

 16

d. [1 point] Explain why the merge operation for binomial-heap-backed
priority queues is so much faster than the merge operations for the unsorted-vector-, the
sorted-doubly-linked-list-, and the binary-heap-backed priority queues.

e. [1 point] Briefly describe two ways to reduce the memory footprint of the trie without
compromising the execution time of contains and containsPrefix.

