
 

CS106X Handout 37 

Autumn 2012 November 16th, 2012 

CS106X Practice Exam 
 
Exam Facts: 

When: Wednesday, November 28th from 7:00 – 10:00 p.m. 
Where: Cemex Auditorium, in the new GSB campus. 
 

Coverage 

The closed book, closed note, closed computer exam covers everything up through trees 
(binary search trees, Cartesian trees, tries, Patricia trees, etc).  I started up on graphs today, 
but you won’t see anything graph-like on your exam.  The exam will emphasize material 
not tested on the first exam, so expect to be drilled on pointers, dynamically allocated 
memory, linked lists, hashing and hash tables, and all things trees.  Understand going in 
that issues pertaining to & versus * versus . versus -> are details that matter very, very 
much. 
 

Problem 1: Linked Structures 

a. Write a function called concatenateMaps, which accepts a linked list of 
Map<string, string>s, and returns a single map whose key set is the union of all 
of the keys of all the maps in the list.  The value bound to each key in the return map in 
determined as follows: 
 

• If the key only appears in one of the maps in the list, then its value should 
become the same key’s value in the constructed map being returned. 

• If the key appears two or more times, then the key’s values in the constructed 
map should be the ordered concatenation of all of the corresponding values in 
the list. 
 

Your implementation should not change any of the maps in the list. 
 

struct node { 
 Map<string, string> map; 
 node *next; 
}; 

 
 static Map<string, string> concatenateMaps(const node *maplist); 

 
b. Write a function stretch that takes a nonempty linked list of integers and stretches it 

so that the first element is replicated one additional time, the second is replicated two 
additional times, the third is replicated three additional times, and so forth.  As an 
example, the following list: 

 
3 → 4 → 1 → 5 → 1 
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would be transformed into 
 

3 → 3 → 4 → 4 → 4 → 1 → 1 → 1 → 1 → 5 → 5 → 5 → 5 → 5 → 1 → 1 → 1 → 1 → 1 → 1 
 

struct node { 
 int value; 
 node *next; 
}; 
 
static void stretch(node *list); 

 

c. Consider the following linked list node definition: 
 

 struct node { 
  int value; 
  node *down; 
  node *next; 
 }; 

 
The node definition is the traditional definition, except that each node can store a child 
list in its down field.  One such list might look like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One might represent the above list inline as  
 

[1 2 [3 4 [5 6] 7] 8 9 10 11 [12 [13 [14 15]] 16] 17 18]. 
 
Note: the numbers don’t need to be sorted, much less sequential. 
 
Write a function called flatten, which serializes the incoming list to a traditional 
singly linked list of integers, splicing the flattening of the down list in between a number 
and its successor.   As an example, the above list would be transformed into the list 
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 [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18] 

 
Your implementation shouldn’t change the incoming list, but instead should construct a 
new list (where all down fields are set to NULL) to be the linearization of the incoming 
one. 

 
struct node { 
 int value; 
 node *down; 
 node *next; 
}; 
 
static node *flatten(const node *list); 

 

d. Recall the Stern-Brocot construction from and earlier section handout, which looked 
like this: 
 

 
Assume you’ve access to the following data structures:  

 
struct fraction {     struct node { 

  int numerator;   fraction value; 
  int denominator;  node *left; 
 };         node *right; 
         }; 
 
Implement the generateSternBrocotTree function, which builds an in-memory 
version of the tree to include all (and only those) fractions between 0 and 1 with 
denominators less than or equal to the one provided, and then returns the address of 

the root.  Recall that each fraction is of the form 
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up and to the left, and 
  

€ 

" n 

" d 
 is the closest ancestor up and to the right.  Note that the root 

of the tree houses 

€ 

1 2 , and the fractions representing 0 and 1 are not included. 
 
static node *generateSternBrocotTree(int denominator); 

 

Problem 2: Phineas and Ferb 

Analyze the following code snippet, starting with a call to mobilemammal, and draw the 
state of memory at the point indicated. Be sure to differentiate between stack and heap 
memory, note values that have not been initialized, and identify if and where memory has 
been orphaned.  Draw out your final diagram in the lower half of this page. 

 
struct squirrel { 
  int spa; 
   squirrel *duckymomo[3]; 
}; 
 
void mobilemammal() { 
  squirrel phineas[2]; 
  phineas[1].spa = 100; 
  phineas->spa = 777; 
  squirrel **ferb = &(phineas[0].duckymomo[1]); 
  ferb[0] = ferb[1] = new squirrel; 
  ferb[1] = NULL; 
  squirrel *pants = *ferb; 
  ferb = &(ferb[1]); 
  phineas[0].duckymomo[0] = &(phineas[1]); 
  phineas[1].duckymomo[0] = phineas[0].duckymomo[0]; 
  phineas[1].duckymomo[1] = ferb[0]; 
  phineas[1].duckymomo[2] = pants; 
  *pants = phineas[1]; 
 

⇐ Draw the state of memory just before mobilemammal returns. 
} 

 

Draw the state of memory just before mobilemammal returns. 

 

Problem 3: Encoding General Trees 

A general tree is one where each node has an arbitrary number of children.  Here’s an 
example: 
  
 
 
 
 
 
 
 
 
 

14 

59 37 45 81 22 79 60 

73 75 41 90 13 32 

11 34 23 12 64 
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It’s possible to encode an arbitrary tree in binary tree form by subscribing to a left-child, 
right-sibling representation.   Each node in the binary tree representation has two children.  
The left child is the first child of the corresponding node in the general tree, and the right 
child is the right sibling of the corresponding node in the general tree.  So, the above 
would map to the following binary tree structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note, for example, how all of the children of the root in the original tree now form the right 
spine on the sub-tree that hangs from the root in the new tree.  
 
Write a function called encode, which accepts the root of a general tree and constructs 
and returns the corresponding binary tree. 
 

struct genTreeNode { 
 int value; 
 Vector<genTreeNode *> children; // genTreeNode *s are never NULL 
}; 
 
struct binTreeNode { 
 int value; 
 binTreeNode *left;   // addresses first child within general tree equivalent 
 binTreeNode *right; // addresses right sibling within general tree equivalent 
}; 
 
binTreeNode *encode(genTreeNode *root); 
 
 

Problem 4: Dictionaries and Ternary Search Trees 

The Dictionary class is a specialized data structure storing all of the English words along 
with their definitions.  Because many words have multiple definitions, each word maps not 
to a single string but a Vector of them. 
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The Dictionary is backed by a data structure called a ternary search tree.  Ternary 
search trees are hybrids of two data structures we've studied extensively over the past two 
weeks: binary search trees, and tries.  Binary trees are space efficient in that the amount of 
memory used is proportional to the number of entries it stores.  Tries are exceptionally fast, 
because the time to look up, insert, or delete any single word is bounded by the length of 
the longest word in the dictionary.  Ternary search trees combine elements of the two.  Like 
binary search trees, they are space efficient, except that its nodes have three children 
instead of two.  Like tries, they proceed character by character during a search. 
 
A search compares the current character in the key to the letter embedded in a node.  If the 
current character is less, the search continues along the less pointer.  If the search character 
is greater, the search follows the greater pointer.  If the characters match, then the search 
carries on via the equal pointer, but proceeds to the next character in the key. 
 
Here’s the header file for the TST-backed Dictionary: 
 

class Dictionary { 
public: 
 Dictionary() { root = NULL; } // inline the obvious implementation 
 ~Dictionary(); 
  
 void add(const std::string& word, const std::string& definition); 
  
private: 
 struct node { 
  char letter; 
  Vector<std::string> *definitions; 
  node *less, *equal, *greater; 
 }; 
 
 node *root; 
}; 

 
If the string represented by a particular node is a word in the Dictionary, then that 
node's definitions field stores the address of a dynamically allocated 
Vector<string> to store the definitions in the order they were inserted.  If the string 
represented by a particular node is not itself a word but rather a prefix of one or more 
words, then that node’s definitions field stores NULL. 
 
You’re to implement the one public method and the destructor.  You’re free to write 
helper methods, but make sure the prototypes of these helper methods are crystal clear.  
You needn’t update the class declaration above—we’ll just assume the private section 
would be extended to include your helper method prototypes. 
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Before you get started on the code, let’s be clear about what the  
TST-backed Dictionary would look like if the words "pig", 
"cow", "cop" and "cozy" were inserted, in sequence. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note that the node surrounding the last letter of a word is the one that stores the address of 
the dynamically allocated Vector<string>. 
 

a. Present your implementation of the add method, which ensures that the specified word 
gets added if it isn’t already, and appends the specified definition (even if it’s a 
duplicate) to the end of its Vector of definitions.  Make sure you properly allocate and 
initialize any nodes that need to be incorporated, and be sure to properly allocate space 
for the Vector<string> whenever a word is inserted for the very first time. 

 
 void Dictionary::add(const string& word, const string& definition); 

 p 

 i 

 g Vector<string> 

root 
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 w Vector<string> 

 p Vector<string>  z 

 y Vector<string> 
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b. Finally, implement the destructor to properly dispose of all dynamically allocated 

memory that’s been allocated over the course of the Dictionary’s lifetime. 
 

 Dictionary::~Dictionary(); 
 


