
CS106X Handout 29

Autumn 2012 November 2nd, 2012

Hashing and HashMaps

Chapter 15 discusses a few ways we might implement the Map introduced during the
second week of the course. You should be reading through Chapter 15 now, focusing on
high-level concepts, cognizant of the fact that the HashMap we implement in lecture is
more advanced than anything you’ll read in Chapter 15. I’ve gotten several requests asking
I teach template implementation, and I’m using our HashMap as an opportunity to do so.

Truth be told, the Map we’ve been using is backed by a binary search tree, and we won’t
learn about those until next week. Fortunately, there are many choices for the internal
representation, and Chapter 15 uses the Map’s interface as a vehicle for learning about
lookup tables, hashing, and hash tables. As it turns out, we’re in a better position to learn
hashing and hash tables because of our recent work with linked structures, so we’re going
with the hashing approach first. To be clear we’re presenting a different Map
implementation than the version you’ve been coding against, I’m calling this version the
HashMap. We’re implementing to the same exact interface, so you’ll see value in what
we’re covering during the rest of today’s lecture.

hash-map.h

template <typename Key, typename Value>
class HashMap {
public:
 HashMap(int sizeHint = 10001);
 ~HashMap();

 bool isEmpty() const { return size() == 0; }
 int size() const { return count; }

 bool containsKey(const Key& key) const;
 void put(const Key& key, const Value& value);
 Value get(const Key& key) const;
 Value& operator[](const Key& key);

private:
 struct node {
 Key key;
 Value value;
 node *next;
 };

 node **buckets;
 int numBuckets;
 int count;
 int hash(const Key& key) const;
 node *ensureNodeExists(const Key& key);
 const node *findNode(const Key& key) const;
};

#include "hash-map-impl.h"

You’ll notice that the interface here
is identical (at least to the extent that
I implement it) to that of the Map.
This is, of course, intentional, as
we’re electing to provide the
machinery to make the black-box
ADT work for the purposes of the
client.

 2

The two surprises above:
• The interface doesn’t commit to key and value types, but instead confesses that the

HashMap class is templatized on two types determined only at the moment one is
instantiated. The placement of the template directive before the class declaration
informs the compiler that what follows is incomplete, and that it can’t fully processed
(beyond obvious parsing needs). It’s only when client code #includes
hash-map.h and declares something like, say, HashMap<char, Vector<int> >,
that the compiler associates Key and Value with char and Vector<int> and
expands the definition to be char and Vector<int>-specific for that one
instantiation.

• Because it’s a template, hash-map.h #includes hash-map-impl.h at the
bottom of the file! Because all method implementations are also templatized, the
full implementation needs to be visible in the code unit that declares a HashMap.
The #include mechanism is little more than search and replace: During
compilation, the #include "hash-map-impl.h" line is removed and replaced
with the contents of the hash-map-impl.h file, and processed as if the code were
physically typed in "hash-map.h" all along.

hash-map-impl.h

In most ways, implementing a template is like implementing a strongly typed class, where
you operate as if the template parameters—in this case, Key and Value—are authentic
data types. You sometimes need to make assumptions about how Key and Value behave
and what operations they support, and when you do, those prerequisites would normally
be surfaced in the official interface file documentation. In this case, we require that Key
play well with operator== and that it be hashable, using either some library routines, or
through some hashing code we hand-roll ourselves.

template <typename Key, typename Value>
HashMap<Key, Value>::HashMap(int sizeHint) {

 if (sizeHint <= 0) error("size hint passed to HashMap constructor "
 "must be positive.");
 count = 0;
 numBuckets = sizeHint;
 buckets = new node*[numBuckets];
 for (int i = 0; i < numBuckets; i++) buckets[i] = NULL;
}

template <typename Key, typename Value>
HashMap<Key, Value>::~HashMap() {
 for (int i = 0; i < numBuckets; i++) {
 node *curr = buckets[i];
 while (curr != NULL) {
 node *next = curr->next;
 delete curr;
 curr = next;
 }
 }
}

template <typename Key, typename Value>

 3

bool HashMap<Key, Value>::containsKey(const Key& key) const {
 return findNode(key) != NULL;
}

template <typename Key, typename Value>
void HashMap<Key, Value>::put(const Key& key, const Value& value) {
 ensureNodeExists(key)->value = value;
}

template <typename Key, typename Value>
Value HashMap<Key, Value>::get(const Key& key) const {
 const node *found = findNode(key);
 return found == NULL ? Value() : found->value;
}

template <typename Key, typename Value>
Value& HashMap<Key, Value>::operator[](const Key& key) {
 return ensureNodeExists(key)->value;
}

template <typename Key, typename Value>
int HashMap<Key, Value>::hash(const Key& key) const {

implementation omitted, as it uses lots of specialized blocks of code, depending on
whether or not Key—the type being hashed to a number between 0 and
numBuckets - 1, inclusive—is int, unsigned long long, char, double,
std::string, etc.

}

template <typename Key, typename Value>
typename HashMap<Key, Value>::node *
HashMap<Key, Value>::ensureNodeExists(const Key& key) {
 int hashcode = hash(key);
 node *bucket = buckets[hashcode];
 node *found = const_cast<node *>(findNode(key));
 if (found == NULL) {
 found = new node;
 found->key = key;
 found->value = Value();
 found->next = bucket;
 buckets[hashcode] = found;
 count++;
 }

 return found;
}

template <typename Key, typename Value>
const typename HashMap<Key, Value>::node *
HashMap<Key, Value>::findNode(const Key& key) const {
 int hashcode = hash(key);
 const node *curr = buckets[hashcode];
 while (curr != NULL && !(curr->key == key)) {
 curr = curr->next;
 }
 return curr;
}

