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Assignment 4: Priority Queue 
Assignment idea, handout, and binary heap implementation by Julie Zelenski.  Binomial heaps by Jerry. 

 
So, it's finally time for you to implement a class of your own: a priority queue, which is a 
variation on the standard queue described in the reader.  The standard queue is a 
collection of elements managed in a first-in, first-out manner. The first element added to 
the collection is always the first element extracted; the second is second; so on and so on. 
 
In some cases, a FIFO strategy may be too simplistic for the activity being modeled.  A 
hospital emergency room, for example, needs to schedule patients according to priority. A 
patient who arrives with a more serious problem should pre-empt others even if they have 
been waiting longer.  This is a priority queue, where elements are added to the queue in 
arbitrary order, but when time comes to extract the next element, it is the highest priority 
element in the queue that is removed.  Such an object would be useful in a variety of 
situations.  In fact, you can even use a priority queue to implement sorting; insert all the 
values into a priority queue and extract them one by one to get them in sorted order. 
 
The main focus of this assignment is to implement a priority queue class in several different 
ways.  You'll have a chance to experiment with arrays and linked structures, and in doing 
so you’ll hopefully master the pointer gymnastics that go along with it.  
 

Optional Checkpoint Due1: Wednesday, October 31st at 8:30 a.m. 

Final Submission Due: Monday, November 5th at 8:30 a.m. 

The PQueue Interface 

The priority queue will be a collection of strings.  Lexicographically smaller strings should 
be considered higher priority than lexicographically larger ones, so that "ping" is higher 
priority than "pong", regardless of insertion order. 
 
Here are the methods that make up the public interface of all priority queues: 

 
class PQueue { 
public: 
 void enqueue(const string& elem); 
 std::string extractMin(); 
 std::string peek(); 
 static PQueue *merge(PQueue *one, PQueue *two); 
private: 
 // implementation dependent member variables and helper methods 
}; 

                                            
1 You can submit the first two implementations (the unsorted vector and the sorted list) by Wednesday at 8:30 

a.m., and your section leader will look them over to confirm that thinks look to be going well.  This is 

completely optional, but not a bad idea as far as ideas go, because if you’re going astray, your section leader 

can save you before you advance on to the binomial heap portion of the assignment. 
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enqueue is used to insert a new element to the priority queue.  extractMin returns the 
value of highest priority (i.e., lexicographically smallest) element in the queue and removes 
it.  merge destructively unifies the incoming queues and returns their union as a new 
queue.  For the detailed descriptions on how these methods behave, see the pqueue.h 
interface file included in the starter files. 
 
Implementing the priority queue 

While the external representation may give the illusion that we store everything in sorted 
order behind the scenes at all time, the truth is that we have a good amount of flexibility on 
what we choose for an internal representation.  Sure, all of the operations need to work 
properly, and we want them to be fast.  But we might optimize not for speed but for ease of 
implementation, or to minimize memory footprint.  Maybe we optimize for one operation 
at the expense of others. 
 
This assignment is all about client expectations, implementation and internal 
representation.  Yes, you’ll master arrays and linked lists in the process, but the takeaway 
point of the assignment—or the most important of the many takeaway points—is that you 
can use whatever machinery you deem appropriate to manage the internals of a new, 
object-oriented container. 
 
You’ll implement the priority queue in four different ways.  Two are fairly straightforward, 
but the third is nontrivial, and fourth is very challenging (although so neat and clever and 
beautiful that it’s worth the struggle.) 
 

Implementation 1: Optimized for simplicity and for the enqueue method by backing 
your priority queue by an unsorted Vector<string>. merge is 
pretty straightforward, but peek and extractMin are expensive, 
but the expense might be worth it in cases where you need to get 
a version up and running really quickly for a prototype, or a proof 
of concept, or perhaps because you need to enqueue 50,000 
elements and extract a mere 50.  I don’t provide much in terms of 
details on this one, as it’s pretty straightforward. 

Implementation 2: Optimized for simplicity and for the extractMin operation 
by maintaining a sorted doubly linked (next and prev 
pointers required) list of strings behind the scenes.  peek and 
extractMin will run super fast, but enqueue will be slow, 
because it needs to walk the list from front to back to find the 
insertion point (and that takes time that’s linear in the size of 
the priority queue itself.  merge can (and should) be 
implemented to run in linear time, for much the same reason 
Merge from merge sort can be. 

Implementation 3: Balance insertion and extraction times by implementing your 
priority queue in terms of a binary heap, discussed in detail 
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below.  When properly implemented, peek runs in O(1) time, 
enqueue and extractMin each run in O(lg n) time, and 
merge runs in O(n) time. 

Implementation 4: enqueue, extractMin, and merge all run in O(lg n), but 
only because we use a binomial heap behind the scenes.  The 
binomial heap is by far the most intense of the four data 
structures used in Assignment 4. 

 
Implementation 1: Unsorted Vector 

This implementation is layered on top of our Vector class. enqueue simply appends the 
new element to the end.  When it comes time to extractMin the minimum element (i.e. 
the one with the highest priority in our version), it performs a linear search to find it.  This 
implementation is straightforward as far as layered abstractions go, and serves more as an 
introduction to the architecture of the assignment than it does as an interesting 
implementation.  Do this one first. 
 

Aside 

As you implement each of the subclasses, you’ll leave pqueue.h and pqueue.cpp 
alone, and instead be modifying the interface (.h) and implementation (.cpp) files for 
each of the subclasses.  In the case of the unsorted vector version, you’ll be concerned 
with pqueue-vector.h and pqueue-vector.cpp.  pqueue-vector.h defines 
the public interface you’re implementing, but its private section is empty: 
 

class VectorPQueue : public PQueue { 
public: 
 VectorPQueue(); 
 ~VectorPQueue(); 
  
 static VectorPQueue *merge(VectorPQueue *one, VectorPQueue *two); 
  
 void enqueue(const std::string& elem); 
 std::string extractMin(); 
 std::string peek(); 
  
private: 
 // update the private section with the list of  
 // data members and helper methods needed to implement 
 // the vector-backed version of the PQueue. 
}; 

 
Not surprisingly, the private section shouldn’t be empty, but instead should list the 
items that comprise your internal representation.  You should erase the comment I’ve 
provided and insert the list of data members and private helper functions you think 
should be there. 
 
The pqueue-vector.cpp file provides dummy, placeholder implementations of 
everything, just so that the project cleanly compiles.  In a few cases, the dummy 
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implementations actually do the right thing, but a large majority of them need to 
updates to include real code that does real stuff. 
 
Note that the parent PQueue class defines a protected field called logSize, which 
means you have access to it.  You should ensure that logSize is always maintained to 
house the logical size of the priority queue—both here and in the other three 
implementations.  By unifying the logSize field to the parent class, we can implement 
size and isEmpty at the PQueue class level (I already did) and they work 
automatically for all subclasses. 
 
As you advance through the implementations, understand that you’ll be modifying 
different pairs of interface and implementation files (pqueue-heap.h and pqueue-
heap.cpp for the binary heap version, etc).  In all cases, the private sections of the 
interface are empty and need to be fixed, and in all cases the implementation files have 
placeholder implementations to sedate the compiler into being happy. 

 
Implementation 2: Sorted doubly-linked list 

The linked list implementation is a doubly linked list of values, where the values are kept in 
sorted order (i.e., smallest to largest) to facilitate finding and removing the smallest element 
quickly.  Insertion is a little more work, but made easier because of the decision to 
maintain both prev and next pointers.  merge is conceptually simple, although the 
implementation can be tricky for those just learning pointers and linked lists for the first 
time. 
 
Implementation 3: Binary Heap 

Although the binary search trees we’ll eventually discuss in lecture might make a good 
implementation of a priority queue, there is another type of binary tree that is an even 
better choice in this case.  A heap is a binary tree that has these two properties: 
 

• It is a complete binary tree, i.e. one that is full in all levels (all nodes have two 
children), except for possibly the bottom-most level which is filled in from left to 
right with no gaps. 

• The value of each node is less than or equal to the value of its children. 
 
Here's a conceptual picture of a small heap of  
integer strings (i.e. strings where all characters 
are digits) 
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Note that a heap differs from a binary search tree in two significant ways.  First, while a 
binary search tree keeps all the nodes in a sorted arrangement, a heap is ordered in a much 
weaker sense.  Conveniently, the manner in which a heap is ordered is actually enough for 
the efficient performance of the standard priority queue operations.  The second important 
difference is that while binary search trees come in many different shapes, a heap must be 
a complete binary tree, which means that every heap containing ten elements is the same 
shape as every other heap of ten elements. 
 
Representing a heap using an array 

One way to manage a heap would be to use a standard binary tree node definition and 
wire up left and right children pointers to all nodes.  We can exploit the completeness of 
the tree and create a simple array representation and avoid the pointers.   
 
Consider the nodes in the heap to be numbered level by level like this: 
 
 

 
 

 
 
 
 
 
 
 
 
and now check out this array representation of the same heap: 
 

15 29 20 30 44 46 33 30 47 45 
1 2 3 4 5 6 7 8 9 10 

 
You can divide any node number by 2 (discarding the remainder) to get the node number 
of its parent.  For example, the parent of node 9 is node 4.  The two children of node i are 
2i and 2i + 1, e.g. node 3's two children are 6 and 7.  Although many of the drawings in 
this handout use a tree diagram for the heap, keep in mind you will actually be 
representing the heap as a string array. 
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Heap insert 

Inserting into a heap is done differently than its functional counterpart in a binary 
search tree.  A new element is added to the very bottom of the heap and it rises up to its 
proper place.  Suppose, for example, we want to insert "25" into our heap.  We add a 
new node at the bottom of the heap (the insertion position is equal to the size of the 
heap): 

 
 
 
 

 
 
 
 
 
 
 

15 29 20 30 44 46 33 30 47 45 25 
1 2 3 4 5 6 7 8 9 10 11 

 
We compare the value in this new node with the value of its parent and, if necessary, 
exchange them. Since our heap is actually laid out in an array, we "exchange" the 
nodes by swapping array values.  From there, we compare the moved value to its new 
parent and continue moving the value upward until it needs to go no further. This is 
sometimes called the bubble-up operation. 

 
 
 
 
 
 
 
 
 
 

  
 
 

Heap remove 

Where is the smallest value in the heap?  Given heap ordering, the smallest value 
resides in the root, where it can be easily accessed.  However, after removing this 
value, you generally need to rearrange the nodes that remain.  Remember the 
completeness property dictates the shape of the heap, and thus it is the bottommost 
node that needs to be removed from the structure.  Rather than re-arranging everything 
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to fill in the gap left by the root node, we can leave the root node where it is, copy the 
value from the last node to the root node, and remove the last node. 

 
 
 
 
 
 
 
 

 
 
 

We have a complete tree again, and the left and right sub-trees are heaps.  The only 
potential problem: a violation of the heap ordering property, localized at the root.  In 
order to restore the min-heap property, we need to trickle that value down to the right 
place.  We will use an inverse to the strategy that allows us to float up the new value 
during the enqueue operation.  Start by comparing the value in the root to the values 
of its two children.  If the root's value is larger than the values of either child, swap the 
value in the root with that of the smaller child: 

 
 
 
 
 
 
 
 
 
 

 
This step fixes the heap ordering property for the root node, but at the expense of 
possibly breaking the sub-tree of the child we switched with.  The sub-tree is now 
another heap where only the root node is out of order, so we can iteratively apply the 
same re-ordering on the sub-tree to fix it up and so-on down through its sub-trees.  
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You stop trickling downwards when the value sinks to a level such that it is smaller than 
both of its children or it has no children at all. This recursive action of moving the out-
of-place root value down to its proper place is often called heapify-ing.  
 
You should implement the priority queue as a heap array using the strategy shown 
above.  This array should start small and grow dynamically as needed. 
 
Merging two heaps 

The merge operation—that is, destroying two heaps and creating a new one that’s the 
logical union of the two originals—can be accomplished via the same heapify 
operation discussed above.  Yes, you could just insert elements from the second into 
the first, one at a time, until the second is depleted and the first has everything.  But it’s 
actually faster—asymptotically so, in fact—to do the following: 
 

• Create an array that’s the logical concatenation of the first heap’s array and 
the second heap’s array, without regard for the heap ordering property.  The 
result is a complete, array-backed binary tree that in all likelihood isn’t even 
close to being a heap. 

• Recognize that all of the leaf nodes—taken in isolation—respect the heap 
property. 

• Heapify all sub-heaps rooted at the parents of all the leaves. 
• Heapify all sub-heaps rooted at the grandparents of all the leaves. 
• Continue heapify increasingly higher ancestors until you reach the root, and 

heapify that as well. 
 
Binary Heap Implementation Notes 

Manage your own raw memory.  It’s tempting to just use a Vector<string> to manage 
the array of elements.  But using the vector introduces an extra layer of code in between 
your HeapPQueue and the memory that actually store the elements, and in practice, a 
core container class like the HeapPQueue would be implemented without that extra layer.  
Make it a point to implement your HeapPQueue in terms of raw, dynamically allocation 
arrays of strings instead of a Vector<string>. 
 
Freeing memory. You are responsible for freeing heap-allocated memory.  Your 
implementation should not orphan any memory during its operations and the destructor 
should free all of the internal memory for the object.  We recommend getting the entire 
data structure working without deleting anything, and then going back and taking care of it. 
 
Think before you code. The amount of code necessary to complete the implementation 
work is not large, but you will find it requires a bit of thinking getting it to work correctly.  
It will help to sketch things on paper and work through the boundary cases carefully before 
you write any code. 
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Test thoroughly. I know we’ve already said this, but it never hurts to repeat it a few times.  
You don't want to be surprised when our grading process finds a bunch of lurking 
problems that you didn't discover because of inadequate testing.  The code you write has 
some complex interactions and it is essential that you take time to identify and test all the 
various cases.  I’ve provided you with a minimal test harness to ensure that the 
HeapPQueue works in simple scenarios, but it’s your job to play villain and try to break 
your implementation, knowing that you’re done when you fail to do so. 
 
Implementation 4: Binomial Heap 

The binomial heap expands on the idea of a binary heap by maintaining a collection of 
binomial trees, each of which respect a property very similar to the heap order property 
discussed for Implementation #3.   
 
A binomial tree of order k (where k is a positive integer) is recursively defined: 
 

• A binomial tree of order 0 is a single node with no children. 
• A binomial tree of order k is a single node at the root with k children, indexed 0 

through k – 1.  The 0th child is a binomial tree of order 0, the 1st child is a binomial 
tree of order 1, …, the mth  child is a binomial tree of order m, and the k – 1st child is 
a binomial tree of order k - 1. 

 
Some binomial trees: 

 

 

 

 

 

 

 

 

One property to note—and one that will certainly be exploited in the coming paragraphs, 
is that one can assemble a binomial tree of order k + 1 out of two order k trees by simply 
appending the second to the end of the first’s list of children.  A related property: each 
binomial tree of order k has a total of 2k nodes. 
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A binomial heap of order k is a binomial tree of order k, where the heap property is 
recursively respected throughout—that is, the value in each node is lexicographically less 
than or equal to those held by its children.  In a world where binomial trees store just 
numeric strings, the binomial tree on the left is also a binomial heap, whereas the one on 
the right is not (because the "55" is alphabetically greater than the "49"): 
 
 
 
 
 
 
 
 
Now, if binary heaps can back priority queues, then so can binomial heaps.  But the 
number of elements held by a priority queue can’t be constrained to be some power of 2 
all the time.  So priority queues, when backed by binomial heaps, are really backed by a 
Vector of binomial heaps.   
 
If a priority queue needs to manage 11 elements, then it would hold on to three binomial 
heaps of orders 0, 1, and 3 to store the 20 + 21 + 23 = 1 + 2 + 8 = 11 elements.  The fact 
that the binary representation of 11 is 1011 isn’t a coincidence.  The 1’s in 1011 contribute 
23, 21, and 20 to the overall number.  Those three exponents tell us what binomial heaps 
orders are needed to accommodate all 11 elements.  Neat! 
 

Binomial Heap Insert 

What happens when we introduce a new element into the mix?  More formally: What 
happens when you enqueue a new string into the Vector<node *>-backed priority 
queue?  Let’s see what happens when we enqueue a "20". 

 
The size of the priority queue goes from 11 to 12—or rather, from 1011 to 1100.  We’ll 
understand how to add this new element, all the time maintaining the heap ordering 
property within each binomial tree, if we emulate binary addition as closely as possible.  
That emulation begins by creating binomial tree of order 0 around the new element—a 
"20" in this example—and align it with the 0th order entry of the Vector<node *>. 
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Now, when we add 1 and 1 in binary, we get 0, and carry a 1, right?  We do the same 
thing when merging two order-0 binomial heaps, order-0 plus order-0 equal NULL, 
carry the order-1.  One key difference: when you merge two order-0 heaps into the 
order-1 that gets carried, you need to make sure the heap property is respected by the 
merge.  Since the 15 is smaller than the 20, that means the 15 gets an order-0 as a 
child, and that 15 becomes the root of the order-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The carry now contributes to the merging at the order-1 level.  The carry (with the 15 
and the 20) and the original order-1 contribution (the one with the 13 and the 45) 
similarly merge to produce a NULL order-1 with an order-2 carry. 
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Had there been an order-2 in the original figure, the cascade of merges would have 
continued.  But because there’s no order-2 binomial heap in the original, the order-2 
carry can assume that position in the collection and the cascade can end.  In our 
example, the original binomial heap collection would be transformed into: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Binomial Heap Merge 

The primary perk the binomial heap has over the more standard binary heap is that it, if 
properly implemented—supports merge much more quickly.  In fact, two binomial 
heaps as described above can be merged in O(lg n) time, where n is the size of the 
larger binomial heap.   
 
You can merge two heaps using an extension of the binary addition emulated while 
discussion enqueue.  As it turns out, enqueuing a single node is really the same as 
merging an arbitrarily large binomial heap with a binomial heap of size 1.  The generic 
merge problem is concerned with the unification of two binomial heaps of arbitrary 
sizes.  So, for the purposes of illustration, assuming we want to merge two binomial 
heaps of size 13 and 23, represented below: 
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The triangles represent binomial trees respecting the heap ordering properties, and the 
subscripts represent their order.  The numbers within the triangles are the root values—the 
smallest in the tree, and the blanks represent NULL.  (We don’t have space for the more 
elaborate pictures used to illustrate enqueue, so I’m going with more skeletal but I’m 
hoping equally helpful pictures.) 
 
To merge is to emulate binary arithmetic, understanding that the 0s and 1s of pure binary 
math have been upgraded to be NULLs and binomial tree root addresses.  The merge 
begins with any order-0 trees, and then ripples from low to high order—left to right in the 
diagram.  This particular merge (which pictorially merges the second into the first) can be 
animated play-by-play as: 
 

1. Merge the two order-0 trees to produce an order-1 (with 34 at the root) that 
carries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Merge the two order-1 trees to produce an order-2 tree carry, with 11 at the root. 
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3. Merge the three (three!) order-2 trees!  Leave one of the three alone (we’ll leave 
the 11 in place, though it could have been any of the three) and merge the other 
two to produce an order-3 (with the smaller of 28 and 30 as the root). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4. Merge the two order-3 trees to produce an order-4 tree carry, with 12 as the 
root: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Finally, merge the two order-4s to materialize an order-5 tree with the 12 at the 
root.  Because this is clearly the last merge, we’ll draw just one final picture. 
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The above reflects the fact that the merged product should have 13 + 23 equals 3610 
equals 1001002 elements, and it indeed does: The order-2 tree houses 4 elements, 
and the order-5 houses 32. 
 
Binomial Heap Peek and extractMin 

peek can be implemented as a simple for loop over all of the binomial heaps in the 
collection, and returning the smallest of all of the root elements it encounters (and it 
runs in O(lg n) time).  extractMin runs like peek does, except that it physically 
removes the smallest element before returning it.  Of course, the binomial heap that 
houses the smallest element much make sure all of its children are properly 
reincorporated into the data structure without being orphaned.  Each of those 
children can be merged into the remaining structure in much the same way a 
second binomial heap is, as illustrated above. 

 

Binomial Heap Implementation Notes 

Think before you code. We said the same thing about the binary heap, but it’s even more 
important here.  You can’t fake an understanding of binomial heaps and code, hoping it’ll 
all just kind of work out.  You’ll only succeed with this final implementation if have a 
crystal clear picture of how enqueue, merge, and extractMin all work, and you write 
code that’s consistent with that understanding.  In particular, you absolutely must 
understand the general merge operation described above before you tackle any of 
operations that update the binomial heap itself. 
 
Use a combination of built-ins and custom structures.  Each node in a binomial heap 
should be modeled using a data structure that looks something like this: 
 

 struct node { 
  string elem; 
  Vector<node *> children; 
 }; 

 
As opposed to the binary heap, the binomial heap—at least the first time you implement 
it—is sophisticated enough that you’ll want to rely on sensibly chosen built-ins and layer 
on top of those.  You’re encouraged to use the above node type for your implementation, 
and only deviate from it if you have a compelling reason to do so. 
 
Freeing memory. You are responsible for freeing heap-allocated memory.  Your 
implementation should not orphan any memory during its operations and the destructor 
should free all of the internal memory for the object.  As opposed to before, it’s probably 
best for you to free memory as you go along, since the memory management issues for this 
version of more elaborate, and going back and patching up memory problems will be more 
difficult. 
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Accessing files 

On the class web site, there are two starter projects: one for XCode and a one for Visual 
Studio.  Each project contains these files: 
 

qqueue-test.cpp Test harness to assist in development and testing. 
pqueue Interface and partial implementation of base 

PQueue class.  The primary purpose of the PQueue 
class is to define the interface that all concrete 
priority queue implementations should agree on. 

pqueue-vector Interface and implementation file housing the 
unsorted vector version of the priority queue. 

pqueue-linked-list Interface and implementation file housing the sorted, 
doubly linked list version of the priority queue. 

pqueue-heap Interface and implementation file housing the 
version of the priority queue that’s backed by the 
array-packed binary heap. 

pqueue-binomial-heap Interface and implementation file housing the 
version of the priority queue that’s backed by the 
binomial heap. 

 


