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CS106X Midterm Examination Solution 
 

Thanks to TA Ben Holtz and the gaggle of CS106X section leaders, your midterms are graded 
and are available for pickup.  I’ll bring the exams to Monday morning lecture, and those who 
can’t make lecture should just come by my office during office hours to retrieve your own 
(and only your own, unless I get an email from your friend or dorm mate saying it’s okay to 
pick up his or her exam too). 
 

 
 

The height of each bar in the above graph is the score that some student got on the exam, so 
the chart should give you a sense as to how you did relative to everyone else.  The median 
grade was a 39 out of 45 (wow!), and the average grade was 36.9, with a standard deviation 
of 7.9. The exam is a only a small portion of your grade, but if you did poorly and you want 
to protect against a similar experience on the second exam, then feel free to come by my 
office hours to discuss a strategy for doing better. 
 
If you notice a grading error, then you need to submit your exam back to me (Jerry) some time 
in the next two weeks (before November 9th) so I can take a look at it.  All regrade requests 
must go through Jerry. 
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Solution 1: Stepping Stones 

Because the exam was closed note, closed book, closed everything, I thought it was fair to 
test your understanding of the very algorithm backing your word-ladder submission for 
Assignment 2.  By doing so, I got to exercise your understanding of algorithms and your 
ability to express that understanding in terms of off-the-shelf data structures.  The primary 
algorithmic complexities (beyond the breadth-first search itself) were: 
 

• producing the correct test to see if a solution has been found 
• producing the logic to keep play on the grid and block out U-turns 
• encoding the logic needed to decide whether a color change was required or 

forbidden with any given move 
 
The second bullet item was obtuse enough that I went with a helper function to improve the 
narrative of the overall algorithm and to isolate the logic to a context where it was easier to 
get it right.  You’ll notice that I didn’t bother preventing loops, because I knew that allowing 
them was only an efficiency concern, not a functionality one.  I was looking for a clear 
understanding of the algorithm and fluency with all of the relevant ADTs. 

 
static void generatePath(Grid<string>& stones, 
                         const stone& start, const stone& finish, 
                         Vector<stone>& shortest) { 
 
    Vector<stone> startPath; 
    startPath += start; 
    Queue<Vector<stone> > partialPaths; 
    partialPaths.enqueue(startPath); 
 
    while (true) { 
        shortest = partialPaths.dequeue(); 
        const stone& last = shortest[shortest.size() - 1]; 
        if (last == finish && shortest.size() % 3 == 2) return; 
        for (Direction dir = NORTH; dir <= WEST; dir++) { 
            stone neighbor = getNeighboringStone(last, dir); 
            if (hopIsAllowed(stones, shortest, neighbor)) { 
                Vector<stone> clone = shortest; 
                clone += neighbor; 
                partialPaths.enqueue(clone); 
            } 
        } 
    } 
}  
 

I recognize that statements like end == finish && shortest.size() % 3 == 2 
don’t just roll off the pencil during a timed exam, but you should have recognized that the 
details of stone hopping could be largely abstracted away into a helper function or two so that 
the top-level algorithm is unambiguously breadth-first search. The many details managed by 
my hopIsAllowed predicate function are pretty crunchy, which is why I packaged those 
details into a nicely named routine that reads well within the larger algorithm. 

 
static bool hopIsAllowed(Grid<string>& stones, Vector<stone>& shortest, 
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                         const stone& neighbor) { 
  if (!stones.inBounds(neighbor.row, neighbor.col) || 
       (shortest.size() > 1 && neighbor == shortest.get(shortest.size() - 2))) { 
  return false; 
 } // out of bound for a U-turn? reject 
 
   const stone& end = shortest[shortest.size() - 1]; 
   const string& beforeColor = stones[end.row][end.col]; 
   const string& afterColor = stones[neighbor.row][neighbor.col]; 
  return (beforeColor == afterColor) == (shortest.size() % 3 != 1); 
} 
 

Problem 1 Criteria: 15 points 

  Crucial Design Considerations 

• Understands that a Queue is the best data structure to manage the breadth-first search, 
and conveys that understanding by declaring one: 1 point 

• Models the partial path as either a Vector or a Stack, since the algorithm only needs 
to do surgery on the last/top two elements with any given iteration: 1 point 

 
  Algorithmic Issues 

• Correctly seeds the Queue with a singleton Vector containing just start (or 
finish, if they search backwards): 2 points 

• Correctly loops tirelessly until a solution is found (or until the queue is empty, even 
though I guaranteed that a solution always exists): 1 point 

• Extracts the best partial path that should be manipulated at that moment: 1 point 

• Properly surfaces the last stone so it can be examined for its coordinate and its  
color: 1 point 

• Correctly detects (either before it’s enqueued or the instant it’s dequeued) whether a 
partial path is actually the path of interest: 2 points 

• Iterates away from the current stone in all four directions using some reasonable idiom: 
1 point 

• Detects whether the next possible step is valid: 3 points (1 point for a well-placed 
inbounds check, 1 point for rejecting U-turns, and 1 point for correctly allowing or 
forbidding a color change) 

• Properly clones the partial path when it can be legally extended, extends it, and then 
enqueues it: 2 points 
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Solution 2: Multitions 

Most people saw the recursive structure perfectly well, but many—at least many of the 
twentysomething exams I looked over to see how everyone did—fumbled with the Stack, 
imitating too closely the manner in which a stack accumulates information during recursive 
backtracking (and recursive backtracking this is not). 
 
The recursive variable was indeed count, and the recursive structure was such that a 
multition with count multiplications is some nonempty prefix of the number multiplied by 
the multition of the complementary suffix with count - 1 multiplications.  Of course, there 
are many ways to pull off a prefix—length 1, length 2, and so forth, so we need to recursive 
generate multitions for all possible prefix/suffix subdivisions. 

 
static int optimalMultition(int number, int count, Stack<int>& factors) { 

 if (count == 0) { 
    factors.push(number); 
  return number; 
  } 
  
  int best = 0; 
 string str = integerToString(number); 
  for (int len = 1; len < str.size(); len++) { 
  int first = stringToInteger(str.substr(0, len)); 
   int rest = stringToInteger(str.substr(len)); 
   Stack<int> factorsOfRest; 
   int product = first * optimalMultition(rest, count – 1, factorsOfRest); 
    if (product > best) { 
     best = product; 
     factors = factorsOfRest; 
    factors.push(first); 
     } 
  } 
     
   return best; 
} 

 
Note that an empty stack is passed to every single recursive call, allowing it to accumulate the 
ordered subdivisions of the number being multitioned.  Unless the product of those 
subdivisions is better than anything we’ve seen before, we discard the stack entirely.  When 
the product is better, we copy the stack it into the space addressed by factors and press the 
leading factor on top of it.  In the process, each recursively populated stack competes with 
previously populated ones and displaces the best previous one if it’s even better.  After all 
prefix/suffix subdivisions have been considered, factors references the sequence of factors 
in the multition, and best stores their product. 
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Problem 2 Criteria: 15 points 

  Recursion Issues [Ignoring Stack] 

• Properly identifies the count == 0 situation as a base case, and returns the number 
unmodified: 1 point 

• Employs a valid technique for partitioning the digits on an integer into a nonempty 
prefix and a nonempty suffix (most likely using stringToInteger and 
integerToString): 4 points 

o Iterates over all valid division points: 2 points 
o General substringing strategy is solid, minus edge cases: 1 point 
o Manages edge cases properly as well: 1 point 

• For each prefix, properly recurs on the integer form of the suffix: 3 points 
o Passes in the integer form of the suffix: 1 point 
o Passes in a decremented count as the second argument: 1 point 
o Catches the return value for comparison with a running best: 1 point 

• Allocates and initializes best to be 0 as the default return value when there are no 
valid multitions: 1 point 

• Updates best as recursively computed results are detected to be even better: 1 point 
(don’t worry about returning it—easy to forget and not algorithmically interesting) 

 
  Accumulation of Factors in Stack<int> 

• In the count == 0 scenario, presses the number unmodified onto the referenced  
stack: 1 point 

• Allocates an empty stack (or clears an existing one) and passes it to the recursive  
calls: 2 points 

• Every update of best is accompanied for an operator= overwrite of the stack 
referenced by factors: 1 point 

• Presses the integer form of a prefix onto the top of the factors stack (or on top of 
factorsOfRest before it’s replicated into the space referenced by  
factors): 1 point 
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Solution 3: Valency 

There was ambiguity as to whether or not getCandidates could tell whether a particular 0 
in the valencies grid was always a zero or whether it was previously positive but was 
demoted 0 during the search for a solution.  I didn’t catch the ambiguity until after about 5 
students took the exam, so to be fair to those who took the exam early I need to operate like 
getCandidates could tell the difference and that it always (magically) returns the correct 
Set of circle coordinates needed to discover a solution when and only when it actually 
exists. 
 

static bool findCircle(Grid<int>& valencies, int& row, int& col) { 
 for (row = 0; row < valencies.numRows(); row++) { 
    for (col = 0; col < valencies.numCols(); col++) { 
      if (valencies[row][col] > 0) { 
    return true; 
   } 
      } 
   } 
     
   return false; 
} 
 
static bool solve(Grid<int>& valencies, Map<connection, int>& connections) { 
    int row, col; 
    if (!findCircle(valencies, row, col)) return true; 
     
    coord location = {row, col}; 
    Set<coord> candidates = getCandidates(location, valencies); 
    valencies[row][col]--; 
    foreach (coord candidate in candidates) { 
        valencies[candidate.row][candidate.col]--; 
        if (solve(valencies, connections)) { 
            connection conn = { location, candidate }; 
            connections[conn]++; 
            return true; 
        } 
        valencies[candidate.row][candidate.col]++; 
    } 
    valencies[row][col]++; 
    return false; 
} 
 

My solution above doesn’t use the computeValencySum function, but another solution I 
wrote did, and you may have used it if you structured your recursion differently than I did. 
 
Now, some of you know that getCandidates can’t magically tell whether a 0 at any 
particular location was original or was positive at some point and just decremented down to 0 
through a stack of recursive calls.  The A+ fix (and we didn’t require this of you, since the 
problem statement wasn’t clear, in my opinion) was to pass through not only the working 
state of the valencies grid, but to also pass through the original one, using the original to 
find candidate circles and then confirming each candidates has some remaining valency 
before involving it in a recursive call.  If you recognized this, then that’s really, really 
impressive!  Here’s the solution that correctly manages this new information: 
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static bool solve(Grid<int>& originals, Grid<int>& valencies, 
                  Map<connection, int>& connections) { 
   int row, col; 
   if (!findCircle(valencies, row, col)) return true; 
     
   coord location = {row, col}; 
   Set<coord> candidates = getCandidates(location, originals); 
   valencies[row][col]--; 
   foreach (coord candidate in candidates) { 
    if (valencies[candidate.row][candidate.col] == 0) continue; 
     valencies[candidate.row][candidate.col]--; 
     if (solve(originals, valencies, connections)) { 
       connection conn = { location, candidate }; 
   connections[conn]++; 
         return true; 
      } 
     valencies[candidate.row][candidate.col]++; 
   } 
   valencies[row][col]++; 
   return false; 
} 
 
static bool solve(Grid<int>& valencies, 
                  Map<connection, int>& connections) { 
    Grid<int> originals = valencies; 
    return solve(originals, valencies, connections); 
}  

 

Problem 3 Criteria: 15 points 

• Understands to search for the first coordinate with a positive valency: 1 point 
• Correctly detects a zero valency sum as the base case: 1 point 
• For that base case, returns true to reflect the fact that the valency puzzle is trivially 

solvable: 1 point 
• Constructs a coord for that row-col coordinate: 1 point 
• Calls getCandidates to (magically) get the collection of nonzero-valency circles 

that the circle at the supplied coord can potentially connect to: 1 point 
• Correctly demotes the valency of the central coordinate being manipulated, and 

eventually promotes it if none of the recursive calls work out: 1 point 
• Properly uses foreach to consider each of the possible candidates in the 

Set<coord>: 1 point 
• For each of the coords in the Set, levies the -- before and the ++ after the recursive 

call: 1 point 
• Properly makes the recursive call and acts on its return value: 2 points 
• If the recursive call returns true, the implementation ensures the relevant 

connection is added to the Map referenced by connections, and that the value 
attached to the connection is either a newborn 1, or one more than it was 
previously: 1 point 

• If the recursive call returns true, the implementation returns true without further 
search: 1 point 
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• If the recursive call returns false, then the Map referenced by connections is 
unchanged (and if it was changed before the recursive call, then that change is erased 
completely): 1 point 

• If the recursive calls returns false, then the implementation just advances to the next 
option: 1 point 

• Returns false only after all options have been recursively explored and nothing 
worked out: 1 point 

 


