
CS106X Handout 25S

Autumn 2012 October 29th, 2012

CS106X Midterm Examination Solution

Thanks to TA Ben Holtz and the gaggle of CS106X section leaders, your midterms are graded
and are available for pickup. I’ll bring the exams to Monday morning lecture, and those who
can’t make lecture should just come by my office during office hours to retrieve your own
(and only your own, unless I get an email from your friend or dorm mate saying it’s okay to
pick up his or her exam too).

The height of each bar in the above graph is the score that some student got on the exam, so
the chart should give you a sense as to how you did relative to everyone else. The median
grade was a 39 out of 45 (wow!), and the average grade was 36.9, with a standard deviation
of 7.9. The exam is a only a small portion of your grade, but if you did poorly and you want
to protect against a similar experience on the second exam, then feel free to come by my
office hours to discuss a strategy for doing better.

If you notice a grading error, then you need to submit your exam back to me (Jerry) some time
in the next two weeks (before November 9th) so I can take a look at it. All regrade requests
must go through Jerry.

 2

Solution 1: Stepping Stones

Because the exam was closed note, closed book, closed everything, I thought it was fair to
test your understanding of the very algorithm backing your word-ladder submission for
Assignment 2. By doing so, I got to exercise your understanding of algorithms and your
ability to express that understanding in terms of off-the-shelf data structures. The primary
algorithmic complexities (beyond the breadth-first search itself) were:

• producing the correct test to see if a solution has been found
• producing the logic to keep play on the grid and block out U-turns
• encoding the logic needed to decide whether a color change was required or

forbidden with any given move

The second bullet item was obtuse enough that I went with a helper function to improve the
narrative of the overall algorithm and to isolate the logic to a context where it was easier to
get it right. You’ll notice that I didn’t bother preventing loops, because I knew that allowing
them was only an efficiency concern, not a functionality one. I was looking for a clear
understanding of the algorithm and fluency with all of the relevant ADTs.

static void generatePath(Grid<string>& stones,
 const stone& start, const stone& finish,
 Vector<stone>& shortest) {

 Vector<stone> startPath;
 startPath += start;
 Queue<Vector<stone> > partialPaths;
 partialPaths.enqueue(startPath);

 while (true) {
 shortest = partialPaths.dequeue();
 const stone& last = shortest[shortest.size() - 1];
 if (last == finish && shortest.size() % 3 == 2) return;
 for (Direction dir = NORTH; dir <= WEST; dir++) {
 stone neighbor = getNeighboringStone(last, dir);
 if (hopIsAllowed(stones, shortest, neighbor)) {
 Vector<stone> clone = shortest;
 clone += neighbor;
 partialPaths.enqueue(clone);
 }
 }
 }
}

I recognize that statements like end == finish && shortest.size() % 3 == 2
don’t just roll off the pencil during a timed exam, but you should have recognized that the
details of stone hopping could be largely abstracted away into a helper function or two so that
the top-level algorithm is unambiguously breadth-first search. The many details managed by
my hopIsAllowed predicate function are pretty crunchy, which is why I packaged those
details into a nicely named routine that reads well within the larger algorithm.

static bool hopIsAllowed(Grid<string>& stones, Vector<stone>& shortest,

 3

 const stone& neighbor) {
 if (!stones.inBounds(neighbor.row, neighbor.col) ||
 (shortest.size() > 1 && neighbor == shortest.get(shortest.size() - 2))) {
 return false;
 } // out of bound for a U-turn? reject

 const stone& end = shortest[shortest.size() - 1];
 const string& beforeColor = stones[end.row][end.col];
 const string& afterColor = stones[neighbor.row][neighbor.col];
 return (beforeColor == afterColor) == (shortest.size() % 3 != 1);
}

Problem 1 Criteria: 15 points

 Crucial Design Considerations

• Understands that a Queue is the best data structure to manage the breadth-first search,
and conveys that understanding by declaring one: 1 point

• Models the partial path as either a Vector or a Stack, since the algorithm only needs
to do surgery on the last/top two elements with any given iteration: 1 point

 Algorithmic Issues

• Correctly seeds the Queue with a singleton Vector containing just start (or
finish, if they search backwards): 2 points

• Correctly loops tirelessly until a solution is found (or until the queue is empty, even
though I guaranteed that a solution always exists): 1 point

• Extracts the best partial path that should be manipulated at that moment: 1 point

• Properly surfaces the last stone so it can be examined for its coordinate and its
color: 1 point

• Correctly detects (either before it’s enqueued or the instant it’s dequeued) whether a
partial path is actually the path of interest: 2 points

• Iterates away from the current stone in all four directions using some reasonable idiom:
1 point

• Detects whether the next possible step is valid: 3 points (1 point for a well-placed
inbounds check, 1 point for rejecting U-turns, and 1 point for correctly allowing or
forbidding a color change)

• Properly clones the partial path when it can be legally extended, extends it, and then
enqueues it: 2 points

 4

Solution 2: Multitions

Most people saw the recursive structure perfectly well, but many—at least many of the
twentysomething exams I looked over to see how everyone did—fumbled with the Stack,
imitating too closely the manner in which a stack accumulates information during recursive
backtracking (and recursive backtracking this is not).

The recursive variable was indeed count, and the recursive structure was such that a
multition with count multiplications is some nonempty prefix of the number multiplied by
the multition of the complementary suffix with count - 1 multiplications. Of course, there
are many ways to pull off a prefix—length 1, length 2, and so forth, so we need to recursive
generate multitions for all possible prefix/suffix subdivisions.

static int optimalMultition(int number, int count, Stack<int>& factors) {

 if (count == 0) {
 factors.push(number);
 return number;
 }

 int best = 0;
 string str = integerToString(number);
 for (int len = 1; len < str.size(); len++) {
 int first = stringToInteger(str.substr(0, len));
 int rest = stringToInteger(str.substr(len));
 Stack<int> factorsOfRest;
 int product = first * optimalMultition(rest, count – 1, factorsOfRest);
 if (product > best) {
 best = product;
 factors = factorsOfRest;
 factors.push(first);
 }
 }

 return best;
}

Note that an empty stack is passed to every single recursive call, allowing it to accumulate the
ordered subdivisions of the number being multitioned. Unless the product of those
subdivisions is better than anything we’ve seen before, we discard the stack entirely. When
the product is better, we copy the stack it into the space addressed by factors and press the
leading factor on top of it. In the process, each recursively populated stack competes with
previously populated ones and displaces the best previous one if it’s even better. After all
prefix/suffix subdivisions have been considered, factors references the sequence of factors
in the multition, and best stores their product.

 5

Problem 2 Criteria: 15 points

 Recursion Issues [Ignoring Stack]

• Properly identifies the count == 0 situation as a base case, and returns the number
unmodified: 1 point

• Employs a valid technique for partitioning the digits on an integer into a nonempty
prefix and a nonempty suffix (most likely using stringToInteger and
integerToString): 4 points

o Iterates over all valid division points: 2 points
o General substringing strategy is solid, minus edge cases: 1 point
o Manages edge cases properly as well: 1 point

• For each prefix, properly recurs on the integer form of the suffix: 3 points
o Passes in the integer form of the suffix: 1 point
o Passes in a decremented count as the second argument: 1 point
o Catches the return value for comparison with a running best: 1 point

• Allocates and initializes best to be 0 as the default return value when there are no
valid multitions: 1 point

• Updates best as recursively computed results are detected to be even better: 1 point
(don’t worry about returning it—easy to forget and not algorithmically interesting)

 Accumulation of Factors in Stack<int>

• In the count == 0 scenario, presses the number unmodified onto the referenced
stack: 1 point

• Allocates an empty stack (or clears an existing one) and passes it to the recursive
calls: 2 points

• Every update of best is accompanied for an operator= overwrite of the stack
referenced by factors: 1 point

• Presses the integer form of a prefix onto the top of the factors stack (or on top of
factorsOfRest before it’s replicated into the space referenced by
factors): 1 point

 6

Solution 3: Valency

There was ambiguity as to whether or not getCandidates could tell whether a particular 0
in the valencies grid was always a zero or whether it was previously positive but was
demoted 0 during the search for a solution. I didn’t catch the ambiguity until after about 5
students took the exam, so to be fair to those who took the exam early I need to operate like
getCandidates could tell the difference and that it always (magically) returns the correct
Set of circle coordinates needed to discover a solution when and only when it actually
exists.

static bool findCircle(Grid<int>& valencies, int& row, int& col) {
 for (row = 0; row < valencies.numRows(); row++) {
 for (col = 0; col < valencies.numCols(); col++) {
 if (valencies[row][col] > 0) {
 return true;
 }
 }
 }

 return false;
}

static bool solve(Grid<int>& valencies, Map<connection, int>& connections) {
 int row, col;
 if (!findCircle(valencies, row, col)) return true;

 coord location = {row, col};
 Set<coord> candidates = getCandidates(location, valencies);
 valencies[row][col]--;
 foreach (coord candidate in candidates) {
 valencies[candidate.row][candidate.col]--;
 if (solve(valencies, connections)) {
 connection conn = { location, candidate };
 connections[conn]++;
 return true;
 }
 valencies[candidate.row][candidate.col]++;
 }
 valencies[row][col]++;
 return false;
}

My solution above doesn’t use the computeValencySum function, but another solution I
wrote did, and you may have used it if you structured your recursion differently than I did.

Now, some of you know that getCandidates can’t magically tell whether a 0 at any
particular location was original or was positive at some point and just decremented down to 0
through a stack of recursive calls. The A+ fix (and we didn’t require this of you, since the
problem statement wasn’t clear, in my opinion) was to pass through not only the working
state of the valencies grid, but to also pass through the original one, using the original to
find candidate circles and then confirming each candidates has some remaining valency
before involving it in a recursive call. If you recognized this, then that’s really, really
impressive! Here’s the solution that correctly manages this new information:

 7

static bool solve(Grid<int>& originals, Grid<int>& valencies,
 Map<connection, int>& connections) {
 int row, col;
 if (!findCircle(valencies, row, col)) return true;

 coord location = {row, col};
 Set<coord> candidates = getCandidates(location, originals);
 valencies[row][col]--;
 foreach (coord candidate in candidates) {
 if (valencies[candidate.row][candidate.col] == 0) continue;
 valencies[candidate.row][candidate.col]--;
 if (solve(originals, valencies, connections)) {
 connection conn = { location, candidate };
 connections[conn]++;
 return true;
 }
 valencies[candidate.row][candidate.col]++;
 }
 valencies[row][col]++;
 return false;
}

static bool solve(Grid<int>& valencies,
 Map<connection, int>& connections) {
 Grid<int> originals = valencies;
 return solve(originals, valencies, connections);
}

Problem 3 Criteria: 15 points

• Understands to search for the first coordinate with a positive valency: 1 point
• Correctly detects a zero valency sum as the base case: 1 point
• For that base case, returns true to reflect the fact that the valency puzzle is trivially

solvable: 1 point
• Constructs a coord for that row-col coordinate: 1 point
• Calls getCandidates to (magically) get the collection of nonzero-valency circles

that the circle at the supplied coord can potentially connect to: 1 point
• Correctly demotes the valency of the central coordinate being manipulated, and

eventually promotes it if none of the recursive calls work out: 1 point
• Properly uses foreach to consider each of the possible candidates in the

Set<coord>: 1 point
• For each of the coords in the Set, levies the -- before and the ++ after the recursive

call: 1 point
• Properly makes the recursive call and acts on its return value: 2 points
• If the recursive call returns true, the implementation ensures the relevant

connection is added to the Map referenced by connections, and that the value
attached to the connection is either a newborn 1, or one more than it was
previously: 1 point

• If the recursive call returns true, the implementation returns true without further
search: 1 point

 8

• If the recursive call returns false, then the Map referenced by connections is
unchanged (and if it was changed before the recursive call, then that change is erased
completely): 1 point

• If the recursive calls returns false, then the implementation just advances to the next
option: 1 point

• Returns false only after all options have been recursively explored and nothing
worked out: 1 point

