
CS106X Handout 25

Autumn 2012 October 23rd, 2012

CS106X Midterm Examination

This is closed book, closed notes, closed reader, closed everything exam. If you’re
taking the exam remotely, you can telephone Jerry at 415-205-2242 while taking the
exam to ask questions.

Good luck!

Section Leader: _____________________

Last Name: _____________________

First Name: _____________________

I accept the letter and spirit of the honor code.

 (signed) __

 Score Grader

1. Stepping Stones [15] ______ ______

2. Multitions [15] ______ ______

3. Valency [15] ______ ______

Total [45] ______ ______

 2

Summary of Relevant Data Types
class string {
 bool empty() const;
 int size() const;
 int find(char ch) const;
 int find(char ch, int start) const;
 string substr(int start) const;
 string substr(int start, int length) const;
 char& operator[](int index);
 const char& operator[](int index) const;
};

enum Direction { NORTH, EAST, SOUTH, WEST };

class Vector {
 bool isEmpty() const;
 int size() const;
 void add(const Type& elem); // operator+= used similarly
 void insert(int pos, const Type& elem);
 void remove(int pos);
 Type& operator[](int pos);
};

class Grid {
 int numRows() const;
 int numCols() const;
 bool inBounds(int row, int col) const;
 Type get(int row, int col) const; // cascade of operator[] also works
 void set(int row, int col, const Type& elem);
};

class Stack {
 bool isEmpty() const;
 void push(const Type& elem);
 Type pop();
};

class Queue {
 bool isEmpty() const;
 void enqueue(const Type& elem);
 Type dequeue();
};

class Map {
 bool isEmpty() const;
 int size() const;
 void put(const Key& key, const Value& value);
 bool containsKey(const Key& key) const;
 Value get(const Key& key) const;
 Value& operator[](const Key& key);
};

class Set {
 bool isEmpty() const;
 int size() const;
 void add(const Type& elem); // operator+= also adds elements
 bool contains(const Type& elem) const;
};

 3

Problem 1: Stepping Stones [15 points]

Stepping stone puzzles are grids of colored circles where the goal is to travel from the start
stone to the finish stone by stepping up, down, left, and right. As you travel, you must visit
three stones of the same color, switch color, visit three stones of another single color, switch
color, and so on. You may not make any U-turns (that is, you’re not allowed to back up onto
a stone that you most recently came from), but you’re otherwise allowed to visit the same
stone several times. The initial step off of start must change color, and your final step onto
finish must change color as well (although you can step on the start and finish stones
along the way if it helps).

If, for instance, you are presented with the stepping stones below (where different fill patterns
represent different colors), you can navigate from the upper left corner—coordinate (0, 0)—to
the lower right corner—coordinate (4, 4)—in a breezy 34 steps.

Travel starts out like this:

and ends like this:

2 3 4 1

5 6

7

32

33

34

 29 30 31

35

 4

Complete the implementation of a function called generatePath, which uses breadth-first-
search (as your word-ladder solution did) to find the shortest sequence of stones one must
step on to get from start to finish. The puzzle is modeled as a Grid<string>, where
the strings are the colors, spelled out like "Yellow" and "Green". You can assume that a
solution is known to exist, and you needn’t avoid cycles while doing the search (knowing
they won’t be present in the shortest path solution). You may further assume you’ve access to
the following type definition and helper function:

struct stone {
 int row;
 int col;
};

static stone getNeighboringStone(const stone& location, Direction dir) {
 stone neighbor = location;
 switch (dir) {
 case NORTH: neighbor.row--; break;
 case EAST: neighbor.col++; break;
 case SOUTH: neighbor.row++; break;
 case WEST: neighbor.col--; break;
 }
 return neighbor;
}

Assume that <, ==, and != have been overloaded so you can compare stones. The shortest
path—expressed as a Vector<stone> should include start at the front and finish at the
back, and should be written in the space referenced by shortest. Use the next page to
present your implementation. (Note that you should not use recursion for this problem. You
must use a genuine breadth-first search approach and generate all paths of length 1, then all
paths of length 2, and so on, until you generate a path that incidentally leads to the target
stone with the right modulo-3 properties).

 5

Problem 1: Stepping Stones [continued]

static void generatePath(Grid<string>& stones,
 const stone& start, const stone& finish,
 Vector<stone>& shortest) {

 6

Problem 2: Multitions [15 points]

A multition of order n is the insertion of n multiplication signs in between arbitrary digits of a
number so the result is a valid arithmetic expression. Here are just some of the order-2
multitions of the number 234567898765432:

2345 * 678987 * 65432
2 * 345678987654 * 32
23 * 4567898765 * 432
23456 * 789 * 8765432

Each of these expressions, when evaluated, yields different results:

 2345 * 678987 * 65432 = 104182434465480
 2 * 345678987654 * 32 = 22123455209856
 23 * 4567898765 * 432 = 45386642129040
 23456 * 789 * 8765432 = 162219956690688

Present your implementation of optimalMultition, which recursively generates all
order-n multitions of the specified number, returns the largest product of all multition products,
and updates factors to contain the multitioned factors contributing to the maximum product.
optimalMultition(23436234, 3, factors), for instance, would return 2464588 and
populate the Stack referenced by factors with the numbers 23 (at the top of the stack), 43,
623, and 4 (at the bottom of the stack). If there are no order-n multitions of the provided
number, your function should return 0 and leave the stack empty. You may also assume that
the int type can store arbitrarily large integer values.

Present your implementation on the next page (and feel free to tear this page out so you can
easily refer to it). In addition to the standard string methods presented on page 2, you will
benefit from using the following functions from strlib.h:

string integerToString(int n);
int stringToInteger(const string& str);

 7

Problem 2: Multitions [continued]

static int optimalMultition(int number, int count, Stack<int>& factors) {

 8

Problem 3: Valency [15 points]

Valency is a puzzle one solves by repeatedly connecting pairs of circles. Any two circles can
be vertically or horizontally linked one or more times, provided there are no other circles in
between them. Each circle has an associated valency specifying the exact number of
connections one must draw between it and other circles. The goal of the puzzle is to connect
circles to one another so that all valency constraints are satisfied.

One such puzzle is presented
on the left, and one of its
solutions is presented on the
right. This particularly solution
makes use of 1 triple, 2
double, and 6 single
connections—a total of 13 in
all—to satisfy a combined
valency constraint of 26.

The puzzle can be modeled as
a Grid<int>, where a zero
reflects the absence of a circle,
and a positive value reflects

the presence of one.

To help simplify the problem, you should rely on the services of a few data types and helper
functions. In particular, you should assume that the following two data types have been
defined for you and that operators like < have been overloaded so that each may be stored as
entries in Sets and as keys in Maps.

You can also assume the following two functions have already been implemented for you:

static int computeValencySum(Grid<int>& valencies);
static Set<coord> getCandidates(const coord& location, Grid<int>& valencies);

computeValencySum returns the sum of all of the supplied Grid’s entries, and
getCandidates returns the Set<coord> of all other circles with nonzero valency that
location could potentially be connected with given the state of the supplied Grid.

Implement a recursive backtracking solve routine that returns true if and only if the
referenced Valency puzzle—encoded as a Grid<int> by the name of valencies—can be

struct coord {
 int row;
 int col;
};

struct connection {
 coord first;
 coord second;
};

 9

solved. When true is returned, the referenced connections should contain all of the
connections (mapped to their multiplicity) that solve the puzzle. For the puzzle presented
above, solve should return true and update the referenced Map with 9 connections as
keys. 6 of the 9 connections should map to 1 (because 6 of the nine pairings are singly
connected), 2 of the 9 should map to 2 (because two pairs are doubly connected), and the 9th
connection should map to a 3. (Be sure to remove any temporarily inserted connections
that ultimately map to 0.) If false is returned, then the state of the referenced Map can be
ignored. Use the rest of this page and the next to present your answer.

static bool solve(Grid<int>& valencies, Map<connection, int>& connections) {

 10

Problem 3: Valency [continued]

