
CS106X Handout 24

Autumn 2012 October 22th, 2012

Section Handout

Discussion Problem 1: Superheroes Then and Now

Analyze the following program, starting with the call to elektra, and draw the state of
memory at the two points indicated. Be sure to differentiate between stack and heap
memory, note values that have not been initialized, and identify where memory has been
orphaned.

struct superhero {
 int wonderwoman;
 superhero *isis;
 int *superman[2];
};

static void elektra() {
 superhero marineboy[2];
 superhero *ironman;
 ironman = &marineboy[1];
 marineboy[0].wonderwoman = 152;
 marineboy[0].superman[0] = new int[2];
 marineboy[0].superman[1] = &(ironman->wonderwoman);
 ironman->superman[0] = marineboy[0].superman[1];
 ironman->superman[1] = &(marineboy[0].superman[0][1]);
 *(ironman->superman[1]) = 9189;
 marineboy[1].isis = ironman->isis = ironman;

 ⇐ First, draw the state of memory just prior to the call to barbarella.

 barbarella(marineboy[1], ironman->isis);
}

static void barbarella(superhero& storm, superhero *& catwoman) {
 storm.wonderwoman = 465;
 catwoman->isis = &storm;
 catwoman->wonderwoman = 830;
 catwoman->isis[0].superman[1] = &(storm.isis->wonderwoman);
 catwoman = &storm;
 catwoman->wonderwoman = 507;
 catwoman->isis = new superhero[2];

 ⇐ Second, draw the state of memory just before barbarella returns
}

 2

Lab Problem 1: Bloom Filters and Sorted String Sets

For this problem, you’re going to implement a SortedStringSet class that lays on top
of a Set<string>. The public interface and part of the private section are presented
here:

class SortedStringSet {
public:
 SortedStringSet(const Vector<int (*)(const std::string&, int)>& hashers);
 ~SortedStringSet();

 int size() const { return values.size(); }

 bool contains(const std::string& value) const;
 void add(const std::string& value);

private:
 Set<std::string> values;
};

Beyond its Set<string> impersonation, the SortedStringSet is engineered so calls
to contains run very, very quickly for the vast majority of strings that aren’t present. If
you know ahead of time that you’ll be storing a large number of strings, and you expect
an overwhelming percentage of contains calls to return false, you can enhance the
SortedStringSet so those calls to contains—the ones returning false—run in time
that has absolutely nothing to do with the Set’s size.

This enhancement—the one optimizing contains to return false more quickly—can be
realized with a Bloom filter.

The Bloom filter is an array-based structure that determines whether a string may or
can’t be present. It’s basically a Boolean array, where all values are initially false. Each
time a string is inserted, several hash functions—all provided at construction time—are
applied to produce a series of hash codes. The string then leaves several footprints—
one for each hash code—on the Bloom filter by ensuring the Boolean at each hash code is
true.

To illustrate, assume the filter is of size 32. An empty box represents false, and a filled
one represents true. Initially, all Booleans are false, so all boxes are empty:

Further assume the SortedStringSet constructor was given five exceptionally good
hash functions. Each time a string is inserted, the hash functions are applied to the
string to produce five hash codes. The corresponding slots in the array are all set to
true—those are the footprints—before being inserted into the companion Set. Each time
you search a SortedStringSet, you first confirm all relevant footprints are present, lest
you waste precious clock cycles searching the traditional Set.

 3

Here’s a play-by-play illustrating how this works:

• Imagine you’ve installed five hash functions at construction time, and the first word you

insert is "computer". Further imagine the five functions hash "computer" to 20, 8,
0, 19, and 31. The Bloom filter would evolve into the following:

• Imagine you then insert the word "tower", and it hashes to 3, 28, 3, 19, and 26 (of

course, two or more of the hash functions produce the same hash code from time to
time, and there’s no way to prevent that.) The Bloom filter would evolve into this:

• If later on you search for"tower" or "computer", you’d first confirm the expected
footprints are accounted for, and once you do that, you’d take the time to search the
Set<string> to verify the word is actually present.

• When searching for an arbitrary word, you first determine whether or not the word’s

hash-generated footprints are present. If not, you can quickly return false without
examining the. If all footprints are present, you would search the Set to see if the word
is really there.

The full class file for the StringSortedSet will maintain a Bloom filter in addition to the
Set<string>. The Set<string> stores the values, but the implementation of
contains doesn’t even look to the Set unless the Bloom filter suggests it might be there.
The Bloom filter is used to efficiently guard against relatively time-consuming Set searches
when it can tell searching the Set is a waste of time.

The full interface for the SortedStringSet is the following:

class SortedStringSet {
public:
 SortedStringSet(const Vector<int (*)(const std::string&, int)>& hashers);
 ~SortedStringSet();

 int size() const { return values.size(); }

 bool contains(const std::string& value) const;
 void add(const std::string& value);

private:
 Set<std::string> values;
 // additional fields and methods you’ll add to support the Bloom filter
};

 4

For the lab, implement the constructor, the destructor, and the contains and add
methods. You must specify what additional private data members and methods are
needed to support the Bloom filter. While coding, adhere to the following:

• The vector of hash functions passed to the constructor will contain at least one function

pointer. The function pointers (of type int (*)(const std::string&, int)—
that’s the notation for it) address functions that takes the string being hashed and the
size of the Bloom filter.

• The Bloom filter should be implemented as a dynamically allocated array of Booleans,
initially of length 1001.

• The implementation of contains can return false for one of two reasons. The first
reason is that the Bloom filter makes it clear a string was never inserted, because one
of more of its footprints is missing. The second reason is that the Set just doesn’t
contain the string even though it survived the filter.

• If when adding a new string you notice that the number of trues exceeds the
number of falses, you should allocate a new, larger Boolean array (you choose the
size), dispose of the old one, and effectively reinsert all of the strings as if the new
array was the original. That means every once in a while, a call to add is very
expensive, but the reallocation happens so infrequently that it doesn’t impact the
average running time. (We do this, else the Bloom filter will become congested with
mostly trues, and will become less and less effective at filtering.)

Some thought questions:
• Why do we need to store the actual strings in an underlying Set<string>? Isn’t it

enough to just store its footprints as evidence that a string is present?
• Given the above design constraints, why can’t we implement a remove method all that

easily? How could you change the implementation so that remove could be supported
more easily?

