Memoization

Let's review why our first recursive implementation of fib was so dreadfully slow. Here's the code again, updated to make use of the long long data type so that much, much larger Fibonacci numbers can, in theory and given an infinite amount of time, be computed:

```
static unsigned long long fib(int n) {
    if (n < 2) return n;
    return fib(n - 1) + fib(n - 2);
}
```

The code mirrors the inductive definition, but because each call to $\mathbf{f i b}$ usually gives birth to two more, the running time grows exponentially with respect to \mathbf{n}.

One key observation: the initial recursive call leads to many (many, many) repeated recursive calls. The computation of the $40^{\text {th }}$ Fibonacci number, for instance, leads to:

```
- 1 call to fib(39)
- 2 calls to fib(38)
- 3 calls to fib(37)
- 5 calls to fib(36)
- 8 calls to fib(35)
- 13 calls to fib(34)
- 21 calls to fib(33)
```

It's sad that $\mathbf{f i b} \mathbf{(3 3)}$ gets calls 21 different times, because it currently builds the answer from scratch, even though the answer is always the same. The implementation is farcically slow because it spends a large fraction of its time re-computing the same results over and over again.

One technique to overcome the repeated sub-problem issue is to keep track of all previously computed results in a Map, and to always consult the Map to see if a partial result has been computed before before moving on to the binary recursion.

The code that appears at the top of the next page is an extension of the above, save for the key addition that a cache has been threaded throughout the implementation so that previously computed results can be stored and retrieved very, very quickly:

```
static unsigned long long fib(int n, Map<int, unsigned long long>& cache) {
    if (cache.containsKey(n)) {
            return cache[n];
    }
    unsigned long long result = fib(n - 1, cache) + fib(n - 2, cache);
    cache[n] = result;
    return result;
}
static unsigned long long fib(int n) {
    Map<int, unsigned long long> cache;
    cache[0] = 0;
    cache[1] = 1;
    return fib(n, cache);
}
```

Notice the introduction of a Map<int, unsigned long long>. The base-case section of the recursive function now checks the cache, which initially houses the traditional base case results, but over time grows to include everything that's ever been computed during the lifetime of a single call.

All of a sudden, what used to be an exponential-time algorithm now runs in time that's proportional to n . This technique of caching previously generated results is called memoization. It looks like the word memorization, but it's missing the r. (Apparently the word is derived from memorandum, not memorization. At least that's what Wikipedia says. (:)

One key observation to point out: memoization is only useful when there are repeated subproblems, but it doesn't do much when all or nearly all recursive calls are unique. That means that $\mathbf{f i b}$ benefits from memoization, but functions like listPermutations and listSubsets (each of which produces out of length \mathbf{n} ! and $\mathbf{2}^{\mathbf{n}}$, respectively) do not.

DNA Alignment ${ }^{1}$

There are several alignment methods for measuring the similarity of two DNA sequences (which for the purposes of this example can be thought of as strings over a four-letter alphabet: $\mathbf{A}, \mathbf{C}, \mathbf{G}$, and \mathbf{T}). One such method to align two sequences \mathbf{x} and \mathbf{y} consists of inserting spaces at arbitrary locations (including at either end) so that the resulting sequences \mathbf{x}^{\prime} and \mathbf{y}^{\prime} have the same length but do not have a space in the same position. Then you can assign a score to each position. Position \mathbf{j} is scored as follows:
$\bigcirc+1$ if $\mathbf{x}^{\prime}[\mathbf{j}]$ and $\mathbf{y}^{\prime}[\mathbf{j}]$ are the same and neither is a space, - -1 if $\mathbf{x}^{\prime}[\mathbf{j}]$ and $\mathbf{y}^{\prime}[\mathbf{j}]$ are different and neither is a space,

- -2 if either $\mathbf{x}^{\prime}[\mathbf{j}]$ or $\mathbf{y}^{\prime}[\mathbf{j}]$ is a space.

[^0]The score for a particular alignment is just the sum of the scores over all positions. For example, given the sequences GATCGGCAT and CAATGTGAATC, one such alignment (though not necessarily the best one) is:

The positive scores are listed above the alignment, and negative scores are listed below. This particular alignment has a total score of -4 .

The goal here is to write a function called alignStrands, which takes two legitimate DNA strings and returns the alignment score.

For instance, a call to alignStrands("САСТСТGCA", "GTCCCCATT") would return -5 because of the following alignment is optimal:
$+\quad 11$
CACTCTGCA
GTCCCCATT

- 1111111

Calling alignStrands("СттGTGTGGCACTGCGA", "АСтGCCCTACCACCG") would return -6 because the following alignment is optimal:
$+\begin{array}{llll}11 & 1 & 111 & 11\end{array}$ CTTGTG TGGCACTGCGA
ACTGCCCTACCAC CG

- $11 \begin{array}{lllll}112 & 11 & 22 & 2\end{array}$

We'll assume that the two strings passed in to alignstrands are each DNA strings containing only the four capital letters you'd expect. In order for the alignstrands function to return in a reasonable amount of time, we're going to need to cache the results of recursively generated results so that we don't unnecessarily repeat the same recursive call a second or a third time.

```
static int alignStrands(const string& one, const string& two,
                Map<string, int>& cache) {
    if (one.empty()) return -2 * two.length();
    if (two.empty()) return -2 * one.length();
    string key = one + ":" + two;
    if (cache.containsKey(key)) return cache[key];
    if (one[0] == two[0]) { // two leading bases match
        int score = alignStrands(one.substr(1), two.substr(1), cache) + 1;
        return cache[key] = score;
    }
    int first = alignStrands(one, two.substr(1), cache) - 2;
    int second = alignStrands(one.substr(1), two, cache) - 2;
    int third = alignStrands(one.substr(1), two.substr(1), cache) - 1;
    return cache[key] = max(first, max(second, third));
}
static int alignStrands(const string& one, const string& two) {
    Map<string, int> cache;
    return alignStrands(one, two, cache);
}
```

Memoization brings the wildly exponential running time down to a polynomial one. With a few more optimizations (pre-computing strand lengths, replacing substr calls with additional string-index parameters, using a custom data structure instead of the Map), the running time is roughly proportional to the product of the two strand lengths.

[^0]: ${ }^{1}$ Drawn from Introduction to Algorithms, Cormen, Leiserson, Rivest, and Stein

