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Memoization 
 

Let’s review why our first recursive implementation of fib was so dreadfully slow.  Here’s 
the code again, updated to make use of the long long data type so that much, much 
larger Fibonacci numbers can, in theory and given an infinite amount of time, be 
computed: 
 

static unsigned long long fib(int n) { 
 if (n < 2) return n; 
 return fib(n - 1) + fib(n - 2); 
} 
 

The code mirrors the inductive definition, but because each call to fib usually gives birth 
to two more, the running time grows exponentially with respect to n. 
 
One key observation: the initial recursive call leads to many (many, many) repeated 
recursive calls.  The computation of the 40th Fibonacci number, for instance, leads to: 
 

o 1 call to fib(39) 
o 2 calls to fib(38) 
o 3 calls to fib(37) 
o 5 calls to fib(36) 
o 8 calls to fib(35) 
o 13 calls to fib(34) 
o 21 calls to fib(33) 
…. 

  
It’s sad that fib(33) gets calls 21 different times, because it currently builds the answer 
from scratch, even though the answer is always the same.  The implementation is farcically 
slow because it spends a large fraction of its time re-computing the same results over and 
over again. 
 
One technique to overcome the repeated sub-problem issue is to keep track of all 
previously computed results in a Map, and to always consult the Map to see if a partial 
result has been computed before before moving on to the binary recursion. 
 
The code that appears at the top of the next page is an extension of the above, save for the 
key addition that a cache has been threaded throughout the implementation so that 
previously computed results can be stored and retrieved very, very quickly: 
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static unsigned long long fib(int n, Map<int, unsigned long long>& cache) { 
 if (cache.containsKey(n)) { 
  return cache[n]; 
 } 
  
 unsigned long long result = fib(n - 1, cache) + fib(n - 2, cache); 
 cache[n] = result; 
 return result; 
} 
 
static unsigned long long fib(int n) { 
 Map<int, unsigned long long> cache; 
 cache[0] = 0; 
 cache[1] = 1; 
 return fib(n, cache); 
} 

 
Notice the introduction of a Map<int, unsigned long long>.  The base-case section 
of the recursive function now checks the cache, which initially houses the traditional base 
case results, but over time grows to include everything that’s ever been computed during 
the lifetime of a single call. 
 
All of a sudden, what used to be an exponential-time algorithm now runs in time that’s 
proportional to n.  This technique of caching previously generated results is called 
memoization.  It looks like the word memorization, but it’s missing the r.  (Apparently the 
word is derived from memorandum, not memorization.  At least that’s what Wikipedia 
says. ) 
 
One key observation to point out: memoization is only useful when there are repeated sub-
problems, but it doesn’t do much when all or nearly all recursive calls are unique.  That 
means that fib benefits from memoization, but functions like listPermutations and 
listSubsets (each of which produces out of length n! and 2n, respectively) do not. 
 
DNA Alignment1 

There are several alignment methods for measuring the similarity of two DNA sequences 
(which for the purposes of this example can be thought of as strings over a four-letter 
alphabet: A, C, G, and T).  One such method to align two sequences x and y consists of 
inserting spaces at arbitrary locations (including at either end) so that the resulting 
sequences x’ and y’ have the same length but do not have a space in the same position.  
Then you can assign a score to each position.  Position j is scored as follows: 
 

o +1 if x’[j] and y’[j] are the same and neither is a space, 
o –1 if x’[j] and y’[j] are different and neither is a space, 
o –2 if either x’[j] or y’[j] is a space. 

 

                                            
1 Drawn from Introduction to Algorithms, Cormen, Leiserson, Rivest, and Stein 
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The score for a particular alignment is just the sum of the scores over all positions.  For 
example, given the sequences GATCGGCAT and CAATGTGAATC, one such alignment 
(though not necessarily the best one) is: 
 
 
 

  +   11 1 1 11  
    G ATCG GCAT  
    CAAT GTGAATC 
  - 12  2 2 1  2   

 
 
 
The positive scores are listed above the alignment, and negative scores are listed below.  
This particular alignment has a total score of –4. 
 
The goal here is to write a function called alignStrands, which takes two legitimate 
DNA strings and returns the alignment score.   
 
For instance, a call to alignStrands("CACTCTGCA", "GTCCCCATT") would return -5 
because of the following alignment is optimal: 
 

 +  1 1     
    CACTCTGCA 
    GTCCCCATT 
  - 11 1 1111 

 
Calling alignStrands("CTTGTGTGGCACTGCGA", "ACTGCCCTACCACCG") would  
return -6 because the following alignment is optimal: 
 

  +   11   1  111  11  
    CTTGTG TGGCACTGCGA 
    ACTGCCCTACCAC  CG  
  - 11  112 11   22  2 

 

We’ll assume that the two strings passed in to alignStrands are each DNA strings 
containing only the four capital letters you’d expect.  In order for the alignStrands 
function to return in a reasonable amount of time, we’re going to need to cache the results 
of recursively generated results so that we don’t unnecessarily repeat the same recursive 
call a second or a third time. 
 

positive scores for matches 

negative scores for misses 
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static int alignStrands(const string& one, const string& two,  
                        Map<string, int>& cache) { 
 if (one.empty()) return -2 * two.length(); 
 if (two.empty()) return -2 * one.length(); 
     
 string key = one + ":" + two; 
 if (cache.containsKey(key)) return cache[key]; 
  
 if (one[0] == two[0]) { // two leading bases match 

  int score = alignStrands(one.substr(1), two.substr(1), cache) + 1; 
   return cache[key] = score; 
 } 
  
 int first = alignStrands(one, two.substr(1), cache) - 2; 
 int second = alignStrands(one.substr(1), two, cache) - 2; 
 int third = alignStrands(one.substr(1), two.substr(1), cache) - 1; 
 return cache[key] = max(first, max(second, third)); 
} 
 
static int alignStrands(const string& one, const string& two) { 
 Map<string, int> cache; 
 return alignStrands(one, two, cache); 
} 

 
Memoization brings the wildly exponential running time down to a polynomial one.  With 
a few more optimizations (pre-computing strand lengths, replacing substr calls with 
additional string-index parameters, using a custom data structure instead of the Map), the 
running time is roughly proportional to the product of the two strand lengths. 
 


