
CS106X Handout 20S

Autumn 2012 October 17th – 19th, 2012

Section Solution

Discussion Problem 1 Solution: Domino Chaining

The solution looks like typical recursive backtracking, save for the fact there are two recursive
calls per iteration instead of just one. There’s some über-clever short-circuit evaluation going
on here, where recursive calls are circumvented unless two numbers that need to match
actually match. Note that we don’t make a second recursive call within any given iteration if
the first one works out, or if each half of the chaining domino has the same number.

static bool chainExistsRec(Vector<domino>& dominoes, int start, int end) {
 if (start == end) return true;
 if (dominoes.isEmpty()) return false; // technically optional! know why?

 for (int i = 0; i < dominoes.size(); i++) {
 domino d = dominoes[i];
 dominoes.remove(i);
 if ((d.first == start && chainExistsRec(dominoes, d.second, end)) ||
 (d.first != d.second &&
 d.second == start && chainExistsRec(dominoes, d.first, end)))
 return true;
 dominoes.insert(i, d); // pretend we never made this choice by reverting
 }

 return false;
}

static bool chainExists(const Vector<domino>& dominoes, int start, int end) {
 Vector<domino> copy = dominoes; // we need our own copy so we can modify it
 return chainExistsRec(copy, start, end);
}

In this case, I go with a wrapper not because I need to introduce any new parameters, but
because I need a deep clone of the supplied Vector so I can add and remove from it knowing
it won’t impact the original.

One could also argue that the insert and remove calls are time consuming, but the domain
is such that we never expect, at least in practice, that the set of dominoes is all that large, and
optimizing for speed when it won’t buy us very much just makes the recursion harder to follow.
If you’re really concerned about running time for large domino sets, then you might go with a
version that swaps the chaining domino to the end before removing it, eventually re-
introducing it at the end and swapping it back to its original position, like this:

 2

static bool chainExistsRec(Vector<domino>& dominoes, int start, int end) {
 if (start == end) return true;
 if (dominoes.isEmpty()) return false; // technically optional! know why?

 for (int i = 0; i < dominoes.size(); i++) {
 domino d = dominoes[i];

 swap(dominoes[i], dominoes[dominoes.size() - 1]);
 dominoes.remove(dominoes.size() - 1);

 if ((d.first == start && chainExistsRec(dominoes, d.second, end)) ||
 (d.first != d.second &&
 d.second == start && chainExistsRec(dominoes, d.first, end)))
 return true;
 dominoes += d;
 swap(dominoes[i], dominoes[dominoes.size() - 1]);
 }

 return false;
}

The student truly anxious about wasted work will complain that each of the two solutions
above remove and re-insert the ith domino whether we end up making recursive calls or
not. It’s reasonable to commit to the swap-and-remove trick only after we decide a recursive
call should be made. And as it turns out, if we get information that removing the ith domino set
up a sub-problem that couldn’t be solved recursively, we know the ith domino will never be
part of any solution. That means we don’t need to re-insert it.

static bool chainExistsRecOpt(Vector<domino>& dominoes, int start, int end) {
 if (start == end) return true;
 if (dominoes.isEmpty()) return false; // technically optional! know why?

 for (int i = 0; i < dominoes.size(); i++) {
 domino d = dominoes[i];
 if (d.first == start || d.second == start) {
 // only delete if we're going to recur
 swap(dominoes[i], dominoes[dominoes.size() - 1]); // send d to back
 dominoes.remove(dominoes.size() - 1);
 if ((d.first == start && chainExistsRecOpt(dominoes, d.second, end)) ||
 (d.first != d.second &&
 d.second == start && chainExistsRecOpt(dominoes, d.first, end)))
 return true;
 // got there and d didn't connect us? It never will, so leave it out!
 i--; // but something else took its place (so don't skip it)
 }
 }

 return false;
}

Be clear, however, that the first solution of the three is perfectly acceptable, because I’m more
interested in recursive thinking. Only after you get the recursion working should you analyze
your algorithm and/or profile your code to determine where things are unnecessarily slow.

 3

Discussion Problem 2 Solution: Finding Anagrams

This is the most difficult recursion problem I’ve ever included in a CS106 lecture, section
handout, assignment, or exam. Recursion problems aren’t usually this dense, but there’s value
in examining it anyway, as it pushes the limits of what you think you’re able to understand.

// forward declare second prototype because of mutual recursion
static bool findAnagram(const string& letters, const Lexicon& english,
 Vector<string>& words);

static const int kThresholdLength = 4;
static bool findAnagram(const string& prefix, const string& rest,
 const Lexicon& english, Vector<string>& words) {

 if (!english.containsPrefix(prefix)) return false; // up-communicate failure
 if (english.contains(prefix) &&
 prefix.length() >= kThresholdLength &&
 (rest.empty() || findAnagram(rest, english, words))) {
 words.add(prefix); // add word to the accumulation of other words
 return true; // up-communicate success!
 }

 for (int i = 0; i < rest.length(); i++) {
 string extended = prefix + rest[i];
 string restofrest = rest.substr(0, i) + rest.substr(i + 1);
 if (findAnagram(extended, restofrest, english, words))
 return true;
 }

 return false;
}

static bool findAnagram(const string& letters, const Lexicon& english,
 Vector<string>& words) {
 // because we’re taking the approach where a working prefix is recursively
 // extended, we need to introduce the granddaddy of all prefixes—the empty
 // string—as the initial prefix
 return findAnagram("", letters, english, words);
}

The for loop within the four-argument version is classic recursive backtracking—repeated
attempts to return true, returning false only after you’ve considered all possible ways to
extend the running prefix with some letter in rest. The decision to frame the three-argument
version in terms of a four-argument version is also something we’ve seen a lot of.

The second base case is, in my opinion, the hardest part to understand. It reads as follows:

If the supplied prefix is an English word (and it’s long enough) and we’re either out of
letters or we hear back that the remaining letters can be anagrammed, then we should
return true. Otherwise, we should advance on to the recursion phase to see if the
prefix can be extended to make everything recursively work out.

 4

Lab Problem 1 Solution: The XL Puzzle

The core of my solution—which is pretty much equal to the starter code I gave you plus the
code I present here—uses recursive backtracking to find a word in a Boggle-like game.

I elect to implement memoization, because it speeds things up (more so for the 1-to-50 version,
but still a little for the 1-to-40 version), and because it’s cool. This is also the first time I pass
through a position index so I know what part of the string I’m trying to find. In other
problems, I often create a new, slightly smaller string with something like substr(1), and you
could certainly do that here as well. But since I’m dealing with an original string that’s
hundreds of characters long, it felt a little silly and wasteful to create so many deep copies of
almost-as-long strings with the substr(1) calls when the approach I take here is almost, if not
as, easy.

static bool solutionExists(XLUpDisplay& display, const Grid<char>& grid,
 const string& numbers, int position, const coord& curr,
 Stack<coord>& path, Map<coord, Set<int> >& cache) {

 if (position == numbers.size()) return true;
 if (!grid.inBounds(curr.row, curr.col)) return false;
 if (grid.get(curr.row, curr.col) != numbers[position]) return false;
 if (cache.containsKey(curr) && cache[curr].contains(position)) return false;

 display.provisonallyMove(curr);

 for (Direction dir = NORTH; dir <= WEST; dir++) {
 if (solutionExists(display, grid, numbers, position + 1,
 neighboringCoord(curr, dir), path, cache)) {
 path.push(curr);
 return true;
 }
 }

 display.vetoProvisionalMove(curr);
 display.eraseProvisionalMove(curr);
 cache[curr] += position; // remember failure of (coord, position) combination
 return false;
}

static bool solutionExists(XLUpDisplay& display, const Grid<char>& grid,
 const string& numbers, const coord& curr,
 Stack<coord>& path) {
 Map<coord, Set<int> > cache; // memoization just speeds things up
 return solutionExists(display, grid, numbers, 0, curr, path, cache);
}

