
CS106X Handout 16

Autumn 2012 October 10th, 2012

Assignment 3: Short Recursion Problems

Assignment 3 is going out in two parts: this one, which has you implement a few short
recursion problems and submit them for feedback, and a larger one, which has you
implement the game of Boggle. Both parts are required, but you’re to complete and submit
solutions for the problems described in this handout first, and then move on to the larger
assignment—one that has you implement the game of Boggle—afterwards, which is
discussed in Handout 17.

Solutions to Warm-up Problems Due: Wednesday, October 17th at 8:30 a.m.
Solution to Boggle Due: Friday, October 19th at 8:30 a.m.

For the three warm-up exercises, we specify the function prototype. Your function must
exactly match that prototype (same name, same arguments, same return type). Your
function must use recursion; even if you can come up with an iterative alternative, we insist
on a recursive formulation! Also, note that the Boggle assignment is much more involved
than these warm-up problems, so don’t be left with the impression that you somehow need
a week to complete the warm-ups and just two days for Boggle. In practice, you’ll want to
press through these problems fairly quickly and move on to Boggle pronto. I’m giving you
seven days for this part not because it takes that long to complete them, but because it’s
obnoxious to give you less than a week for anything.

Think of these three problems and the Boggle portion of the assignment as one big
assignment, and consider the completion of these three problems to be a milestone that
needs to be completed by next Wednesday. As opposed to Assignment 1’s checkpoint,
these problems are required and solutions to them need to be submitted.

Late day computation is the sum of the late days used between the two, so ideally you’d
turn in the solutions to the warm-up exercises on time, take at most one late day for Boggle,
and then feel ready to go on the first CS106X midterm, to be held on Tuesday evening,
October 23rd.

 2

Problem 1: Trees

The drawing on the right is a
tree of order 5, where the trunk
of the tree is drawn from the
bottom center of the graphics
window straight up through a
distance of kTrunkLength
pixels. Sitting on top of that
trunk are seven trees of order 4,
each with a base trunk length
that’s 70% of the original. Each
of the order-4 trees is topped off
with seven order-3 trees, which
are themselves comprised of
order-2 trees, and so on.

The seven trees extend from the
top of the tree trunk at relative
angles of ±45, ±30, ±15, and 0 degrees. And even though you can’t see it in the printout, if
you run the sample application, you’ll notice that the inner branches—or more specifically,
all contributions at order 2 and higher—are drawn in kTrunkColor, and the leafy fringe of
the tree is drawn in kLeafColor.

I’ve set up a trees.cpp file that draws an order-0 tree, and then layers an order-1 on top
of it, and then an order-2 tree on top of that, and so forth. You’re to complete the
implementation so that the full sweep of the tree gets drawn. You should rely on the library
method GWindow::drawPolarLine to draw lines at various angles, just as the draw-
coastline example in Handout 14 does.

Once you get this working, adapt your
implementation so that it potentially
draws something like the tree drawn
on the right. The same code used to
generate the first drawing above was
used to generate this one, except that
in the first, each recursive call was
made with probability 1.0, whereas in
the second, each recursive call was
made with probability 0.8.

 3

Problem 2: Vampire Numbers ���

When two positive numbers m and n have the same number of digits and their product p is
a permutation of the digits of m and n combined, we call p a Vampire number (and m and
n are its fangs). For instance, 125460 is a vampire number, because it can be written as 204
times 615. 16758243290880 is also a Vampire number, because it just happens to equal
1982736 times 8452080. Note that the digits present in 1982736 and 8452080 are also
present—with the same frequencies—in 16758243290880.

Using recursive backtracking, implement the isVampireNumber predicate function,
which has the following prototype:

bool isVampireNumber(int number, int& first, int& second);
 

When the provided number is a vampire number, isVampireNumber should return true
and place the two factors in the spaces referenced by first and second. When the
provided number is not a vampire number, isVampireNumber should return false
without concern for what first and second end up referencing.

The starter files provide a test framework to help exercise your implementation. And while
your implementation should generalize to arbitrarily large integers, it only needs to be fast
for numbers with 8 digits or less. Google "vampire numbers" for a list of 4, 6, and 8-
digit vampire numbers so you know what numbers to test. In the rare case where a Vampire
number can be split into fangs multiple ways (e.g. 12054060 is 2004 * 6015 and it’s also
2406 * 6010), your isVampireNumber procedure can surface any single pairing.

Problem 3: Finding Dominosa Solutions

The game of Dominosa presents a grid of small nonnegative integers, perhaps as follows:

There are always two rows of numbers, but the number of columns can, in principle, be any
positive integer.

The goal is to pair horizontally and vertically adjacent numbers so that every number takes
part in some pair, and no two pairs include the same two numbers. As such, one solution to
the above problem would pair everything as follows:

6

1

2

3

5

0

3

2

3

3

6

0

4

1

4

3

2

1

3

5

3

4

6

2

2

2

6

1

2

3

5

0

3

2

3

3

6

0

4

1

4

3

2

1

3

5

3

4

6

2

2

2

 4

Sadly, not all boards can be solved. One small, obvious example is:

Run the dominosa-sample sample application we’ve included in the collection of starter
files. You’ll see that the program generates random 2 x n boards (where you choose the
value of n to be between 9 and 25 inclusive). For each randomly generated board, the
application will animate the recursive backtracking search that determines whether some
such pairing exists. The starter code provides the core of the interactive program, and it also
provides a fully operational DominosaDisplay class that can be used to manage all
aspects of the visualization. Your job is to implement the canSolveBoard function,
which has the following prototype:

bool canSolveBoard(DominosaDisplay& display, Grid<int>& board);

You’ll need to read over the dominosa-graphics.h file to see how the
DominosaDisplay can be used to script the animation, which if properly implemented
will do a superb job of visually confirming that your recursive backtracking algorithm is
working properly.

3

1

1

3

