
CS106X Handout 16 

Autumn 2012 October 10th, 2012 

Assignment 3: Short Recursion Problems 
 
Assignment 3 is going out in two parts: this one, which has you implement a few short 
recursion problems and submit them for feedback, and a larger one, which has you 
implement the game of Boggle.  Both parts are required, but you’re to complete and submit 
solutions for the problems described in this handout first, and then move on to the larger 
assignment—one that has you implement the game of Boggle—afterwards, which is 
discussed in Handout 17. 
 

Solutions to Warm-up Problems Due: Wednesday, October 17th at 8:30 a.m. 
Solution to Boggle Due: Friday, October 19th at 8:30 a.m. 

 
For the three warm-up exercises, we specify the function prototype. Your function must 
exactly match that prototype (same name, same arguments, same return type).  Your 
function must use recursion; even if you can come up with an iterative alternative, we insist 
on a recursive formulation!  Also, note that the Boggle assignment is much more involved 
than these warm-up problems, so don’t be left with the impression that you somehow need 
a week to complete the warm-ups and just two days for Boggle.  In practice, you’ll want to 
press through these problems fairly quickly and move on to Boggle pronto.  I’m giving you 
seven days for this part not because it takes that long to complete them, but because it’s 
obnoxious to give you less than a week for anything. 
 
Think of these three problems and the Boggle portion of the assignment as one big 
assignment, and consider the completion of these three problems to be a milestone that 
needs to be completed by next Wednesday.  As opposed to Assignment 1’s checkpoint, 
these problems are required and solutions to them need to be submitted. 
 
Late day computation is the sum of the late days used between the two, so ideally you’d 
turn in the solutions to the warm-up exercises on time, take at most one late day for Boggle, 
and then feel ready to go on the first CS106X midterm, to be held on Tuesday evening, 
October 23rd. 
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Problem 1: Trees 

The drawing on the right is a 
tree of order 5, where the trunk 
of the tree is drawn from the 
bottom center of the graphics 
window straight up through a 
distance of kTrunkLength 
pixels.  Sitting on top of that 
trunk are seven trees of order 4, 
each with a base trunk length 
that’s 70% of the original.  Each 
of the order-4 trees is topped off 
with seven order-3 trees, which 
are themselves comprised of 
order-2 trees, and so on. 
 
The seven trees extend from the 
top of the tree trunk at relative 
angles of ±45, ±30, ±15, and 0 degrees.  And even though you can’t see it in the printout, if 
you run the sample application, you’ll notice that the inner branches—or more specifically, 
all contributions at order 2 and higher—are drawn in kTrunkColor, and the leafy fringe of 
the tree is drawn in kLeafColor. 
 
I’ve set up a trees.cpp file that draws an order-0 tree, and then layers an order-1 on top 
of it, and then an order-2 tree on top of that, and so forth.  You’re to complete the 
implementation so that the full sweep of the tree gets drawn.  You should rely on the library 
method GWindow::drawPolarLine to draw lines at various angles, just as the draw-
coastline example in Handout 14 does. 
 
Once you get this working, adapt your 
implementation so that it potentially 
draws something like the tree drawn 
on the right.  The same code used to 
generate the first drawing above was 
used to generate this one, except that 
in the first, each recursive call was 
made with probability 1.0, whereas in 
the second, each recursive call was 
made with probability 0.8. 
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Problem 2: Vampire Numbers ��� 

When two positive numbers m and n have the same number of digits and their product p is 
a permutation of the digits of m and n combined, we call p a Vampire number (and m and 
n are its fangs). For instance, 125460 is a vampire number, because it can be written as 204 
times 615. 16758243290880 is also a Vampire number, because it just happens to equal 
1982736 times 8452080. Note that the digits present in 1982736 and 8452080 are also 
present—with the same frequencies—in 16758243290880. 
 
Using recursive backtracking, implement the isVampireNumber predicate function, 
which has the following prototype: 

 
bool isVampireNumber(int number, int& first, int& second); 
  

When the provided number is a vampire number, isVampireNumber should return true 
and place the two factors in the spaces referenced by first and second. When the 
provided number is not a vampire number, isVampireNumber should return false 
without concern for what first and second end up referencing. 
 
The starter files provide a test framework to help exercise your implementation.  And while 
your implementation should generalize to arbitrarily large integers, it only needs to be fast 
for numbers with 8 digits or less.  Google "vampire numbers" for a list of 4, 6, and 8-
digit vampire numbers so you know what numbers to test.  In the rare case where a Vampire 
number can be split into fangs multiple ways (e.g. 12054060 is 2004 * 6015 and it’s also 
2406 * 6010), your isVampireNumber procedure can surface any single pairing. 

 

Problem 3: Finding Dominosa Solutions 

The game of Dominosa presents a grid of small nonnegative integers, perhaps as follows: 
 
 
 
 
 
 
There are always two rows of numbers, but the number of columns can, in principle, be any 
positive integer. 
 
The goal is to pair horizontally and vertically adjacent numbers so that every number takes 
part in some pair, and no two pairs include the same two numbers.  As such, one solution to 
the above problem would pair everything as follows: 
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Sadly, not all boards can be solved.  One small, obvious example is: 
 
 
 
 
 

 
Run the dominosa-sample sample application we’ve included in the collection of starter 
files.  You’ll see that the program generates random 2 x n boards (where you choose the 
value of n to be between 9 and 25 inclusive).  For each randomly generated board, the 
application will animate the recursive backtracking search that determines whether some 
such pairing exists.  The starter code provides the core of the interactive program, and it also 
provides a fully operational DominosaDisplay class that can be used to manage all 
aspects of the visualization.  Your job is to implement the canSolveBoard function, 
which has the following prototype: 
 

bool canSolveBoard(DominosaDisplay& display, Grid<int>& board); 
 

You’ll need to read over the dominosa-graphics.h file to see how the 
DominosaDisplay can be used to script the animation, which if properly implemented 
will do a superb job of visually confirming that your recursive backtracking algorithm is 
working properly. 
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