
CS106X Handout 15

Autumn 2012 October 8th, 2012

Section Handout

Discussion Problem 1: Farey Series, Take II

Let’s circle back to the Farey series we discussed last week, and work on a new, more
interesting implementation of generateFareySeries. (Recall that the Farey series of
order n is the ordered series of all reduced fractions in (0, 1) with denominators of n or less.)
For this version, we are going to rely on the following construction, which is an adaptation
of something known as the Stern-Brocot tree:

Each fraction is

€

nL + nR

dL + dR

, where

€

nL
dL

 is the closest ancestor up and to the left, and

€

nR
dR

 is the

closest ancestor up and to the right.

€

3
7

, for example, is produced from

€

2
5

 (first ancestor up

and to the left) and

€

1
2

 (first ancestor up and to the right.)

This manner of enumerating fractions has three interesting properties (stated without proof):

• each fraction generated by the construction is in reduced form,
• every single reduced fraction between 0 and 1 will eventually be formed, and

•

€

nL
dL

 is always less than

€

nL + nR

dL + dR

, and

€

nL + nR

dL + dR

 is always less than

€

nR
dR

.

€

0
1

€

1
1

€

1
2

€

1
3

€

2
3

€

1
4

€

2
5

€

3
5

€

3
4

€

1
5

€

2
7

€

3
8

€

3
7

€

4
7

€

5
8

€

5
7

€

4
5

 2

By blindly trusting the construction and the three properties mentioned above, provide a
recursive implementation of generateFareySeries that succeeds in populating a
Vector<fraction> with the Farey series of order n (where n is supplied) and does so in
time that’s proportional to the length of the series being generated.

generateFareySeries will need to declare the Vector<fraction> and pass it by
reference to a helper function that actually does the recursion and populates the vector in such
a way that add is the only dynamic method you ever call, and the fractions are laid down in
increasing order.

static Vector<fraction> generateFareySeries(int n);

Discussion Problem 2: Twiddles

Two English words are considered twiddles if the letters at each position are either the same,
neighboring letters, or next-to-neighboring letters. For instance, sparks and snarls are
twiddles. Their second and second-to-last characters are different, but p is just two past n in
the alphabet, and k comes just before l. A more dramatic example: craggy and eschew.
They have no letters in common, but craggy’s c, r, a, g, g, and y are -2, -1, -2, -1, 2, and
2 away from the e, s, c, h, e, and w in eschew. And just to be clear, a and z are not next to
each other in the alphabet—there’s no wrapping around at all.

Write a recursive procedure called listTwiddles, which accepts a string str and a
reference to an English language Lexicon, and prints out all those English words that just
happen to be str’s twiddles. You’ll probably want to write a wrapper function. (Note: any
word is considered to be a twiddle of itself, so it’s okay to print it.)

static void listTwiddles(const string& str, const Lexicon& lex);

Discussion Problem 3: Letter Rectangles and Words

You are given a large collection of short, fat rectangles, where each half of each rectangle
contains a single letter, as with:

Given the option to rearrange, ignore, and rotate pieces, you’re charged with the task of
identifying all of the even-length English words that can be formed by chaining together some
subset of the pieces (where some may have been rotated). For the above set of pieces, the list
of printed words should surely include "plum", since the third-to-last rectangle can be placed
after the second-to-last rectangle (rotated so that the 'p' precede the 'l') to form "plum".
Given the above set of rectangles, you should also identify fun words like "allele", "lark",
"muscle", "scales", and "umbrella", in addition to quite a few others. Note that each
rectangle can be used at most one time per word, so that words like "sees" and "museum"
can’t be formed.

l e s c r k s e l e u m l p a l b r

 3

Collectively implement the recursive function gatherWords, which accepts references to a
Vector<string> called rects (where each string is two characters), a Lexicon constant
called english, and an initially empty Lexicon called words, and populates words with
the collection of those words, and only those words, that can be formed using the rectangles in
rects. You should implement this using a wrapper function.

static void gatherWords(const Vector<string>& rects,
 const Lexicon& english, Lexicon& words);

Lab Problem 1: Making Change

For this problem, implement the following function:

static int countWaysToMakeChange(const Vector<int>& denominations, int amount)

The countWaysToMakeChange routine recursively computes the number of ways to make
change for the specified amount given an unlimited number of coins of the specified
denominations. Download the lab starter code to work with the small test harness to exercise
your implementation. The test harness includes the following main function:

int main() {
 Vector<int> denominations;
 denominations += 25, 10, 5;
 cout << "Number of ways to make change for a dollar using " << denominations
 << ": " << countWaysToMakeChange(denominations, 100) << endl;
 denominations += 1;
 cout << "Number of ways to make change for a dollar using " << denominations
 << ": " << countWaysToMakeChange(denominations, 100) << endl;
 return 0;
}

Once properly implemented, the above main function should output the following:

Number of ways to make change for a dollar using {25, 10, 5}: 29
Number of ways to make change for a dollar using {25, 10, 5, 1}: 242

Of course, you’re free to cannibalize the test harness in any way you’d like if it’ll help confirm
your implementation is solid.

