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Assignment 2: ADT Client Applications 
Inspiration credit goes out to Mike Cleron from Google (random sentence generator) and Owen Astrachan 

from Duke University (word ladder).  Jerry developed the maze generator assignment. 

Assignment handout by Julie Zelenski and Jerry Cain. 
 
Now that you've ingested the CS106 container classes, it's time to put these objects to use.  
In your role as client, the low-level details have already been dealt with and locked away 
as top secret so you can focus your attention on solving more interesting problems.  Having 
a library of well-designed and debugged classes vastly extends the range of tasks you can 
easily take on.  Your next assignment has you write three short client programs that heavily 
leverage the standard classes to do nifty things.  The tasks may sound a little daunting at 
first, but given the power tools in your arsenal, each requires less than a hundred lines of 
code.  Let's hear it for abstraction! 
 
The assignment has several purposes: 
 

1. To more fully explore the idea of using objects. 
2. To stress the notion of abstraction as a mechanism for managing data and providing 

functionality without revealing the internal representation. 
3. To become more familiar with C++ class templates. 
4. To gain practice with classic data structures such as the queue, vector, set, lexicon, 

and map. 
 

Due: Thursday, October 11th at 8:30 a.m. 

 

Part I: Word Ladders [Prose by Julie Zelenski] 

Leveraging the vector, queue, and lexicon abstractions, you'll find yourself well equipped 
to write a program to build word ladders. A word ladder is a connection from one word to 
another formed by changing one letter at a time with the constraint that at each step the 
sequence of letters still forms a valid word. For example, here is a word ladder connecting 
"code" to "data". 
 

    code → cade → cate → date → data  
You will ask the user to enter a start and a destination word and then your program is to 
find a word ladder between them if one exists. By using an algorithm known as breadth-
first search, you are guaranteed to find the shortest such sequence.  The user can continue 
to request other word ladders until they are done.  
 
Here is some sample output of the word ladder program: 
 

 Welcome to the CS106 word ladder application! 
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 Please enter the source word [return to quit]: work 
 Please enter the destination word [return to quit]: play 
 Found ladder: work fork form foam flam flay play 
 
 Please enter the source word [return to quit]: sleep 
 Please enter the destination word [return to quit]: awake 
 Found ladder: sleep sheep sheen shewn shawn sharn share sware aware awake 
 
 Please enter the source word [return to quit]: angel 
 Please enter the destination word [return to quit]: devil 
 Found ladder: angel anger agger egger eager lager leger lever level devel devil 
 

Implementation Overview 

Finding a word ladder is a specific instance of a shortest path problem, where the 
challenge is to find the shortest path from a start position to a target one. Shortest path 
problems come up in a variety of situations—packet routing, robot motion planning, social 
networks, gene mutation, and travel. One approach for finding a shortest path uses a 
classic algorithm known as breadth-first search. A breadth-first search stretches outward 
from the start in a radial fashion until it hits the goal.  For word ladder, this means first 
examining those ladders that represent "one hop" (i.e. one changed letter) from the start. If 
any of these reach the destination, we're done.  If not, the search now examines all ladders 
that add one more hop (i.e. two changed letters). By expanding the search at each step, all 
one-hop ladders are examined before two-hops, and three-hop ladders only considered if 
none of the one-hop nor two-hop ladders worked out, thus the algorithm is guaranteed to 
find the shortest successful ladder.  
 
Breadth-first is typically implemented using a queue. The queue is used to store partial 
ladders that represent remaining possibilities worthy of exploring.  The ladders are 
enqueued in order of increasing length. The first elements enqueued are all the one-hop 
ladders, followed by the two-hop ladders, and so on. Due to the FIFO nature of the queue, 
ladders will be dequeued in order of increasing length. The algorithm operates by 
dequeueing the front ladder from the queue and determining if it reaches the goal. If it 
does, you have a complete ladder, and it is the shortest. If not, you take that partial ladder 
and extend it to reach words that are one more hop away, and enqueue those extended 
ladders onto the queue to be examined later. If you exhaust the queue of possibilities 
without ever finding a word ladder, you can assume no such ladder exists.  
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Let's make the algorithm a bit more concrete with some pseudo-code: 
 

create initial ladder (just start word) and enqueue it 
 while queue is not empty 
      dequeue first ladder from queue (this is shortest partial ladder) 
      if top word of this ladder is the destination word 
       return completed ladder 
  else for each word in lexicon that differs by one char from top word  
         and has not already been used in some other ladder 
         create copy of partial ladder 
             extend this ladder by pushing new word on top 
            enqueue this ladder at end of queue 

 
A few of these tasks deserve a bit more explanation.  You will need to find all the words 
that differ by one letter from a given word.  A simple loop can change the first letter to each 
of the other letters in the alphabet and ask the lexicon if that transformation results in a 
valid word. Repeat that for each letter position in the given word and you will have 
discovered all the words that are one letter away. 
 
Another issue that is a bit subtle is the restriction that you not re-use words that have been 
included in a previous ladder. This is an optimization that avoids exploring redundant 
paths.  For example, if you have previously tried the ladder cat→cot→cog and are now 
processing cat→cot→con, you would find the word cog one letter away from con, so 
looks like a potential candidate to extend this ladder.  However, cog has already been 
reached in an earlier (and thus shorter) ladder, and there is no point in re-considering it in a 
longer ladder.  The simplest way to enforce this is to keep track of the words that have 
been used in any ladder (using yet another lexicon!) and ignore those words when they 
come up again.  This technique is also necessary to avoid getting trapped in an infinite 
loop building a circular ladder such as cat→cot→cog→bog→bat→cat. 
  
Since you need linear access to all of the items in a word ladder when time comes to print 
it, it makes sense to model a word ladder using a Vector<string>.  And remember that 
you can make a copy of a Vector<string> by just assigning it to be equal to another via 
traditional assignment (i.e. Vector<string> wordLadderClone = wordLadder). 
  
A few implementation hints 

Again, it's all about leveraging the class libraries—you'll find your job is just to coordinate 
the activities of various objects to do the search.   

 
o The linear, random-access collection managed by a Vector is ideal for storing a 

word ladder. 
o A Queue object is a FIFO collection that is just what's needed to track those partial 

ladders.  The ladders are enqueued (and thus dequeued) in order of length so as to 
find the shortest option first. 

o As a minor detail, it doesn't matter if the start and destination word are contained in 
the lexicon or not. The sample application requires that the endpoints be English 
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words, but you can let them be anything you want if you’d rather be more flexible.  
(The connectors need to be legitimate English words, though.) 

 
Word ladder task breakdown 

This program requires just over a page of code, but it still benefits from a step-by-step 
development plan to keep things moving along. 
 

o Task 1— Try out the demo program. Play with the demo just for fun and to see how 
it works from a user’s perspective.  

o Task 2— Get familiar with our provided classes. You've seen Vector and Queue in 
lecture, but Lexicon is new to you.  The reader outlines everything you need to 
know about the Lexicon, so make sure you skim over Chapter 5 and the part 
about how to use the Lexicon class (it’s really very easy.)  

o Task 3— Conceptualize algorithm and design your data structure. Be sure you 
understand the breadth-first algorithm and what the various data types you will be 
using. Note that since the items in the Queue are Vectors, you have a nested 
template here— be careful! 

o Task 4— Dictionary handling. Set up a Lexicon object with the large dictionary 
read from our data file. Write a function that will iteratively construct strings that are 
one letter different from a given word and run them by the dictionary to determine 
which strings are words.  Why not add some testing code that lets the user enter a 
word and prints a list of all words that are one letter different so you can verify this 
is working? 

o Task 5— Implement breadth-first search. Now you're ready for the meaty part. The 
code is not long, but it is dense and all those templates will conspire to trip you up. 
We recommend writing some test code to set up a small dictionary (with just ten or 
so words) to make it easier for you to test and trace your algorithm while you are in 
development. Do your stress tests using the large dictionary only after you know it 
works in the small test environment. 
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Part II: Generating Mazes [prose by Jerry] 

For the final task, you’re to write a program that animates the construction of a bona fide 
maze.  Here’s an example of one your program might generate: 
 

 
 
The goal is to create an n by n maze so there’s one unique path from the upper left corner 
to the lower right one.  Our algorithm for generating such mazes is remarkably simple to 
explain, and given the services of the Set and the Vector, is almost as easy to implement.  
(By the way, it’s not really our algorithm—it’s a simplified version of Kruskal’s minimal 
spanning tree algorithm, which we’ll more formally discuss later on when we talk about 
graphs.)  
 
The basic idea has you start with a maze where all possible walls are present, as with: 
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(Our example here happens to involve a 10 x 10 grid, but it generalizes to any dimension.)   
All walls are present, and the grid is divided into 102 = 100 chambers.  With each iteration, 
of the algorithm considers a randomly selected wall that’s not been considered before, and 
removes that wall if and only if it separates two chambers.  The first randomly selected wall 
can always be removed, because all locations are initially their own chambers.  That first 
wall might be the one that’s now missing in the following: 
 

 
 
After a several more iterations, you’ll see a good number of randomly selected walls have 
been removed: 

  
The working maze pictured above includes at a few walls that should not be removed, 
because the cells on either side of each of them are part of the same chamber.  I’ve gone 
ahead and circled some of them here (save for the circles, it’s the same picture you see 
above): 
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All walls are considered exactly once in some random order, and if as you consider each 
wall you notice that it separates two different chambers, you merge the two into one by 
removing the wall.  Initially, there are 100 chambers, so eventually 99 walls are erased to 
leave one big, scary maze, as with: 
 

  
 
Notice the three walls I circled in the previous snapshot are still present.  We can’t tell from 
the photos when they were considered, but we shouldn’t be surprised they’re still there in 
the final maze. 
 
Maze Generation Pseudo-code 

Here is a high-level description of a reasonable solution: 
 

choose a dimension 
generate all walls, draw them, and shuffle them 
generate all chambers, where each chamber includes one unique cell 
foreach wall in randomly-ordered-walls 
 if wall separates two chambers 
  remove wall 
   

We’re going to let you tackle this one all by yourself, relying on the pictures and the 
pseudo-code above to get through it.  Here are a few other details worth mentioning: 
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o All of the graphics routines are documented in maze-graphics.h.  Everything 
provided is pretty straightforward, but if you want to make changes to these files, 
then go for it. 

o There’s a small header file called maze-types.h, which defines cell and wall 
types.  You should use these definitions.  Note that I’ve already defined operator< 
for both cell and wall. 

o Our solution uses the Set (to help model a chamber) and the Vector (to maintain 
an ordered list of walls and chambers).  In particular, we didn’t use a Grid, so you 
shouldn’t be worried if you don’t use one either. 

o You shouldn’t need to modify anything other that maze-generator.cpp.  The other 
.cpp files and all interface files should be fine as.  If you do change them, then be 
sure to submit them and detail how you changed them so we know what to look for. 

 
Requirements and hints for all programs 

o The programs will be a hybrid of the procedural and object-oriented paradigms.  
You will be creating and messaging lots of objects, but will write your code as a 
procedural algorithm, starting with the main function and decomposed into 
ordinary top-level functions. 

o Work extra hard to ensure that your template types are always properly specialized 
and that all types match.  Using Vector without specialization just won't fly, and a 
Vector<int> is not the same thing as a Vector<double>.  The error messages 
you receive when you have mismatches can be farcically mysterious and hard to 
interpret.  Look carefully at the types and see if you can spot where they don't quite 
match.  Also remember that a nested template type requires a space between the 
two closing angle brackets, e.g. Vector<Vector<int> >.  If you're stuck on 
some template syntax, bring your code by the LaIR, to discussion section, or to 
office hours, and we can help you sort it out.  

 
Part III: Random Sentence Generator [prose by of Julie Zelenski] 

Over the past two or three decades, computers have revolutionized student life.  In 
addition to providing entertainment and distraction, computers also have also facilitated all 
sorts of student work.  One important area of student labor that has been painfully 
neglected is the task of filling up space in papers, Ph.D. dissertations, extension requests, 
etc. with important sounding and somewhat grammatically correct random sequences.   
Neglected, that is, until now. 
 
The Random Sentence Generator is a marvelous piece of technology that creates random 
sentences from a structure known as a context-free grammar.  A grammar is a construct 
describing the various combinations of words that can be used to form valid sentences.  
There are profoundly useful grammars available to generate extension requests, generic 
Star Trek plots, your average James Bond movie, "Dear John" letters, and more.  You can 
even create your own grammar!  Fun for the whole family!  Let’s show you the value of this 
practical and wonderful tool: 
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• Tactic #1: Wear down the TA's patience. 

I need an extension because I had to go to an alligator wrestling meet, and then, just when my 

mojo was getting back on its feet, I just didn't feel like working, and, well I'm a little 

embarrassed about this, but I had to practice for the Winter Olympics, and on top of that my 

roommate ate my disk, and right about then well, it's all a haze, and then my dorm burned 

down, and just then I had tons of midterms and tons of papers, and right about then I lost a lot 

of money on the four-square semi-finals, oh, and then I had recurring dreams about my notes, 

and just then I forgot how to write, and right about then my dog ate my dreams, and just then I 

had to practice for an intramural monster truck meet, oh, and then the bookstore was out of 

erasers, and on top of that my roommate ate my sense of purpose, and then get this, the 

programming language was inadequately abstract. 

• Tactic #2: Plead innocence. 
I need an extension because I forgot it would require work and then I didn’t know I was in this 

class. 

• Tactic #3: Honesty. 
I need an extension because I just didn't feel like working. 

What is a grammar? 

A grammar is a set of rules for some language, be it English, Java, C++, or something you 
just invent for fun.   If you continue to study computer science, you will learn much more 
about languages and grammars in a formal sense.  For now, we will introduce to you a 
particular kind of grammar called a context-free grammar (CFG).   
 
Here is an example of a simple CFG for generating poems: 
 

<start>  
1 
The <object> <verb> tonight. 
 
<object> 
3 
waves 
big yellow flowers 
slugs 
 
<verb> 
3 
sigh <adverb> 
portend like <object> 
die <adverb> 
 
<adverb> 
2 
warily  
grumpily 

 
According to this grammar, two syntactically valid poems are "The big yellow 
flowers sigh warily tonight." and "The slugs portend like waves 
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tonight."  Essentially, the strings in brackets (<>) are variables that expand according to 
the rules in the grammar. 
 
More precisely, each string in brackets is known as a nonterminal.  A nonterminal is a 
placeholder that will expand to another sequence of words when generating a poem.  In 
contrast, a terminal is a normal word that is not changed to anything else when expanding 
the grammar.  The name terminal is supposed to conjure up the image that it’s something 
of a dead end—that no further expansion is possible. 
 
A definition consists of a nonterminal and a list of possible productions (or expansions). 
There will always be at least one and potentially several productions for each nonterminal.  
A production is just a text string of words, some of which themselves may be non-
terminals.  A production can be the empty string, which makes it possible for a nonterminal 
to evaporate into nothingness.  An entire definition is summarized within a grammar text 
file as: 
 

<verb>      ⇐ the first line names the nonterminal and is delimited by < and > 
3        ⇐ the second line is always the number of possible expansions 
sigh <adverb>    ⇐ the third line is the first possible expansion 
portend like <object> ⇐          followed by another expansion if there is a second one 
die <adverb>    ⇐                followed by another expansion if there is a third one, etc 
        ⇐ for readability, there’s a blank line after each definition, including the last one 
 

You always begin random sentence generation with the single non-terminal <start> as 
the working string, and iteratively search for the first nonterminal1 and replace it with any 
one of its possible expansions (which may and often will include its own nonterminals).  
Repeat the process over and over until all nonterminals are gone. 
 

<start> 
The <object> <verb> tonight.    // expand <start> 
The big yellow flowers <verb> tonight.   // expand <object> 
The big yellow flowers sigh <adverb> tonight. // expand <verb> 
The big yellow flowers sigh warily tonight.  // expand <adverb> 

 
Since we are choosing productions at random, a second generation would almost certainly 
produce a different sentence.   
 
Your program should repeatedly prompt the user for a grammar file (understood to be the 
grammars subdirectory), read in the grammar, and generate three random sentences.  
Only when the user hits return without actually typing in anything should you end the 
program.   
 

                                            
1 This problem could also be solved using recursion, but we ask that you don’t solve this recursively, but 

instead solve it using iteration. 
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You may assume all grammar files are well formed, and you needn’t worry about word 
wrap as you generate and print out über-long sentences.  Using the sample application as a 
guide, you are to make all design and implementation decisions.  
 
Some simplifying assumptions: 
 

o You may assume that the grammar files are properly formatted, and that the 
grammars themselves are well formed.  All grammars will include a "<start>" 
nonterminal, and all nonterminals will expand to one or more definitions (which 
themselves may and often will include other nonterminals). 

o If you have the interest and energy, invent a new grammar or two.  If you think 
others would like them, send them to me at jerry@cs.stanford.edu and I’ll 
post them to the course web site. 

 
 
 


