
CS106X Handout 03

Autumn 2012 September 24th, 2012

Getting Started
Handout written by Julie Zelenski, Mehran Sahami, Robert Plummer, and Jerry Cain.

After today’s lecture, you should run home and read all of Chapters 1 through 4 on your
own. We won't teach the basic syntax and constructs. We’ll just highlight some of the
common programming idioms and C++ idiosyncrasies.

This handout contains a smattering of facts about the C++ language, mentions some of the
basics, and points out a few things to avoid.

Most programs have the same component sections
—A comment explaining what the program does

This is a good programming practice that makes your code more accessible to the
reader (who might be you!)

—Library inclusions
These #include statements let the compiler know what libraries you want to use
functions from. Many standard libraries come with all C++ compilers. You will
also use libraries you write yourself, or in this course, libraries that we provide, such
as simpio.h and hashmap.h.

—Constant definitions
Global constants are declared as global variables, but decorated with the const
keyword, as with const double CHANCE_OF_RAIN = 0.90;. Global variables
are forbidden, but global constants aren’t variable in that they can be changed
during program execution, so global constants are always permitted.

—Function prototypes
One common style is to write the code for functions after the main program. This
means that functions are often called before the code appears. Function prototypes
let the compiler compile the calls correctly and make sure they are consistent with
the function code.

—Main program
The main program is actually a function called main. A prototype for this function
is not required. Execution of your program begins with the first line of the main
function. The function main takes no arguments and returns an int (as shown
below); typically we return 0 to indicate the program exited cleanly.

—Function definitions
All programs worth writing involve breaking the code into functions, so that no part
of the program manages too many details. Good decomposition leads to code that
is clear, logical, and easy to understand.

Variables must be declared before they’re used
Variables are local to the function in which they are declared. We will never use global
variables, and you won’t either. In C++, local variables can be declared anywhere with

 2

a block of statements. The scope of a local variable extends to the end of the enclosing
block.

All values have a "type", and every variable has a declared type
C++ has standard data types for storing integers, floating point numbers, Booleans, and
characters (see textbook for details). The standard C++ string library adds string.

Using cout for output
All primitive types can be inserted into a stream using the << operator. Each value will be
output using default formatting unless you change the stream state using manipulators. See
the table of stream manipulators in the text. With regard to streams (for output), memorize
the basics; learn the more obscure features on a need-to-know basis.

The simpio.h functions for reading input
The getLine, getInteger, and getReal functions are simple-to-use routines that read
one piece of data from the user. These are CS106-specific functions, not standard C++, but
save you from having to deal with the messy features of input until later. We rarely read
from cin. We rely on functions provided by the simpio library.

Expressions evaluate using rules of precedence and associativity
In the expression a + b * c, the multiplication is performed first because of the
precedence of multiplication over addition (just like you're used to in algebra), so the
expression would evaluate as: a + (b * c). In the expression: a - b – c, the b is
subtracted from the a first because of associativity. In general, put the extra parentheses in.

Shorthand for assigning multiple variables
You can write x = y = z = 0 in C++, causing x, y, and z to all be assigned the value
0. The reason such a statement works is because an assignment is an expression that
evaluates to the result of the assignment, and the assignment operator associates to the
right.

In expressions of mixed types, values are promoted to the richer type
For example, if an int score is multiplied by a double curve, the value of the int is
converted to type double before the multiplication. This does not affect the value of
score, just the outcome of the multiplication.

Assignment does a type conversion if necessary
Consider the following code:

int i = 2.9;

This code assigns 2 to i since the type of the value being assigned is converted to the type
of the variable that it is being assigned to. Note that floating point numbers (real values,
such as type double) are converted to ints by truncating the fractional component (e.g.,
2.9 becomes 2). Truncation and rounding are two different things.

 3

Integer division truncates
The expression 29/10 evaluates to 2, since both values involved in the division are
integers. If you really want a fractional result from the division, change the expression so at
least one of the operands is of floating-point type—either by appending a ".0" to an integer
constant expression (2 becomes 2.0) or using a typecast to type double.

C++ has arithmetic shorthand operators
The statements x++ and --x are shorthand expressions for incrementing or decrementing
the value of the variable x by 1, respectively. Where the ++ and -- are placed with
respect to the variable name (i.e., before or after the variable name) makes a difference in
how results from that operation can be used. Importantly, be sure you understand the
meaning of the following representative expressions that use some of the shorthand
notations:

y = a + x++;
z = --x % a;
salary *= 2;

Logical operators use "short-circuit" evaluation
The connectives representing logical "and" (denoted &&) and logical "or" (denoted ||)
evaluate left-to-right and stop as soon as the truth of the overall expression can be
determined (this latter phenomena is know as "short-circuit" evaluation). Such evaluation
ordering can be taken advantage of to compute quick tests before the more lengthy ones,
guard against division by zero, etc. For example, the expression below will successfully
guard against trying to evaluate x % y if y has the value 0.

if (y != 0 && x % y == 0) {
 x /= y;
}

Don't confuse Boolean logic with bitwise operators
If you mistakenly use & (bitwise "and") where you meant && (logical "and") the result might
be a valid expression and compile (surprise!) but not do what you want. The single & and |
are bitwise operators, the double && and || are logical (Boolean) operators.

Any non-zero expression is true
C++ has a Boolean type with values true and false, but in fact, the language considers
any non-zero expression to be true, and any zero expression to be false. This means it is
possible to just write:

if (x) {

Which means the same thing as:

if (x != 0) {

Pay close attention to this until it becomes second nature. Something that is wrong often
compiles but produces unexpected results. Writing = (assignment operator) when you
meant == (equals operator) is a common mistake.

 4

if and switch are conditionals
The test in an if statement must always be enclosed in parenthesis. A sample if statement
is shown below:

if (time != 0) {
 rate = distance / time;
}

The if statement has an optional else part (which only evaluates if the expression in the
statement is false). You can string if/elses together in a form known as a "cascading
if":

if (rank == 1) {
 cout << "Gold medal." << endl;
 points = 10;
} else if (rank == 2) {
 cout << "Silver medal." << endl;
 points = 5;
} else if (rank == 3) {
 cout << "Bronze medal." << endl;
 points = 2;
} else {
 cout << "Consolation prize." << endl;
 points = 1;
}

A switch statement can be used to route control to different cases based on matching an
integer to specific values. Re-writing the above code using switch would look like:

switch (rank) {
 case 1:
 cout << "Gold medal." << endl;
 points = 10;
 break;
 case 2:
 cout << "Silver medal." << endl;
 points = 5;
 break;
 case 3:
 cout << "Bronze medal." << endl;
 points = 3;
 break;
 default:
 cout << "Consolation prize." << endl;
 points = 1;
 break;
 }

Be sure you understand why the break is there in each case and what happens if you
leave it out! The use of break is very important in switch statements.

The switch does not allow for ranges or more complicated tests in the cases. The
following code cannot be converted to a switch, since we are testing for ranges of values
and the variable involved is of type double:

double score;
string letterGrade;

 5

score = getReal();
if (score > 90)
 letterGrade = "A";
else if (score > 80)
 letterGrade = "B";
else if (score > 70)
 letterGrade = "C";
else
 letterGrade = "You don't want to know.";

Loop constructs available in C++ are for and while and do-while
The for loop is most commonly used to iterate forward through a sequence of items.
Changing the initialization or increment portion of the loop allows you to create loops that
count down (rather than up), loops by that increment by 2 (or some other value) after each
iteration through the loop, etc.

A common for loop pattern is shown below:

sum = 0;
for (int i = 0; i < 10; i++) {
 sum += i;
}

We can also rewrite the for loop above using a while loop instead as follows:

sum = 0;
i = 0;
while (i < 10) {
 sum += i;
 i++;
}

In general, any for loop can be re-written as a while loop and vice versa. It is usually
preferable to use a for loop for straightforward iterative tasks and while loops for those of
indefinite (not to be confused with infinite) iteration.

A do-while loop is similar to an ordinary while loop except that the test is performed at
the bottom of the loop rather than the top. It is rarely used, except in those situations where
you are sure the loop body needs to execute at least once.

do {
 response = getInteger("Your answer? ");
} while (response != correctAnswer);

Solving the loop-and-a-half problem with while(true) and break
When trying to solve a problem of the form:

// get a value from user
while (value != sentinelValue) {
 // process the value
 // get a value from user
}

it is better to write:

 6

while (true) {
 // get a value from user
 if (value == sentinel) break;
 // process the value
 }

The idea here is that we always want to execute the first half of the while loop, and only
stop iterating if a particular condition is met. This basic form is known as the loop-and-a-
half problem. The break statement is used to "break out" of the loop in the middle. Note
that the break statement can be used to exit any of the three loop types we've discussed
above. If loops are nested, a break only exits the innermost loop. As an important
consideration for good programming style, it is best to only use at most one break
statement in any given loop (to make it clear at a single point what the condition is for
exiting the loop).

