
CS106X Handout 02

Autumn 2012 September 24th, 2012

CS106X Course Syllabus

I don’t even try to promise a day-by-day lecture schedule, since even the most disciplined
and organized of instructors have a difficult time staying on track, and I’m far outside the
set of disciplined and organized instructors. I do, however, think it’s reasonable to give a
sense of what topics we’ll be covering, and how much time we’ll be dedicating to each of
them.

Week 1: Basic C++ syntax, control idioms, program structure, strings, and libraries.

Beyond the introductory remarks, the week will feel like a transition course
designed to get Java programmers to emulate their craft using C++ instead. The
overarching lesson here is that C++, like Java and most other programming
languages, has ints, floats, for loops, switch statements, return values,
functions, classes, and methods.

Week 2: Templates, abstract data types, containers, vectors, stacks, queues, sets,

maps, scanners, and lexicons. You’re already familiar with templates and
containers, even if you didn’t call them that when you took AP Java or
CS106A. Containers are data structures that are designed to store other data
structures, and you already have plenty of practice with them—specifically, the
Java ArrayList and the HashMap. C++—Stanford’s version of it, anyway—
antes up its own versions of the ArrayList and HashMap (the Vector and
Map, respectively). We’ll invest a lot of energy teaching the new container
classes and the metaphors you subscribe to when coding with them (a stack of
cafeteria plates, a queue of customers at Harrods in London, etc.)

Week 3: Recursion, drawing examples from mathematics, graphics, and language.

Recursion didn’t originate with computer science or programming.
Mathematics gets all the credit there. But virtually all modern programming
languages support recursion, which is a function’s ability to either directly or
eventually call itself. Many very practical programming problems are
inherently recursive, and the ability to code using recursion makes it easier to
exploit its recursive structure.

Week 4: Advanced recursion, recursive backtracking, and memoization. Recursion is

a difficult enough topic for newcomers—even those as talented and motivated
as the typical CS106X student—that I want to spend a good stretch of time
providing increasingly more sophisticated examples from a variety of
application domains Recursive backtracking is a form of recursion where you
recognize one particular recursive call turned out to be a dead end of sorts, but
that some other recursive call could pan out with something useful.
Memoization is a technique used when there are a finite number of recursive

 2

sub-problems that will otherwise be repeatedly called an exponential number
of times unless some form of caching (aka memoization) is used.

Week 5: Memory, Memory Addresses, Pointers, and Dynamic Memory Allocation.

One of the most powerful features of the C++ language—and admittedly, the
feature that makes C++ a terribly difficult language to master—is that it grants
you the ability to share the physical memory locations of your data with other
functions and to manually manage dynamically allocated computer memory.
We’ll discuss a new type of variable—the pointer—that’s designed to store the
location of other figures in memory, whether those figures are integers, arrays,
ArrayLists, records, or even other pointers. For the next several weeks, we
focus less on application-focused programming and more so on the use of
pointers and advanced memory management to implement all of the ADTs
you’ve come to use and appreciate since Week 2.

Week 6: Linked Lists and Their Variations. You’re all very familiar with the arrays and

the Vector—so familiar, in fact, that you should recognize that insertion and
deletion from the front can be a very time consuming operation if the size of
the array or Vector is large. The Queue’s dequeue operation, which is
supposed to be fast regardless of queue length, couldn’t possibly be backed by
anything that’s truly array-like. The linked list makes a few sacrifices in the
name of fast insertion at and deletion from both the front and the back of the
sequence. We’ll see the linked list and a few of its variations as the most basic
linked structure in the series of linked structures we learn about over the
remainder of the course, and we’ll understand why it (and not anything array-
like) backs the Queue.

Week 7: Hash Tables and Trees. Once you’re fluent in the construction and

manipulation of the basic linked list, we’ll be in a position to build and talk
about more advanced linked structures like hash tables, binary search trees,
tries, and skip lists. The hash table is the backbone of your Map container, the
binary search tree is more or less the core of your Set, and the trie is a
simplified version of what backs your Lexicon. (The skip list is a fairly recent
randomized data structure that could back the Set if we opted for it over the
BST.) We could spend 40 lectures talking about data structures. I’ll try to get
as much of those 40 lectures into the two or three I have.

Week 8: Graphs and Fundamental Graph Algorithms. The graph is the Holy Grail of all

linked data structures, allowing us to model generic peer-to-peer systems like
road, rail, and airline systems, computer intranets, social networks, and the
WWW. There are a number of fascinating and fairly well-understood graph
algorithms (Dijkstra’s shortest path algorithm is the most important we’ll
study), as well as a number of other algorithms that we’re not 100%
convinced are the most efficient ones possible. We’ll study as many of them as
time permits, and without stealing the thunder of later theory classes, explain

 3

why some algorithms appear to be the best we can do even though they’re
exceptionally slow for large graphs.

Week 9: C++ Interfaces, Inheritance, and Class Hierarchies. There are a good number

of scenarios where multiple classes are intentionally implemented to the same
interface. Inheritance is a unique form of sub-typing and code sharing that
recognizes common implementation patterns across multiple classes and works
to unify them so their public interfaces overlap as much as possible. You’ve
already seen and benefited from inheritance to some degree if you’ve done any
significant coding in Java, as all Java classes extend the core Object class, and
therefore respond to a small core of methods like equals and hashcode.
(And KarelProgram, GraphicsProgram, and ConsoleProgram all
extended Program in CS106A.) We’ll extend that basic understanding and
construct collections of related classes that exhibit even more aggressive
sharing of interface and implementation, and I’ll demonstrate how fundamental
inheritance is to large, scalable, object-oriented systems.

Week 10: Modern Programming Languages. C++ is a great systems language, and it’s

arguably the de facto standard for implementing core OS devices and services
like device drivers, process control, synchronization, and compilers. But more
and more applications are being built in younger languages like Python, PHP,
JavaScript, Ruby, and JavaScript. I’ll select one or two of these and present a
cursory introduction to them over the course of three lightweight lectures, if for
no other reason than to familiarize you with the syntax and demonstrate that
programming and software development is very much the same regardless of
the programming language you speak. (In all likelihood, I’ll have at least one
guest lecturer this week: a colleague of mine at Facebook is a JavaScript expert
and has guest lectured in the past, and he understands JavaScript better than
most browsers do.)

