
CS106X Handout 01

Autumn 2012 September 24th, 2012

CS106X Course Information

Instructor: Jerry Cain
E-Mail: jerry@cs.stanford.edu
Cell phone: (415) 205-2242
Office: Gates 192
Office hours: Mondays, Wednesdays, and Fridays, 10:15 a.m. – noon, and by appointment

Don’t take the minimal office hour offerings as a signal that I don’t want you to
drop by. If the provided times aren’t good and you’d like to see me, schedule
an appointment, or telephone me at the above cell phone number. I’m more
than happy to meet or speak unless I’m under my own deadline.

Website: http://cs106x.stanford.edu
Facebook: http://www.facebook.com/cs106x
Twitter: http://www.twitter.com/cs106x

Prerequisites: CS106X is the more advanced of the two courses teaching introductory

programming abstractions and algorithms. CS106X is designed as an
alternative to the more sensibly paced CS106B, because many students—self-
taught hackers, exceptionally strong CS106A students, and AP Java graduates—
prefer a more intense treatment in the company of other aficionados.

AP Java and CS106A are all about basic programming practices—expressions,
control idioms, decomposition, algorithmic thinking, class design, object
orientation, simple inheritance, and basic client use of arrays, lists, and maps.
CS106X teaches advanced abstraction techniques, worrying first about C++
language mechanics and eventually focusing on topics such as recursion,
inheritance, networking, event-driven programming, C++ lists, sets, and maps,
and the implementation techniques used to build custom data structures.

Lectures: MWF 9:00 – 9:50 a.m.
 Gates Building, Room B01

 My CS106X lectures are (and are intended) to be very conversational, feel-good

and informal, working through material at an intense but manageable pace. I
go through a good mix of examples—some drawn verbatim from the reader, but
most are my own. I often stop mid-topic at 9:50 one lecture and pick up as if I
never stopped talking two or three days later at 9:00.

Labs: In addition to the three lectures every week, you’ll also participate in a 50-

minute programming laboratory (beginning the week of October 1st). The

 2

three weekly lectures are optional, in that you don’t need to attend them if
you’re able to keep up with the material. However, programming laboratory
attendance is required, and your presence and willingness to work on the
exercises in good faith contributes to your final grade. The labs are part
discussion section, part coding, and the problems you’ll be discussing and
coding up will be distributed in paper and PDF format at least two days ahead
of time. Those with laptops should bring them to lab, but those without
laptops shouldn’t worry, as we’ll be pairing everyone up for the coding
portion and will be sure to pair those owning laptops with those who do not.

There are several programming lab times to choose from, and those times will
be published to http://cs198.stanford.edu/section by Thursday,
September 27th at 5:00 p.m. You’ll have between Thursday at 5:00 p.m. and
Sunday, September 30th at 5:00 p.m. to view your options and state your
preferences. In the past, we’ve been able to assign the vast majority of
students to their first choices, and virtually all to one of their top two. If after
you’ve been scheduled to a lab time you find that you can’t regularly attend,
you can contact me if we failed to reasonably accommodate your schedule,
or you can just return to the CS198 web site and switch sections.

Readings: The class textbook is the course reader Programming Abstractions in C++ by

Eric Roberts. The course reader should already be available at the Stanford
Bookstore, so everyone can go purchase a copy right now. If you’d prefer,
you can download the PDF of the reader from the course website and read
from that.

In addition to the reader, we distribute a good number of handouts, chockfull
of additional material and examples. All of the handouts are posted online to
the course web site in PDF format, and it’s our expectation that you read the
handouts online, printing them out yourself if that suits you better. We will
provide hardcopies of some handouts—lab handouts, assignments, and
practice exams—when it’s clear that having a paper copy available is
unambiguously better for everyone.

Software: Programming assignments can be written on either Macintosh or Windows PC

computers, using either XCode (on the Macintosh) or Visual Studio C++ (on the
PC). More information on these two programming environments will be
provided online by Wednesday, September 26th.

Mailing List: All students enrolled in CS106X are automatically subscribed to the

cs106x-aut1213-students@lists mailing list. The list server is in
touch with Axess, so if you’ve signed up for the course, you’re probably on
the mailing list already. Please make it a point to register for CS106X as soon
as possible, since I tend to send a good number of announcements out during
the first week or two, and I don’t want any of you to miss them.

 3

Assignments: There are six or seven programming assignments, and it’s possible I’ll throw in a

written problem set for color. The assignments are serious projects, and they
get more and more difficult as we cover the more advanced material. The only
way to learn programming is to work at it, so expect to spend lots of time in
front of a computer. Your assignments are graded interactively in a one-on-one
session with your section leader. In general, your section leader will meet with
you and return an assignment within one week of the day you submit it.

Exams: There will be two examinations

 First Exam: Tuesday, October 23rd 7:00 p.m. – 10:00 p.m.
 Second Exam: Wednesday, November 28th 7:00 p.m. – 10:00 p.m.

 The first exam will cover the first four weeks of the course, and the second

exam will cover the first eight weeks of the course, focusing on the material
not covered on the first. Each exam could be administered in two hours, but
I’ve scheduled three hours so as to do my reasonable share to remove
whatever time pressure might otherwise be present.

 There will be no final exam, which would have normally been held on the

morning of Thursday, December 13th from 8:30 – 11:30 a.m. Instead, your
final assignment will be due at 11:30 a.m. on December 13th at the time when
your final exam would have ended.

Grading: Your final grade will be computed as follows:

 Assignments 50 %
 Lab Participation 5 %
 First Exam 20 %
 Second Exam 25 %

 Assignments are graded on a bucket system, as we want to de-emphasize the

letter grade and instead focus more on our feedback. But in the interest of
transparency, here is a clear description of the various buckets and the
numbers they correspond to.

+ Given to an exceptionally strong submission that not only meets the

requirements, but exceeds them in some significant, algorithmically
interesting way. In general, I see less than 5% of assignments getting +’s.
The + is ultimately recorded as a 100 in the spreadsheet, since it’s
clearly A+ work.

√+ Given to a solid submission that gets the job done and contains at most a
very small number of trivial errors. In general, 35-40% of assignment
submissions get the √+, which maps to a 96.

 4

√ Given to a good submission that gets most of the job done and contains
one or more major errors, or a significant number of minor ones. In
general, about 45-50% of assignment submissions get a √, which maps
to an 88 come spreadsheet time. This is the most controversial grade,
because Stanford students don’t like getting B+’s. However, when we
give them, it’s because the program wasn’t as good as it could have been
and there were more impressive submissions.

√- Given to a submission that does much of the work, but contains enough
problems that even a √ isn’t warranted. The √- maps to an 80 come
spreadsheet time.

There are other bucket grades, but they are rare enough that I don’t need to
describe them.

For each assignment, we also issue a companion style grade evaluating your
overall design, decomposition, and code clarity. While issuing grades, we’re
very open to different approaches, and penalties are imposed only when there
are clear arguments that you overcomplicated an issue or your general coding
style is sloppy. Style grades are also bucketed, but we only issue √’s, √+’s, and
√-‘s. Functionality counts twice as much as style.

The class median on the first exam tends to be high—typically above 80
percent, while the median on the final exam tends to be between 70 and 80.
When an exam median is 80 or above, your raw exam score contributes
verbatim to your final average. When the exam median is below an 80, I curve
the highest grade to a 100, the median grade to an 80, and everything else is
linearly interpolated.

Those with a 90.0+ average (around a third of you, typically) at the end get
some form of an A. Those with 80.0+ averages who don’t make it to 90.0 (all
but a handful of you) typically get some form of a B, and so forth.

Fair Access Students who may need an academic accommodation based on the impact of a
disability must initiate the request with the Student Disability Resource Center
(SDRC) located within the Office of Accessible Education (OAE). SDRC staff
will evaluate the request with required documentation, recommend reasonable
accommodations, and prepare an Accommodation Letter for faculty dated in
the current quarter in which the request is being made. Students should contact
the SDRC as soon as possible since timely notice is needed to coordinate
accommodations. The OAE is located at 563 Salvatierra Walk (phone: 723-
1066).

Late policy: The pace of this course makes it difficult for students to catch up once they

have fallen behind, so I encourage you to submit all of your assignments on
time. Of course, we’re all busy people, so I understand when you can’t meet

 5

each and every deadline I put before you.

Here’s how I handle lateness: You get three free late days, and you consume
one late day any time you hand in work between one second and one class
period after the original deadline. Once you consume your three free late days,
you can still hand in late work, but your late days are no longer free. For each
additional late day, I subtract 2% from your overall homework average. In
general, it’s wiser to take an extra late day unless you already think you’re in √
territory, in which case it’s probably not worth it. Of course, you should still
work to complete the assignment and/or figure out what’s preventing it from
working.

You may never hand in an assignment more than two class periods late, as it
encumbers your section leader’s ability to deliver feedback in a timely manner.
And you may not use any late days on the final assignment due during final
exam week.

Incompletes: I only grant incompletes to those who complete all work due prior to the course

withdrawal deadline, and only because of a severe illness or a family
emergency. Understand that an incomplete is not a giant reset button you get
to press to start over. Rather, it’s a courtesy extension on some end-of-quarter
deadlines to help mitigate a very badly timed personal crisis. In general, all
work must be completed before winter quarter begins.

Honor Code: Although you are encouraged to discuss ideas with others, your programs are to

be completed independently and should be original work. Whenever you
obtain significant help (from other students, the section leaders, students in
other classes) you should acknowledge this in your program write-up, e.g. "The
idea to use insertion sort instead of quicksort to alphabetize the list of names
was actually my section leader’s idea." Any assistance that is not given proper
citation will be considered a violation of the Stanford Honor Code.

 To be even more specific, you are not allowed to collaborate while physically

coding, nor are you allowed to copy programs or parts of programs from other
students. The following three activities are among the many considered to be
Honor Code violations in this course:

1. Looking at another student’s code.
2. Showing another student your code, or making your code public so

that it’s searchable and easily discovered online or elsewhere.
3. Discussing assignments in such detail that you duplicate a portion of

someone else's code in your own program.

 Unfortunately, the CS department sees more than its fair share of Honor Code
violations. Because it’s important that all cases of academic dishonesty are

 6

identified for the sake of those playing by the rules, we use software tools to
compare your submissions against those of all other current and past CS106
students. While we certainly don’t want to create some Big Brother
environment, we do need to be very clear how far we’ll go to make sure the
consistently honest feel their honesty is valued.

If the thought of copying code has never crossed your mind, then you needn’t
worry, because I’ve never seen a false accusation go beyond a heated
conversation. But if you’re ever tempted to share code—whether it’s because
you don’t understand the material, or you do understand but just don’t have
enough time to get the work done—then you need to remember these
paragraphs are here.

