
Chapter 10: Operator Overloading
_________________________________________________________________________________________________________

Consider the following C++ code snippet:
    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";Here, we create a vector<string> of a certain size, then iterate over it concatenating “Now longer!” to each of the strings.  Code like this is ubiquitous in C++, and initially does not appear all that exciting.  How -ever, let's take a closer look at how this code is structured.  First, let's look at exactly what operations we're performing on the iterator:
    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";In this simple piece of code, we're comparing the iterator against myVector.end() using the != operator, incrementing the iterator with the  ++ operator, and dereferencing the iterator with the  * operator.  At a high level, this doesn't seem all that out of the ordinary, since STL iterators are designed to look like regu-lar pointers and these operators are all well-defined on pointers.  But the key thing to notice is that STL  iterators  aren't pointers, they're  objects, and  !=,  *, and ++ aren't normally defined on objects.  We can't write  code  like  ++myVector or  *myMap  =  137,  so  why  can  these  operations  be  applied  to 
vector<string>::iterator?Similarly, notice how we're concatenating the string “Now longer!” onto the end of the string:
    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";Despite the fact that string is an object, somehow C++ “knows” what it means to apply += to strings.All of the above examples are instances of operator overloading, the ability to specify how operators nor-mally applicable to primitive types can interact with custom classes.  Operator overloading is ubiquitous in professional C++ code and, used correctly,  can make your programs more concise,  more readable, and more template-friendly.There are two overarching purposes of operator overloading.  First, operator overloading enables your custom classes to act like primitive types.  That is, if you have a class like vector that mimics a standard C++ array,  you can allow clients to use array notation to access individual  elements.   Similarly,  when designing a class encapsulating a mathematical entity (for example, a complex number), you can let clients  apply mathematical  operators like  +,  -,  and  * to your type as though it  were built  into the language. Second, operator overloading enables your code to interact correctly with template and library code.  For example, you can overload the << operator to make a class compatible with the streams library, or the < operator to interface with STL containers.
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A Word of WarningI would be remiss to discuss operator overloading without first prefacing it with a warning: operator over-loading is a double-edged sword.  When used correctly, operator overloading can lead to intuitive, tem-plate-friendly code that elegantly performs complex operations behind the scenes.  However, incorrectly overloaded operators can lead to incredibly subtle bugs.   Seemingly innocuous code along the lines of  
*myItr = 5 can cause serious problems if implemented incorrectly, and without a solid understanding of how to overload operators you may find yourself in serious trouble.There is a pearl of design wisdom that is particularly applicable to operator overloading:
The Principle of Least Astonishment: A function's name should communicate its behavior and should be consistent with other naming conventions and idioms.The principle of least astonishment should be fairly obvious – you should design functions so that clients  can understand what those functions do simply by looking at the functions' names; that is, clients of your code should not be “astonished” that a function with one name does something entirely different.  For ex-ample,  a function named  DoSomething violates the principle of  least astonishment because it  doesn't communicate what it does, and a function called ComputePrimes that reads a grocery list from a file viol-ates the principle because the name of the function is completely different from the operation it performs.  However, other violations of the principle of least astonishment are not as blatant.  For example, a custom  container class whose empty member function erases the contents of the container violates the principle of least astonishment because C++ programmers expect empty to mean “is the container empty?” rather than “empty the container.”  Similarly, a class that is bitwise const but not semantically const violates the principle, since programmers assume that objects can't be modified by const member functions.When working with operator overloading, it is crucial to adhere to the principle of least astonishment.  C++ lets you redefine almost all of the built-in operators however you choose, meaning that it's possible to  create code that does something completely different from what C++ programmers might expect.  For ex-ample, suppose that you are working on a group project and that one of your teammates writes a class  
CustomVector that acts like the STL vector but which performs some additional operations behind the scenes.  Your program contains a small bug, so you look over your teammate's code and find the following code at one point:
    CustomVector one = /* ... */, two = /* ... */;
    one %= two;What does the line  one %= two do?  Syntactically, this says “take the remainder when dividing  one by 
two, then store the result back in one.”  But this makes no sense – how can you divide one CustomVector by another?  You ask your teammate about this, and he informs you that the %= operator means “remove all elements from one that are also in two.”  This is an egregious violation of the principle of least astonish-ment.   The code neither communicates what it does nor adheres to existing convention,  since the se-mantics of the %= operator are meaningless when applied to linear data structures.  This is not to say, of course, that having the ability to remove all elements from one CustomVector that are contained in an-other is a bad idea – in fact, it can be quite useful – but this functionality should be provided by a properly-named member function rather than a cryptically-overloaded operator.  For example, consider the follow-ing code:
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    CustomVector one = /* ... */, two = /* ... */;
    one.removeAllIn(two);This code accomplishes the same task as the above code, but does so by explicitly indicating what opera-tion is being performed.  This code is much less likely to confuse readers and is far more descriptive than before.As another example, suppose that your teammate also implements a class called CustomString that acts like the standard string type, but provides additional functionality.  You write the following code:
    CustomString one = "Hello", two = " World";
    one += two;
    cout << one + "!" << endl;Intuitively, this should create two strings, then concatenate the second onto the end of the first.  Next, the  code prints out  one followed by an exclamation point, yielding “Hello World!”  Unfortunately, when you compile this code, you get an unusual error message – for some reason the code  one += two compiles correctly, but the compiler rejects the code one + "!".  In other words, your teammate has made it legal to concatenate two strings using +=, but not by using +.  Again, think back to the principle of least astonish-ment.  Programmers tacitly expect that objects that can be added with + can be added with += and vice-versa, and providing only half of this functionality is likely to confuse code clients.The moral of this story is simple: when overloading operators, make sure that you adhere to existing con -ventions.  If you don't, you will end up with code that is either incorrect, confusing, or both.Hopefully this  grim introduction has not  discouraged you from using operator overloading.   Operator overloading is extraordinarily useful and you will not be disappointed with the possibilities that are about to open up to you.  With that said, let's begin discussing the mechanics behind this powerful technique.
Defining Overloaded OperatorsWe introduced operator overloading as a mechanism for redefining how the built-in operators apply to custom classes.  Syntactically, how do we communicate to the C++ compiler that we want to redefine these  operators?  The answer is somewhat odd.  Here's the original motivating example we had at the beginning  of the chapter:
    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";When you provide this code to the C++ compiler, it interprets it as follows:
vector<string> myVector(kNumStrings);
for(vector<string>::iterator itr = myVector.begin(); 
    operator!= (itr, myVector.end());
    itr.operator++())
    (itr.operator*()).operator +=("Now longer!");Notice that everywhere we used the built-in operator in conjunction with an object, the compiler reinter-preted the operator as a call to a specially-named function called operator op, where op is the particular operator  we  used.   Thus  itr  !=  myVector.end() translated  into  operator!=  (itr, 
myVector.end()),  ++itr was interpreted as  itr.operator++(),  etc.   Although these functions may have cryptic names, they're just regular functions.  Operator overloading is simply syntax sugar, a way of 



- 292 -  Chapter 10: Operator Overloadingrewriting one operation (in this case, function calls) using a different syntax (here, the built-in operators).  Overloaded operators are not somehow “more efficient” than other functions simply because the function calls aren't explicit, nor are they treated any different from regular functions.  They are special only in that they can are invoked using the built-in operators rather than through an explicit function calls.If you'll notice, some of the operators used above were translated into member function calls (particularly  
++ and *), while others (!=) were translated into calls to free functions.  With a few exceptions, any oper-ator can be overloaded as either a free function or a member function.  Determining whether to use free  functions or member functions for overloaded operators is a bit tricky, and we'll discuss it more as we con -tinue our tour of overloaded operators.Each of C++'s built-in operators has a certain number of operands.  For example, the plus operator (a + b) has two operands corresponding to the values on the left- and right-hand sides of the operator.  The point-er dereference operator (*itr), on the other hand, takes in only one operand: the pointer to dereference. When defining a function that is an overloaded operator, you will need to ensure that your function has one parameter for each of the operator's operands.  For example, suppose that we want to define a type 
RationalNumber which encapsulates a rational number (a ratio of two integers).  Because it's mathemat-ically sound to add two rational numbers, we might want to consider overloading the  + operator as ap-plied to RationalNumber so that we can add RationalNumbers using an intuitive syntax.  What would such a function look like?  If we implement the + operator as a member function of RationalNumber, the syntax would be as follows:
    class RationalNumber {
    public:
        const RationalNumber operator+ (const RationalNumber& rhs) const;

        /* ... etc. ... */
    };(You might be wondering why the return type is const RationalNumber.  For now, you can ignore that... we'll pick this up in the next section)With operator+ defined this way, then addition of RationalNumbers will be translated into calls to the member function operator+ on RationalNumber.  For example, the following code:
    RationalNumber one, two;
    RationalNumber three = one + two;will be interpreted by the compiler as
    RationalNumber one, two;
    RationalNumber three = one.operator +(two);Notice that the code one + two was interpreted as one.operator+ (two).  That is, the receiver object of the operator+ function is the left-hand operand, while the argument is the right-hand argument.  This is not a coincidence, and in fact C++ will guarantee that the relative ordering of the operands is preserved. 
one + two will never be interpreted as two.operator+ (one) under any circumstance, and our imple-mentation of operator+ can take this into account.Alternatively, we could consider implementing operator+ as a free function taking in two arguments.  If we chose this approach, then the interface for RationalNumber would be as follows:
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    class RationalNumber {
    public:
         /* ... etc. ... */
    };

    const RationalNumber operator+ (const RationalNumber& lhs,
                                    const RationalNumber& rhs);In this case, the code 
    RationalNumber one, two;
    RationalNumber three = one + two;would be interpreted by the compiler as
    RationalNumber one, two;
    RationalNumber three = operator+ (one, two);Again, the relative ordering of the parameters is guaranteed to be stable, and so you can assume that the first parameter to operator+ will always be on the left-hand side of the operator.In some cases, two operators are syntactically identical but have different meanings.  For example, the - operator can refer either to the binary subtraction operator (a - b) or the unary negation operator (-a). If overload the - operator, how does the compiler know whether your overloaded operator is the unary or  binary version of -?  The answer is rather straightforward: if the function operates on two pieces of data,  the compiler treats operator- as the binary subtraction operator, and if the function uses just one piece of data it's considered to be the unary negation operator.  Let's make this discussion a bit more concrete.  Suppose that we want to implement subtraction on the RationalNumber class.  Because the binary sub-traction operator has two operands, we would provide subtraction as an overloaded operator either as a free function:
    const RationalNumber operator- (const RationalNumber& lhs,
                                    const RationalNumber& rhs);or, alternatively, as a member function:
    class  RationalNumber {
    public:
        const RationalNumber operator- (const RationalNumber& rhs) const;

        /* ... etc. ... */
    };Notice that both of these functions operate on two pieces of data.  In the first case, the function takes in  two parameters, and in the second, the receiver object is one piece of data and the parameter is the other.  If we now want to provide an implementation of operator- which represents the unary negation operat-or, we could implement it as a free function with the following signature:
    const RationalNumber operator- (const RationalNumber& arg);Or as a member function of this form:
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    class  RationalNumber {
    public:
        const RationalNumber operator- () const;
    
        /* ... etc. ... */
    };Again, don't worry about why the return type is a const RationalNumber.  We'll address this shortly.
What Operator Overloading Cannot DoWhen overloading operators, you cannot define brand-new operators like # or @.  After all, C++ wouldn't know the associativity or proper syntax for the operator (is one # two + three interpreted as (one # 
two) + three or one # (two + three)?)  Additionally, you cannot overload any of the following oper-ators:
Operator Syntax Name

:: MyClass::value Scope resolution
. one.value Member selection
?: a > b ? -1 : 1 Ternary conditional
.* a.*myClassPtr; Pointer-to-member selection (beyond the scope of this text)

sizeof sizeof(MyClass) Size of object
typeid typeid(MyClass) Runtime type information operator
(T)

static_cast
dynamic_cast

reinterpret_cast
const_cast

(int) myClass; Typecast
Note that operator overloading only lets you define what built-in operators mean when applied to objects. You cannot use operator overloading to redefine what addition means as applied to  ints, nor can you change how pointers are dereferenced.  Then again, by the principle of least astonishment, you wouldn't want to do this anyway.
Lvalues and RvaluesBefore we begin exploring some of the implementation issues associated with overloaded operators, we need to take a quick detour to explore two concepts from programming language theory called lvalues and 
rvalues.  Lvalues and rvalues stand for “left values” and “right values” are are so-named because of where they can appear in an assignment statement.  In particular, an lvalue is a value that can be on the left-hand  side of an assignment, and an rvalue is a value that can only be on the right-hand side of an assignment.  For example, in the statement x = 5, x is an lvalue and 5 is an rvalue.  Similarly, in *itr = 137, *itr is the lvalue and 137 is the rvalue.It is illegal to put an rvalue on the left-hand side of an assignment statement.  For example, 137 = 42 is il-legal  because  137 is  an  rvalue,  and  GetInteger()  =  x is  illegal  because  the  return  value  of 
GetInteger() is an rvalue.  However, it is legal to put an lvalue on the right-hand side of an assignment, as in x = y or x = *itr.



Chapter 10: Operator Overloading - 295 -At this point the distinction between lvalues and rvalues seems purely academic.  “Okay,” you might say,  “some things can be put on the left-hand side of an assignment statement and some things can't.   So  what?”  When writing overloaded operators, the lvalue/rvalue distinction is extremely important.  Because operator overloading lets us define what the built-in operators mean when applied to objects of class type, we have to be very careful that overloaded operators return lvalues and rvalues appropriately.  For ex-ample, by default the + operator returns an rvalue; that is, it makes no sense to write
    (x + y) = 5;Since this would assign the value 5 to the result of adding x and  y.  However, if we're not careful when overloading the + operator, we might accidentally make the above statement legal and pave the way for nonsensical but legal code.  Similarly, it is legal to write
    myArray[5] = 137;So the element-selection operator (the brackets operator) should be sure to return an lvalue instead of an rvalue.  Failure to do so will make the above code illegal when applied to custom classes.Recall that an overloaded operator is a specially-named function invoked when the operator is applied to an object of a custom class type.  Thus the code
    (x + y) = 5;is equivalent to
    operator+ (x, y) = 5;if either x or y is an object.  Similarly, if myArray is an object, the code
    myArray[5] = 137;is equivalent to
    myArray.operator[](5) = 137;To ensure that these functions have the correct semantics, we need to make sure that operator+ returns an rvalue and that operator[] returns an lvalue.  How can we enforce this restriction?  The answer has to do with the return type of the two functions.  To make a function that returns an lvalue, have that function  return a non-const reference.  For example, the following function returns an lvalue:
    string& LValueFunction();Because a reference is just another name for a variable or memory location, this function hands back a ref-erence to an lvalue and its return value can be treated as such.  To have a function return an rvalue, have  that function return a const object by value.  Thus the function
    const string RValueFunction();
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    RValueFunction() = 137;is illegal because the return value of RValueFunction is marked const.Lvalues and rvalues are difficult to understand in the abstract, but as we begin to actually overload partic-ular operators the difference should become clearer.
Overloading the Element Selection OperatorLet's begin our descent into the realm of operator overloading by discussing the overloaded element selec-tion operator (the [ ] operator, used to select elements from arrays).  You've been using the overloaded element selection operator ever since you encountered the string and vector classes.  For example, the following code uses the vector's overloaded element selection operator:
    for(int i = 0; i < myVector.size(); ++i)
        myVector[i] = 137;In the above example, while it looks like we're treating the vector as a primitive array, we are instead call-ing the a function named operator [], passing i as a parameter.  Thus the above code is equivalent to
    for(int i = 0; i < myVector.size(); ++i)
        myVector.operator [](i) = 137;To write a custom element selection operator, you write a member function called operator [] that ac-cepts as its parameter the value that goes inside the brackets.  Note that while this parameter can be of any type (think of the STL map), you can only have a single value inside the brackets.  This may seem like an ar-bitrary restriction, but makes sense in the context of the principle of least astonishment: you can't put  multiple values inside the brackets when working with raw C++ arrays, so you shouldn't do so when work-ing with custom objects.When writing  operator [], as with all overloaded operators, you're free to return objects of whatever type you'd like.  However, remember that when overloading operators, it's essential to maintain the same  functionality you'd expect from the naturally-occurring uses of the operator.  In the case of the element se-lection operator, this means that the return value should be an lvalue, and in particular a reference to some internal  class  data  determined by the  index.   For  example,  here's  one  possible  prototype  of  the  C++ 
string's element selection operator:
    class string {
    public:
        /* ... */
    
        char& operator [] (size_t position);
    };

* Technically speaking any non-reference value returned from a function is an rvalue.  However, when returning ob -jects from a function, the rvalue/lvalue distinction is blurred because the assignment operator and other operat-ors are member functions that can be invoked regardless of whether the receiver is an rvalue or lvalue.  The addi-tional const closes this loophole.



Chapter 10: Operator Overloading - 297 -Here, operator[] takes in an int representing the index and returns a reference to the character at that position in the string.  If string is implemented as a wrapper for a raw C string, then one possible im-plementation for operator[] might be
    char& string::operator[] (size_t index) {
        return theString[index]; // Assuming theString is an array of characters
    }Because operator[] returns a reference to an element, it is common to find operator[] paired with a 
const-overload that returns a const reference to an element in the case where the receiver object is im-mutable.  There are exceptions to this rule, such as the STL  map,  but in the case of  string we should provide a const overload, as shown here:
    class string {
    public:
        /* ... */

              char& operator [] (size_t position);
        const char& operator [] (size_t position) const;
    };The implementation of the const operator[] function is identical to the non-const version.When writing the element selection operator,  it's  completely legal to modify the receiver object in re -sponse to a request.  For example, with the STL map, operator[] will silently create a new object and re-turn a reference to it if the key isn't already in the map.  This is part of the beauty of overloaded operators – you're allowed to perform any necessary steps to ensure that the operator makes sense.Unfortunately, if your class encapsulates a multidimensional object, such as a matrix or hierarchical key-value system, you cannot “overload the [][] operator.”  A class is only allowed to overload one level of the bracket syntax; it's not legal to design objects that doubly-overload [].*
Overloading Compound Assignment OperatorsThe compound assignment operators are operators of the form op= (for example, += and *=) that update an object's value but do not overwrite it.  Compound assignment operators are often declared as member  functions with the following basic prototype:
    MyClass& operator += (const ParameterType& param)For example, suppose we have the following class, which represents a vector in three-dimensional space:
    class Vector3D {
    public:
        /* ... */
    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

* There is a technique called proxy objects that can make code along the lines of myObject[x][y] legal.  The trick is to define an operator[] function for the class that returns another object that itself overloads operator[].  We'll see this trick used in the upcoming chapter on a custom grid class.



- 298 -  Chapter 10: Operator OverloadingIt is legal to add two mathematical vectors to one another; the result is the vector whose components are the pairwise sum of each of the components of the source vectors.  If we wanted to define a += operator for 
Vector3D to let us perform this addition, we would modify the interface of Vector3D as follows:
    class Vector3D {
    public:
        /* ... */
        Vector3D& operator+= (const Vector3D& other);

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };This could then be implemented as
    Vector3D& Vector3D::operator +=(const Vector3D& other) {
        for(int i = 0; i < NUM_COORDINATES; ++i)
           coordinates[i] += other.coordinates[i];
        return *this;
    }If you'll notice, operator+= returns *this, a reference to the receiver object.  Recall that when overload-ing operators, you should make sure to define your operators such that they work identically to the C++ built-in operators.  It turns out that the += operator yields an lvalue, so the code below, though the quint-essence of abysmal style, is perfectly legal:
    int one, two, three, four;
    (one += two) += (three += four);Since overloaded operators let custom types act like primitives, the following code should also compile:
    Vector3D one, two, three, four;
    (one += two) += (three += four);If we expand out the calls to the overloaded += operator, we find that this is equivalent to
    Vector3D one, two, three, four;
    one.operator+=(two).operator +=(three.operator +=(four));Note that the reference returned by one.operator+=(two) then has its own += operator invoked.  Since 
operator += is not marked const, had the += operator returned a const reference, this code would have been illegal.  Make sure to have any (compound) assignment operator return *this as a non-const refer-ence.Unlike the regular assignment operator, with the compound assignment operator it's commonly meaning-ful to accept objects of different types as parameters.  For example, we might want to make expressions like  myVector *= 137 for  Vector3Ds meaningful as a scaling operation.  In this case, we can simply define an operator *= that accepts a double as its parameter.  For example:
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    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        Vector3D& operator *= (double scaleFactor);

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };Despite the fact that the receiver and parameter have different types, this is perfectly legal C++.  Here's one possible implementation:
    Vector3D& Vector3D::operator*= (double scaleFactor) {
        for(int k = 0; k < NUM_COORDINATES; ++k)
            coordinates[k] *= scaleFactor;
        return *this;
    }

Although we have implemented operator+= and operator*= for the Vector3D class, C++ will not automat-
ically provide us an implementation of operator-= and operator/=, despite the fact that those functions can 
easily be implemented as wrapped calls to the operators we've already implemented.  This might seem counterin-
tuitive, but prevents errors from cases where seemingly symmetric operations are undefined.  For example, it is 
legal to multiply a vector and a matrix, though the division is undefined.  For completeness' sake, we'll prototype 
operator-= and operator/= as shown here:

    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        Vector3D& operator -= (const Vector3D& other);

        Vector3D& operator *= (double scaleFactor);
        Vector3D& operator /= (double scaleFactor);

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

Now, how might we go about implementing these operators?  operator/= is the simplest of the two and can be 
implemented as follows:

    Vector3D& Vector3D::operator /= (double scaleFactor) {
        *this *= 1.0 / scaleFactor;
        return *this;
    }

This implementation, though cryptic, is actually quite elegant.  The first line, *this *= 1.0 / scaleFact-
or, says that we should multiply the receiver object (*this) by the reciprocal of scaleFactor.  The *= oper-
ator is the compound multiplication assignment operator that we wrote above, so this code invokes operator*= 
on the receiver.  In fact, this code is equivalent to
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    Vector3D& Vector3D::operator /= (double scaleFactor) {
        operator*= (1.0 / scaleFactor);
        return *this;
    }

Depending on your taste, you might find this particular syntax more readable than the first version.  Feel free to 
use either version.

Now,  how would  we  implement  operator-=,  which  performs  a  componentwise  subtraction  of  two  Vec-
tor3Ds?  At a high level, subtracting one vector from another is equal to adding the inverse of the second vector  
to the first, so we might want to write code like this:

    Vector3D& Vector3D::operator -= (const Vector3D& other) {
        *this += -other;
        return *this;
    }

That is, we add -other to the receiver object.  But this code is illegal because we haven't defined the unary 
minus operator as applied to Vector3Ds.  Not to worry – we can overload this operator as well.  The syntax for  
this function is as follows:

    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        Vector3D& operator -= (const Vector3D& other);

        Vector3D& operator *= (double scaleFactor);
        Vector3D& operator /= (double scaleFactor);

        const Vector3D operator- () const;

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

There are four pieces of information about this function that deserve attention:

• The name of the unary minus function is operator -.

• The function takes no parameters.  This lets C++ know that the function is the unary minus function (I.e. 
-myVector) rather than the binary minus function (myVector – myOtherVector).

• The function returns a const Vector3D.  The unary minus function returns an rvalue rather than an 
lvalue, since code like -x = 137 is illegal.  As mentioned above, this means that the return value of this 
function should be a const Vector3D.

• The function is marked const.  Applying the unary minus to an object doesn't change its value, and to 
enforce this restriction we'll mark operator – const.

One possible implementation of operator- is as follows:
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    const Vector3D Vector3D::operator- () const {
        Vector3D result;
        for(int k = 0; k < NUM_COORDINATES; ++k)
            result.coordinates[k] = -coordinates[k];
        return result;
    }

Note that the return type of this function is const Vector3D while the type of result inside the function is 
Vector3D.  This isn't a problem, since returning an object from a function yields a new temporary object and it's 
legal to initialize a const Vector3D using a Vector3D.

When writing compound assignment operators, as when writing regular assignment operators, you must be care-
ful that self-assignment works correctly.  In the above example with Vector3D's compound assignment operat-
ors we didn't need to worry about this because the code was structured correctly.  However, when working with 
the C++ string's += operator, since the string needs to allocate a new buffer capable of holding the current 
string appended to itself, it would need to handle the self-assignment case, either by explicitly checking for  
self-assignment or through some other means.

Overloading Mathematical OperatorsIn the previous section, we provided overloaded versions of the += family of operators.  Thus, we can now write classes for which expressions of the form one += two are valid.  However, the seemingly equivalent expression one = one + two will still not compile, since we haven't provided an implementation of the lone + operator.  C++ will not automatically provide implementations of related operators given a single overloaded operator, since in some cases this could result in nonsensical or meaningless behavior.The built-in mathematical operators yield rvalues, so code like  (x + y) = 137 will not compile.  Con-sequently, when overloading the mathematical operators, make sure they return rvalues as well by having them return const objects.Let's consider an implementation of operator + for our Vector3D class.  Because the operator yields an rvalue, we're supposed to return a const Vector3D, and based on our knowledge of parameter passing, we know that we should accept a const Vector3D & as a parameter.  There's one more bit we're forget-ting, though, and that's to mark the operator + function const, since operator + creates a new object and doesn't modify either of the values used in the arithmetic statement.  This results in the following  code
    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        const Vector3D operator+ (const Vector3D& other);

        Vector3D& operator -= (const Vector3D& other);

        Vector3D& operator *= (double scaleFactor);
        Vector3D& operator /= (double scaleFactor);

        const Vector3D operator- () const;

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };
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    const Vector3D Vector3D::operator +(const Vector3D& other) const {
        Vector3d result = *this; // Make a deep copy of this Vector3D.
        result += other;         // Use existing addition code.
        return result;
    }Now, all of the code for operator + is unified, which helps cut down on coding errors.There is an interesting and common case we haven't addressed yet – what if one of the operands isn't of  the same type as the class?  For example, if you have a  Matrix class that encapsulates a 3x3 matrix, as shown here:
    class Matrix {
    public:
        /* ... */

        Matrix& operator *= (double scalar); // Scale all entries
    private:
        static const int MATRIX_SIZE = 3;
        double entries[MATRIX_SIZE][MATRIX_SIZE];   
    };Note that there is a defined *= operator that scales all elements in the matrix by a double factor.  Thus code like  myMatrix *= 2.71828 is well-defined.  However, since there's no defined  operator *, cur-rently we cannot write myMatrix = myMatrix * 2.71828.Initially, you might think that we could define operator * just as we did operator + in the previous ex-ample.  While this will work in most cases, it will lead to some problems we'll need to address later.  For now, however, let's add the member function operator * to Matrix, which is defined as
    const Matrix Matrix::operator *(double scalar) const {
        MyMatrix result = *this;
        result *= scalar;
        return result;
    }Now, we can write expressions like myMatrix = myMatrix * 2.71828.  However, what happens if we write code like myMatrix = 2.71828 * myMatrix?  This is a semantically meaningful expression, but unfortunately it won't compile.  When interpreting overloaded operators, C++ will always preserve the or-der of values in an expression.*  Thus 2.71828 * myMatrix is  not the same as myMatrix * 2.71828. Remember that the reason that myMatrix * 2.71828 is legal is because it's equivalent to myMatrix.op-
erator *(2.71828).  The expression 2.71828 * myMatrix, on the other hand, is illegal because C++ will try to expand it into (2.71828).operator *(myMatrix), which makes no sense.
* One major reason for this is that sometimes the arithmetic operators won't be commutative.  For example, given matrices A and B, AB is not necessarily the same as BA, and if C++ were to arbitrarily flip parameters it could res-ult in some extremely difficult-to-track bugs.
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or *(2.71828, myMatrix).  The new version of operator * is defined below:
    const Matrix operator * (double scalar, const Matrix& matrix) {
        Matrix result = *matrix;
        matrix *= scalar;
        return result;
    }But here we run into the same problem as before if we write  myMatrix * 2.71828,  since we haven't defined a function accepting a Matrix as its first parameter and an double as its second.  To fix this, we'll define a second free function operator * with the parameters reversed that's implemented as a call to the other version:
    const Matrix operator *(const Matrix& matrix, double scalar) {
        return scalar * matrix; // Calls operator* (scalar, matrix)
    }As a general rule, mathematical operators like  + should always be implemented as free functions.  This prevents problems like those described here.One important point to notice about overloading the mathematical operators versus the compound assign-ment operators is that it's considerably faster to use the compound assignment operators over the stan-dalone mathematical operators.  Not only do the compound assignment operators work in-place (that is, they modify existing objects), but they also return references instead of full objects.  From a performance standpoint, this means that given these three strings:
    string one = "This ";
    string two = "is a ";
    string three = "string!";Consider these two code snippets to concatenate all three strings:
    /* Using += */
    string myString = one;
    myString += two;
    myString += three;

    /* Using + */
    string myString = one + two + threeOddly, the second version of this code is considerably slower than the first because the + operator gener-ates temporary objects.  Remember that one + two + three is equivalent to
    operator +(one, operator +(two, three))Each call to operator + returns a new string formed by concatenating the parameters, so the code one 
+ two + three creates two temporary string objects.  The first version, on the other hand, generates no temporary objects since the += operator works in-place.  Thus while the first version is less sightly, it is significantly faster than the second.



- 304 -  Chapter 10: Operator Overloading

Overloading ++ and --Overloading the increment and decrement operators can be a bit tricky because there are two versions of each operator: prefix and postfix.  Recall that x++ and ++x are different operations – the first will evaluate to the value of  x, then increment x, while the second will increment x and then evaluate to the updated value of x.  You can see this below:
    int x = 0
    cout << x++ << endl; // Prints: 0
    cout << x << endl;   // Prints: 1

    x = 0;
    cout << ++x << endl; // Prints: 1
    cout << x << endl;   // Prints: 1Although this distinction is subtle, it's tremendously important for efficiency reasons.  In the postfix ver-sion of   ++, since we have to return the value of the variable was before it was incremented, we'll need to  make a full copy of the old version and then return it.  With the prefix ++, since we're returning the current value of the variable, we can simply return a reference to it.  Thus the postfix ++ can be noticeably slower than the prefix version; this is the reason that when advancing an STL iterator it's faster to use the prefix increment operator.The next question we need to address is how we can legally use ++ and -- in regular code.  Unfortunately, it can get a bit complicated.  For example, the following code is totally legal:
    int x = 0;
    ++++++++++++++x; // Increments x seven times.This is legal because it's equivalent to
    ++(++(++(++(++(++(++x))))));The prefix ++ operator returns the variable being incremented as an lvalue, so this statement means “in-crement x, then increment x again, etc.”However, if we use the postfix version of ++, as seen here:
    x++++++++++++++; // ErrorWe get a compile-time error because x++ returns the original value of x as an rvalue, which can't be incre-mented  because that would require putting the rvalue on the left side of an assignment (in particular,  x = x + 1).Now, let's actually get into some code.  Unfortunately, we can't just sit down and write operator ++, since it's unclear which operator ++ we'd be overloading.  C++ uses a hack to differentiate between the prefix and postfix versions of the increment operator: when overloading the prefix version of ++ or --, you write 
operator ++ as a function that takes no parameters.  To overload the postfix version, you'll overload op-
erator ++, but the overloaded operator will accept as a parameter the integer value 0.  In code, these two declarations look like
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    class MyClass {
    public:
        /* ... */

        MyClass& operator ++(); // Prefix
        const MyClass operator ++(int dummy); // Postfix

    private:
        /* ... */
    };Note that the prefix version returns a MyClass& as an lvalue and the postfix version a const MyClass as an rvalue.We're allowed to implement ++ and -- in any way we see fit.  However, one of the more common tricks is to write the ++ implementation as a wrapped call to operator +=.  Assuming you've provided this func-tion, we can then write the prefix operator ++ as
    MyClass& MyClass::operator ++() {
        *this += 1;
        return *this;
    }And the postfix operator ++ as
    const MyClass MyClass::operator ++(int dummy) {
        MyClass oldValue = *this; // Store the current value of the object.
        ++*this;
        return oldValue;
    }Notice that the postfix  operator++ is implemented in terms of the prefix  operator++.  This is a fairly standard technique and cuts down on the amount of code that you will need to write for the functions.In your future C++ career, you may encounter versions of operator++ that look like this:
    const MyClass MyClass::operator ++(int) {
        MyClass oldValue = *this; // Store the current value of the object.
        ++*this;
        return oldValue;
    }Although this function takes in an int parameter, that parameter does not have a name.  It turns out that it is perfectly legal C++ code to write functions that accept parameters but do not give names to those para-meters.  In this case, the function acts just like a regular function that accepts a parameter, except that the  parameter cannot be used inside of the function.  In the case of operator++, this helps give a cue to read-ers that the integer parameter is not meaningful and exists solely to differentiate the prefix and postfix versions of the function.
Overloading Relational OperatorsPerhaps the most commonly overloaded operators (other than operator =) are the relational operators; for example, < and ==.  Unlike the assignment operator, by default C++ does not provide relational operat-ors for your objects.  This means that you must explicitly overload the  == and related operators to use 
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    class MyClass {
    public:
        /* ... */
        bool operator < (const MyClass& other) const;

    private:
        /* ... */
    };You're free to choose any means for defining what it means for one object to be “less than” another.  How -ever, when doing so, you must take great care to ensure that your less-than operator defines a total order-
ing on objects of your type.  This means that the following must be true about the behavior of the less-than operator:

• Trichotomy: For any a and b, exactly one of a < b, a = b, and b < a is true.
• Transitivity: If a < b and b < c, then a < c.These properties of < are important because they allow the notion of sorted order to make sense.  If either of these conditions does not hold, then it is possible to encounter strange situations in which a collection  of elements cannot be put into ascending order.  For example, suppose that we have the following class,  which represents a point in two-dimensional space:

    class Point {
    public:
        Point(double x, double y);

        double getX() const;
        void setX(double value);

        double getY() const;
        void setY(double value);
    }Now consider the following implementation of a less-than operator for comparing Points:
    bool operator< (const Point& one, const Point& two) {
        return one.getX() < two.getX() && one.getY() < two.getY();
    }Intuitively, this may seem like a reasonable definition of the < operator: point a is less than point b if both coordinates of  a are less than the corresponding coordinates of  b.  However, this implementation of < is bound to cause problems.  In particular, consider the following code:
    Point one(1, 0), two(0, 1);
    cout << (one < two) << endl;
    cout << (two < one) << endl;Here, we create two points called one and two and compare them using the < operator.  What will the first line print?  Using the above definition of operator<, the comparison one < two will evaluate to false be-cause the x coordinate of one is greater than the x coordinate of two.  But what about two < one?  In this case,  two's  x coordinate is less than  one's, but its  y coordinate is greater than  one's.  Consequently, we have that two < one also evaluates to false.  We have reached a precarious situation.  We have found two 



Chapter 10: Operator Overloading - 307 -values,  one and two, such that one and two do not have equal values, but neither is less than the other. This means that we could not possibly sort a list of elements containing both one and two, since neither one precedes the other.The problem with the above implementation of operator< is that it violates trichotomy.  Recall from the above definition of a total ordering that trichotomy means that exactly one of a < b, a = b, a > b must hold for any  a and  b.   Our definition of  operator< does not have this property, as illustrated above.  Con-sequently, we have a legal implementation of operator< that is wholly incorrect.  We'll need to redefine how operator< works in order to ensure that trichotomy holds.One common strategy for implementing operator< is to use what's called a lexicographical ordering.  To illustrate a lexicographically ordering,  consider the words  about and  above  and think about how you would compare them alphabetically.  You'd begin by noting that the first letter of each word was the same, as was the second and the third.  However, the fourth letter of the words disagree, and in particular the let-ter u from about precedes the letter v from above.  Consequently, we would say that about comes lexico-graphically before  above.  Interestingly, though, the last letter of  about (t) comes after the last letter of 
above (e).  We don't care, though, because we stopped comparing letters as soon as we found the first mis-match in the words.This strategy has an elegant analog for arbitrary types.  Given a type, one way to implement operator< is as follows.  Given two objects a and b of that type, check whether the first field of a and b are not the same. If so, say that a is smaller if its first field is smaller than b's first field.  Otherwise, look at the second field. If the fields are not the same, then return a if a's second field is smaller than b's and b otherwise.  If not, then look at the third field, etc.  To give you a concrete example of how this works, consider the following  revision to the Point's operator< function:
    bool operator< (const Point& one, const Point& two) {
        if (one.getX() != two.getX()) return one.getX() < two.getX();
        return one.getY() < two.getY();
    }Here, we first check whether the points disagree in their x coordinate.  If so, we say that one is less than 
two only  if  it  has  a  smaller  x coordinate.   Otherwise,  if  the  points  agree  in  their  x coordinate,  then whichever has the lower y coordinate is said to have the smaller value.  Amazingly, this implementation strategy results in an ordering that is both trichotic and transitive, exactly the properties we want out of the < operator.Of course, this strategy works on classes that have more than two fields, provided that you compare each  field one at a time.  It is an interesting exercise to convince yourself that a lexicographical ordering on any  type obeys trichotomy, and that such an ordering obeys transitivity as well.Once you have a working implementation of operator<, it is possible to define all five other relational op-erators solely in terms of the operator<.  This is due to the following set of relations:

A < B ⇔ A < B
A <= B ⇔ !(B < A)
A == B ⇔ !(A < B || B < A)
A != B ⇔ A < B || B < A
A >= B ⇔ !(A < B)
A > B ⇔ B < A
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    bool operator> (const Point& one, const Point& two) {
        return two < one;
    }We could similarly implement operator<= for Points as
    bool operator<= (const Point& one, const Point& two) {
        return !(one < two);
    }This is a fairly standard technique, and it's well worth the effort to remember it.
Storing Objects in STL mapsUp to this point we've avoided storing objects as keys in STL maps.  Now that we've covered operator over-loading, though, you have the necessary knowledge to store objects in the STL map and set containers.Internally, the STL map and set are layered on binary trees that use the relational operators to compare elements.  Due to some clever design decisions, STL containers and algorithms only require the < operator to compare two objects.  Thus, to store a custom class inside a map or set, you simply need to overload the 
< operator and the STL will handle the rest.  For example, here's some code to store a Point struct in a 
map:
    struct pointT {
        int x, y;

        bool operator < (const pointT& other) const {
            if(x != other.x)
                return x < other.x;
            return y < other.y;
        }
    };
    map<pointT, int> myMap; // Now works using the default < operator.You can use a similar trick to store objects as values in a set.
friendNormally, when you mark a class's data members private, only instances of that class are allowed to access them.  However,  in some cases you might want to allow specific  other classes or functions to modify  private data.  For example, if you were implementing the STL map and wanted to provide an iterator class to traverse it, you'd want that iterator to have access to the map's underlying binary tree.  There's a slight problem here, though.  Although the iterator is an integral component of the map, like all other classes, the iterator cannot access private data and thus cannot traverse the tree.How are we to resolve this problem?  Your initial thought might be to make some public accessor methods that would let the iterator modify the object's internal data representation.  Unfortunately, this won't work particularly well, since then any class would be allowed to use those functions, something that violates the principle of encapsulation.  Instead, to solve this problem, we can use the C++ friend keyword to grant the iterator class access to the map or set's internals.  Inside the map declaration, we can write the follow-ing:
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    template <typename KeyType, typename ValueType> class map {
    public:
        /* ... */

        friend class iterator;
        class iterator {
            /* ... iterator implementation here ... */
        };
    };Now, since iterator is a friend of map, it can read and modify the map's private data members.Just as we can grant other classes friend access to a class, we can give friend access to global functions. For example, if we had a free function  ModifyMyClass that accepted a  MyClass object as a reference parameter, we could let ModifyMyClass modify the internal data of MyClass if inside the MyClass declar-ation we added the line
    class MyClass {
    public:
        /* ... */
        friend void ModifyMyClass(MyClass& param);

    };The syntax for friend can be misleading.  Even though we're prototyping ModifyMyClass inside the My-
Class function, because ModifyMyClass is a friend of MyClass it is not a member function of MyClass. After all, the purpose of the friend declaration is to give outside classes and functions access to the MyC-
lass internals.When using friend, there are two key points to be aware of.  First, the friend declaration must precede the actual implementation of the friend class or function.  Since C++ compilers only make a single pass over the source file, if they haven't seen a friend declaration for a function or class, when the function or class tries to modify your object's internals, the compiler will generate an error.  Second, note that while 
friend is quite useful in some circumstances, it can quickly lead to code that entirely defeats the purpose of encapsulation.  Before you grant friend access to a piece of code, make sure that the code has a legitim-ate reason to be modifying your object.  That is, don't make code a friend simply because it's easier to write that way.  Think of friend as a way of extending a class definition to include other pieces of code. The class, together with all its friend code, should comprise a logical unit of encapsulation.When overloading an operator as a free function, you might want to consider giving that function friend access to your class.  That way, the functions can efficiently read your object's private data without having to go through getters and setters.Unfortunately, friend does not interact particularly intuitively with template classes.  Suppose we want to provide  a  friend function  PQueueFriend for  a  template  version  of  the  CS106B/X  PQueue.   If 
PQueueFriend is declared like this:
    template <typename T> void PQueueFriend(const PQueue<T>& pq) {
       /* ... */
    }You'll  notice  that  PQueueFriend itself  is  a  template  function.   This  means  that  when  declaring 
PQueueFriend a friend of the template PQueue, we'll need to make the friend declaration templatized, as shown here:
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    template <typename T> class PQueue {
    public:
        /* ... */
        template <typename T> friend PQueueFriend(const PQueue<T>& pq);
    };If you forget the template declaration, then your code will compile correctly but will generate a linker er-ror.  While this can be a bit of nuisance, it's important to remember since it arises frequently when over-loading the stream operators, as you'll see below.
Overloading the Stream Insertion OperatorHave you ever wondered why cout << "Hello, world!" << endl is syntactically legal?  It's through the overloaded  << operator in conjunction with  ostreams.*  In fact,  the entire streams library can be thought of as a gigantic library of massively overloaded << and >> operators.The C++ streams library is designed to give you maximum flexibility with your input and output routines and even lets you define your own stream insertion and extraction operators.  This means that you are al-lowed to define the << and >> operators so that expressions like cout << myClass << endl and cin >> 
myClass are well-defined.  However, when writing stream insertion and extraction operators, there are huge number of considerations to keep in mind, many of which are beyond the scope of this text.  This next section will discuss basic strategies for overloading the  << operator, along with some limitations of the simple approach.As with all overloaded operators, we need to consider what the parameters and return type should be for  our overloaded << operator.  Before considering parameters, let's think of the return type.  We know that it  should be legal to chain stream insertions together – that is, code like cout << 1 << 2 << endl should compile correctly.  The << operator associates to the left, so the above code is equal to
    (((cout << 1) << 2) << endl);Thus, we need the << operator to return an ostream.  Now, we don't want this stream to be const, since then we couldn't write code like this:
    cout << "This is a string!" << setw(10) << endl;Since if cout << "This is a string!" evaluated to a const object, we couldn't set the width of the next operation to 10.  Also, we cannot return the stream by value, since stream classes have their copy functions marked private.  Putting these two things together, we see that the stream operators should re -turn a non-const reference to whatever stream they're referencing.Now let's consider what parameters we need.  We need to know what stream we want to write to or read  from, so initially you might think that we'd define overloaded stream operators as member functions that look like this:
    class MyClass {
    public:
       ostream& operator << (ostream& input) const; // Problem: Legal but incorrect
    };

* As a reminder, the ostream class is the base class for output streams.  This has to do with inheritance, which we'll  cover in a later chapter, but for now just realize that it means that both stringstream and ofstream are special-izations of the more generic ostream class.



Chapter 10: Operator Overloading - 311 -Unfortunately, this isn't correct.  Consider the following two code snippets:
    cout << myClass;
    myClass << cout;The first of these two versions makes sense, while the second is backwards.  Unfortunately, with the above  definition of operator <<, we've accidentally made the second version syntactically legal.  The reason is  that these two lines expand into calls to
    cout.operator <<(myClass);
    myClass.operator <<(cout);The first of these two isn't defined, since cout doesn't have a member function capable of writing our ob-ject (if it did, we wouldn't need to write a stream operator in the first place!).  However, based on our pre -vious definition, the second version, while semantically incorrect, is syntactically legal.  Somehow we need to change how we define the stream operator so that we are allowed to write cout << myClass.  To fix this, we'll make the overloaded stream operator a free function that takes two parameters – an ostream to write to and a myClass object to write.  The code for this is:
    ostream& operator << (ostream& stream, const MyClass& mc) {
        /* ... implementation ... */
        return stream;
    }While this code will work correctly, because operator << is a free function, it doesn't have access to any of the private data members of MyClass.  This can be a nuisance, since we'd like to directly write the con-tents of MyClass out to the stream without having to go through the (possibly inefficient) getters and set-ters.  Thus, we'll declare operator << a friend inside the MyClass declaration, as shown here:
    class MyClass {
    public:
        /* More functions. */
        friend ostream& operator <<(ostream& stream, const MyClass& mc);

    };Now, we're all set to do reading and writing inside the body of the insertion operator.  It's not particularly difficult to write the stream insertion operator – all that we need to do is print out all of the meaningful  class information with some formatting information.  So, for example, given a Point class representing a point in 2-D space, we could write the insertion operator as
    ostream& operator <<(ostream& stream, const Point& pt) {
        stream << '(' << pt.x << ", " << pt.y << ')';
        return stream;
    }While this code will work in most cases, there are a few spots where it just won't work correctly.  For ex-ample, suppose we write the following code:
    cout << "01234567890123456789" << endl; // To see the number of characters.
    cout << setw(20) << myPoint << endl;Looking at this code, you'd expect that it would cause myPoint to be printed out and padded with space characters until it is at least twenty characters wide.  Unfortunately, this isn't what happens.  Since oper-
ator << writes the object one piece at a time, the output will look something like this:
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    01234567890123456789
                       (0, 4)That's nineteen spaces, followed by the actual Point data.  The problem is that when we invoke operator 
<<, the function writes a single ( character to stream.  It's this operation, not the Point as a whole, that will  get aligned to 20 characters.   There are many ways to circumvent this problem, but  perhaps the simplest is to buffer the output into a stringstream and then write the contents of the stringstream to the destination in a single operation.  This can get a bit complicated, especially since you'll need to copy the stream formatting information over.Writing a correct stream extraction operator (operator >>) is complicated.  For more information on writing stream extraction operators, consult a reference.
Overloading * and ->Consider the following code snippet:
    for(set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << *itr << " has length " << itr->length() << endl;Here, we traverse a  set<string> using iterators, printing out each string and its length.  Interestingly, even though set iterators are not raw pointers (they're objects capable of traversing binary trees), thanks to operator overloading, they can respond to the  * and  -> operators as though they were regular C++ pointers.If you create a custom class that acts like a C++ pointer (perhaps a custom iterator or “smart pointer,” a  topic we'll return to later), you can provide implementations of the pointer dereference and member se-lection operators * and -> by overloading their respective operator functions.  The simpler of these two functions is the pointer dereference operator.  To make an object that can be dereferenced to yield an ob-ject of type T, the syntax for its * operator is
    class PointerClass {
    public:
        T& operator *() const;
        /* ... */
    };You can invoke the operator * function by “dereferencing” the custom pointer object.  For example, the following code:
    *myCustomPointer = 137;is completely equivalent to
    myCustomPointer.operator *() = 137;Because we can assign a value to the result of  operator *, the  operator * function should return an lvalue (a non-const reference).There are two other points worth noting here.  First, how can C++ distinguish this operator * for pointer dereference from the  operator * used for multiplication?  The answer has to do with the number of parameters to the function.  Since a pointer dereference is a unary operator, the function prototype for the pointer-dereferencing operator * takes no parameters.  Had we wanted to write operator * for multi-



Chapter 10: Operator Overloading - 313 -plication, we would have written a function operator * that accepts a parameter (or a free function ac-cepting two parameters).  Second, why is operator * marked const?  This has to do with the difference between  const pointers and pointers-to-const.   Suppose that we have a  const instance of a custom pointer class.  Since the pointer object is const, it acts as though it is a const pointer rather than a point-er-to-const.   Consequently, we should be able to dereference the object and modify its stored pointer without affecting its constness.The arrow operator  operator -> is slightly more complicated than  operator *.   Initially, you might think that operator -> would be a binary operator, since you use the arrow operator in statements like 
myClassPtr->myElement.  However, C++ has a rather clever mechanism for operator -> that makes it a unary operator.  A class's operator -> function should return a pointer to the object that the arrow oper-ator should actually be applied to.  This may be a bit confusing, so an example is in order.  Suppose we have a class CustomStringPointer that acts as though it's a pointer to a C++ string object.  Then if we have the following code:
    CustomStringPointer myCustomPointer;
    cout << myCustomPointer->length() << endl;This code is equivalent to
    CustomStringPointer myCustomPointer;
    cout << (myCustomPointer.operator ->())->length() << endl;In the first version of the code, we treated the myCustomPointer object as though it was a real pointer by using the arrow operator to select the length function.  This code expands out into two smaller steps:

1. The CustomStringPointer's operator -> function is called to determine which pointer the ar-row should be applied to.
2. The returned pointer then has the -> operator applied to select the length function.Thus when writing the operator -> function, you simply need to return the pointer that the arrow oper-ator should be applied to.  If you're writing a custom iterator class, for example, this is probably the ele-ment being iterator over.We'll explore one example of overloading these operators in a later chapter.

List of Overloadable OperatorsThe following table lists the most commonly-used operators you're legally allowed to overload in C++, along with any restrictions about how you should define the operator.
Operator Yields Usage
= Lvalue MyClass& operator =(const MyClass& other);See the the earlier chapter for details.
+= -= *=
/= %=

(etc.)

Lvalue MyClass& operator +=(const MyClass& other);When  writing  compound  assignment  operators,  make  sure  that  you  correctly handle “self-compound-assignment.”
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+ - * / %

(etc.)

Rvalue const MyClass operator + (const MyClass& one,
                          const MyClass& two);These operator should be defined as a free functions.

< <= ==
> >= !=

Rvalue bool operator < (const MyClass& other) const;
bool operator < (const MyClass& one,
                 const MyClass& two);If you're planning to use relational operators only for the STL container classes, you just need to overload the < operator.  Otherwise, you should overload all six so that users aren't surprised that  one != two is illegal while  !(one == two) is defined.

[] Lvalue       ElemType& operator [](const KeyType& key);
const ElemType& operator [](const KeyType& key) const;Most of the time you'll need a const-overloaded version of the bracket operator. Forgetting to provide one can lead to a real headache!

++ -- Prefix: Lvalue
Postfix: Rvalue

Prefix version: MyClass& operator ++();Postfix version: const MyClass operator ++(int dummy);
- Rvalue const MyClass operator -() const;
* Lvalue ElemType& operator *() const;With this function, you're allowing your class to act as though it's a pointer.  The return type should be a reference to the object it's “pointing” at.  This is how the  STL iterators and smart pointers work.  Note that this is the unary * operator and is not the same as the * multiplicative operator.
-> Lvalue ElemType* operator ->() const;If the -> is overloaded for a class, whenever you write  myClass->myMember, it's equivalent  to  myClass.operator ->()->myMember.   Note  that  the  function should be const even though the object returned can still modify data.  This has to do with how pointers can legally be used in C++.  For more information, refer to the chapter on const.
<< >> Lvalue friend ostream& operator << (ostream& out,

                             const MyClass& mc);
friend istream& operator >> (istream& in,
                             MyClass& mc);

() Varies See the chapter on functors.
Extended Example: grid

The STL encompasses a wide selection of associative and sequence containers.  However, one useful data type 
that did not find its way into the STL is a multidimensional array class akin to the CS106B/X Grid.  In this ex-
tended example, we will  implement an STL-friendly version of the CS106B/X  Grid class, which we'll  call 
grid,  that  will  support  STL-compatible  iterators,  intuitive  element-access  syntax,  and  relational  operators. 
Once we're done, we'll have an industrial-strength container class we will use later in this book to implement  
more complex examples.Implementing a fully-functional grid may seem daunting at first, but fortunately it's easy to break the work up into several smaller steps that culminate in a working class.
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Step 0: Implement the Basic grid Class.Before diving into some of the grid's more advanced features, we'll begin by implementing the grid ba-sics.  Below is a partial specification of the grid class that provides core functionality:
Figure 0: Basic (incomplete) interface for the grid class
template <typename T> class grid {
public:
    /* Constructors, destructors. */
    grid();                               // Create empty grid
    grid(size_t rows, size_t cols);       // Construct to specified size
    /* Resizing operations. */
    void clear();                          // Empty the grid
    void resize(size_t rows, size_t cols); // Resize the grid

    /* Query operations. */    
    size_t numRows() const;              // Returns number of rows in the grid
    size_t numCols() const;              // Returns number of columns in the grid
    bool empty() const;                  // Returns whether the grid is empty
    size_t size() const;                 // Returns the number of elements
    /* Element access. */
          T& getAt(size_t row, int col);    // Access individual elements
    const T& getAt(int row, int col) const; // Same, but const
};These functions are defined in greater detail here:
grid(); Constructs a new, empty grid.
grid(size_t rows, size_t cols); Constructs a new  grid with the specified number of rows and columns.  Each element in the grid is initialized to its default value.
void clear(); Resizes the grid to 0x0.
void resize(size_t rows, size_t cols); Discards the current contents of the grid and res-izes the grid to the specified size.  Each element in the grid is initialized to its default value.
size_t numRows() const;
size_t numCols() const; Returns  the  number  of  rows and columns in  the 

grid.
bool empty() const; Returns  whether  the  grid contains  no  elements. This is true if either the number of rows or columns is zero.
size_t size() const; Returns the number of total elements in the grid.
      T& getAt(size_t row, size_t col);
const T& getAt(size_t row, size_t col) const; Returns a reference to the element at the specified position.  This function is  const-overloaded.  We won't worry about the case where the indices are out of bounds.Because grids can be dynamically resized, we will need to back grid with some sort of dynamic memory management.  Because the grid represents a two-dimensional entity, you might think that we need to use 



- 316 -  Chapter 10: Operator Overloadinga dynamically-allocated multidimensional array to store grid elements.  However, working with dynamic-ally-allocated multidimensional arrays is tricky and greatly complicates the implementation.  Fortunately, we can sidestep this problem by implementing the two-dimensional grid object using a single-dimension-al array.  To see how this works, consider the following 3x3 grid:0 1 23 4 56 7 8We can represent all of the elements in this grid using a one-dimensional array by laying out all of the ele -ments sequentially, as seen here:0 1 2 3 4 5 6 7 8If you'll notice, in this ordering, the three elements of the first row appear in order as the first three ele -ments, then the three elements of the second row in order, and finally the three elements of the final row in order.  Because this one-dimensional representation of a two-dimensional object preserves the ordering of individual rows, it is sometimes referred to as row-major order.To represent a grid in row-major order, we need to be able to convert between grid coordinates and array  indices.  Given a coordinate (row, col) in a grid of dimensions (nrows, ncols), the corresponding position in the row-major order representation of that grid is given by index = col + row * ncols.  The intuition behind this formula is that because the ordering within any row is preserved, each horizontal step in the grid  translates into a single step forward or backward in the row-major order representation of the grid.  How-ever, each vertical step in the grid requires us to advance forward to the next row in the linearized grid,  skipping over ncols elements.Using row-major order, we can back the grid class with a regular STL vector, as shown here:
    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

              T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };
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    template <typename T> grid<T>::grid() : rows(0), cols(0) {

    }

    template <typename T> 
    grid<T>::grid(size_t rows, size_t cols) 
      : elems(rows * cols), rows(rows), cols(cols) {
    }

    template <typename T> void grid<T>::clear() {
        resize(0, 0);
    }

    template <typename T> void grid<T>::resize(size_t rows, size_t cols) {
        /* See below for assign */
        elems.assign(rows * cols, ElemType());

        /* Explicit this-> required since parameters have same name as members. */
        this->rows = rows;
        this->cols = cols;
    }

    template <typename T> size_t grid<T>::numRows() const {
        return rows;
    }

    template <typename T> size_t grid<T>::numCols() const {
        return cols;
    }

    template <typename T> bool grid<T>::empty() const {
        return size() == 0;
    }

    template <typename T> size_t grid<T>::size() const {
        return numRows() * numCols();
    }

    /* Use row-major ordering to access the proper element of the vector. */
    template <typename T> T& grid<T>::getAt(size_t row, size_t col) {
        return elems[col + row * cols];
    }
    template <typename T> const T& grid<T>::getAt(size_t row,size_t col) const {
        return elems[col + row * cols];
    }
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ize in that it changes the size of the vector, but unlike resize assign discards all of the current vector contents and replaces them with the specified number of copies of the specified element.   The use of 
ElemType() as the second parameter to assign means that we will fill the vector with copies of the de-fault value of the type being stored (since ElemType() uses the temporary object syntax to create a new 
ElemType).
Step 1: Add Support for IteratorsNow that we have the basics of a grid class, it's time to add iterator support.  This will allow us to plug the 
grid directly into the STL algorithms and will be invaluable in a later chapter.Like the map and set, the grid does not naturally lend itself to a linear traversal – after all, grid is two-di-mensional – and so we must arbitrarily choose an order in which to visit elements.  Since we've implemen-ted the grid in row-major order, we'll have grid iterators traverse the grid row-by-row, top to bottom, from left to right.  Thus, given a 3x4 grid, the order of the traversal would be0 1 23 4 56 7 89 10 11This order of iteration maps naturally onto the row-major ordering we've chosen for the grid.  If we con-sider how the above grid would be laid out in row-major order, the resulting array would look like this:0 1 2 3 4 5 6 7 8 9 10 11Thus this iteration scheme maps to a simple linear traversal of the underlying representation of the grid. Because we've chosen to represent the elements of the grid using a vector, we can iterate over the ele-ments of the grid using vector iterators.  We thus add the following definitions to the grid class:
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    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

        T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

        typedef typename vector<T>::iterator iterator;
        typedef typename vector<T>::const_iterator const_iterator;

    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };Now, clients of  grid can create  grid<int>::iterators rather than  vector<int>::iterators.  This makes the interface more intuitive and increases encapsulation; since iterator is a typedef, if we later decide to replace the underlying representation with a dynamically-allocated array, we can change the ty-
pedefs to
    typedef ElemType* iterator;
    typedef const ElemType* const_iterator;And clients of the grid will not notice any difference.Notice that in the above typedefs we had to use the typename keyword to name the type vector<Elem-
Type>::iterator.   This is the pesky edge case mentioned in the chapter on templates and somehow manages to creep into more than its fair share of code.  Since iterator is a nested type inside the tem-plate type  vector<ElemType>, we have to use the  typename keyword to indicate that  iterator is the name of a type rather than a class constant.We've now defined an iterator type for our grid, so what functions should we export to the grid cli-ents?  We'll at least want to provide support for begin and end, as shown here:
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    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

        T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

        typedef typename vector<T>::iterator iterator;
        typedef typename vector<T>::const_iterator const_iterator;

              iterator begin();
        const_iterator begin() const;
              iterator end();
        const_iterator end() const;
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };We've provided two versions of each function so that clients of a const grid can still use iterators.  These functions are easily implemented by returning the value of the underlying vector's begin and end func-tions, as shown here:
    template <typename T> typename grid<T>::iterator grid<T>::begin() {
        return elems.begin();
    }Notice that the return type of this function is  typename grid<ElemType>::iterator rather than just 
iterator.  Because iterator is a nested type inside grid, we need to use grid<ElemType>::iterator to  specify  which iterator  we want,  and since  grid is  a  template  type  we have to  use  the  typename keyword to indicate that iterator is a nested type.  Otherwise, this function should be straightforward.The rest of the functions are implemented here:
    template <typename T> typename grid<T>::const_iterator grid<T>::begin() const {
        return elems.begin();
    }

    template <typename T> typename grid<T>::iterator grid<T>::end() {
        return elems.end();
    }

    template <typename T> typename grid<T>::const_iterator grid<T>::end() const {
        return elems.end();
    }
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    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

        T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

        typedef typename vector<ElemType>::iterator iterator;
        typedef typename vector<ElemType>::const_iterator const_iterator;

              iterator begin();
        const_iterator begin() const;
              iterator end();
        const_iterator end() const;

              iterator row_begin(size_t row);
        const_iterator row_begin(size_t row) const;
              iterator row_end(size_t row);
        const_iterator row_end(size_t row) const;
 
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };Before implementing these functions, let's take a minute to figure out exactly where the iterations we re -turn should point to.  Recall that the element at position (row, 0) in a grid of size (rows, cols) can be found at position row * cols.  We should therefore have row_begin(row) return an iterator to the row * cols ele-ment of the vector.  Since there are cols elements in each row and row_end should return an iterator to one position past the end of the row, this function should return an iterator to the position cols past the location returned by  row_begin.   Given this information, we can implement these functions as shown here:
    template <typename T> typename grid<T>::iterator grid<T>::row_begin(int row) {
        return begin() + numCols() * row;
    }

    template <typename T> 
        typename grid<T>::const_iterator grid<T>::row_begin(int row) const {
        return begin() + numCols() * row;
    }
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    template <typename T> typename grid<T>::iterator grid<T>::row_end(int row) {
        return row_begin(row) + numCols();
    }

    template <typename T>
        typename grid<T>::const_iterator grid<T>::row_end(int row) const {
        return row_begin(row) + numCols();
    }We now have an elegant iterator interface for the grid class.  We can iterate over the entire container as a whole, just one row at a time, or some combination thereof.  This enables us to interface the grid with the STL algorithms.  For example, to zero out a grid<int>, we can use the fill algorithm, as shown here:
    fill(myGrid.begin(), myGrid.end(), 0);We can also sort the elements of a row using sort:
    sort(myGrid.row_begin(0), myGrid.row_end(0));With only a handful of functions we're now capable of  plugging directly into the full  power of the al-gorithms.  This is part of the beauty of the STL – had the algorithms been designed to work on containers  rather than iterator ranges, this would not have been possible.
Step 2: Add Support for the Element Selection OperatorWhen using regular C++ multidimensional arrays, we can write code that looks like this:
    int myArray[137][42];
    myArray[2][4] = 271828;
    myArray[9][0] = 314159;However, with the current specification of the grid class, the above code would be illegal if we replaced the multidimensional array with a grid<int>, since we haven't provided an implementation of operat-
or [].Adding support for element selection to linear classes like the  vector is simple – we simply have the brackets operator return a reference to the proper element.  Unfortunately, it is much trickier to design 
grid such that the bracket syntax works correctly.  The reason is that if we write code that looks like this:
    grid<int> myGrid(137, 42);
    int value = myGrid[2][4];By replacing the bracket syntax with calls to operator [], we see that this code expands out to
    grid<int> myGrid(137, 42);
    int value = (myGrid.operator[] (2)).operator[] (4);Here, there are two calls to operator [], one invoked on myGrid and the other on the value returned by 
myGrid.operator[](2).   To  make  the  above  code  compile,  the  object  returned  by  the  grid's 
operator[] must itself define an operator [] function.  It is this returned object, rather than the grid itself, which is responsible for retrieving the requested element from the grid.  Since this temporary ob-ject is used to perform a task normally reserved for the grid, it is sometimes known as a proxy object.
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    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */

        class MutableReference {
        public:
            friend class grid;
            T& operator[] (size_t col);

        private:
            MutableReference(grid* owner, size_t row);
        
            grid* const owner;
            const size_t row;
        };
 
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };The  MutableReference object stores some a pointer to the  grid that created it, along with the index passed in to the  grid's  operator [] function when the  MutableReference was created.  That way, when we invoke the MutableReference's operator [] function specifying the col coordinate of the grid, we can pair it with the stored row coordinate, then query the grid for the element at (row, col).  We have also made grid a friend of MutableReference so that the grid can call the private constructor neces-sary to initialize a MutableReference.We can implement MutableReference as follows:
    template <typename T>
        grid<T>::MutableReference::MutableReference(grid* owner, int row) :
           owner(owner), row(row) {
    }

    template <typename T>
        T& grid<T>::MutableReference::operator[] (int col) {
        return owner->getAt(row, col);
    }Notice that because MutableReference is a nested class inside grid, the implementation of the Muta-
bleReference functions is prefaced with grid<ElemType>::MutableReference instead of just Muta-
bleReference.  However, in this particular case the pesky typename keyword is not necessary because we are prototyping a function inside MutableReference rather than using the type MutableReference in an expression.Now that we've implemented  MutableReference,  we'll define an  operator [] function for the  grid class that constructs and returns a properly-initialized MutableReference.  This function accepts an row 
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    int value = myGrid[1][2];The following sequences of actions occurs:

1. myGrid.operator[] is invoked with the parameter 1.
2. myGrid.operator[] creates a MutableReference storing the row coordinate 1 and a means for communicating back with the myGrid object.
3. myGrid.operator[] returns this MutableReference.
4. The returned MutableReference then has its operator[] function called with parameter 2.
5. The returned MutableReference then calls back to the myGrid object and asks for the element at position (1, 2).This sequence of actions is admittedly complex, but is transparent to the client of the grid class and runs efficiently.

operator[] is defined and implemented as follows:
    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */

        class MutableReference {
        public:
            friend class grid;
            T& operator[] (size_t col);

        private:
            MutableReference(grid* owner, size_t row);
        
            grid* const owner;
            const size_t row;
        };
        MutableReference operator[] (int row);
     
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

    template <typename T>
        typename grid<T>::MutableReference grid<T>::operator[] (int row) {
        return MutableReference(this, row);
    }Notice that we've only provided an implementation of the non-const version of operator[].  But what if we want to use operator[] on a const grid?  We would similarly need to return a proxy object, but that object would need to guarantee that grid clients could not write code like this:
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    const grid<int> myGrid(137, 42);
    myGrid[0][0] = 2718; // Ooops!  Modified const object!To prevent this sort of problem, we'll have the const version of operator[] return a proxy object of a dif-ferent type, called  ImmutableReference which behaves similarly to  MutableReference but which re-turns const references to the elements in the grid.  This results in the following interface for grid:
    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */
    
        class MutableReference {
        public:
            friend class grid;
            T& operator[] (size_t col);
    
        private:
            MutableReference(grid* owner, size_t row);
        
            grid* const owner;
            const size_t row;
        };
        MutableReference operator[] (int row);
    
        class ImmutableReference {
        public:
            friend class grid;
            const T& operator[] (size_t col) const;
    
        private:
            MutableReference(const grid* owner, size_t row);
        
            const grid* const owner;
            const size_t row;
        };
        ImmutableReference operator[] (size_t row) const;
     
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

ImmutableReference and the const version of operator[] are similar to MutableReference and the non-const version of operator[], and to save space we won't write it here.  The complete listing of the 
grid class at the end of this chapter contains the implementation if you're interested.
Step 3: Define Relational OperatorsNow that our  grid has full support for iterators and a nice bracket syntax that lets us access individual elements, it's time to put on the finishing touches.  As a final step in the project, we'll provide implementa -tions of the relational operators for our grid class.  We begin by updating the grid interface to include the following functions:
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    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */
    
        bool operator <  (const grid& other) const;
        bool operator <= (const grid& other) const;
        bool operator == (const grid& other) const;
        bool operator != (const grid& other) const;
        bool operator >= (const grid& other) const;
        bool operator >  (const grid& other) const;
     
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };Note that of the six operators listed above, only the == and != operators have intuitive meanings when ap-plied to grids.  However, it also makes sense to define a < operator over grids so that we can store them in STL map and set containers, and to ensure consistency, we should define the other three operators as well.Because there is no natural interpretation for what it means for one grid to be “less than” another, we are free to implement these functions in any way that we see fit, provided that we obey transitivity and tricho -tomy.  As mentioned earlier it is possible to implement all six of the relational operators in terms of the  less-than operator.  One strategy for implementing the relational operators is thus to implement just the  less-than operator and then to define the other five as wrapped calls to operator <.  But what is the best way to determine whether one grid compares less than another?  One general approach is to define a lex-
icographical ordering over grids.  We will compare each field one at a time, checking to see if the fields are equal.  If so, we move on to the next field.  Otherwise, we immediately return that one grid is less than an-other without looking at the remaining fields.  If we go through every field and find that the  grids are equal, then we can return that neither grid is less than the other.  This is similar to the way that we might  order words alphabetically – we find the first mismatched character, then return which word compares first.  We can begin by implementing operator < as follows:
    template <typename T> bool grid<T>::operator < (const grid& other) const {
        /* Compare the number of rows and return if there's a mismatch. */
        if(rows != other.rows)
            return rows < other.rows;

        /* Next compare the number of columns the same way. */
        if(cols != other.cols)
            return cols < other.cols;

        /* ... */
    }Here, we compare the rows fields of the two objects and immediately return if they aren't equal.  We can then check the cols fields in the same way.  Finally, if the two grids have the same number of rows and columns, we need to check how the elements of the grids compare.  Fortunately, this is straightforward thanks to the STL lexicographical_compare algorithm.  lexicographical_compare accepts four iter-ators delineating two ranges, then lexicographically compares the elements in those ranges and returns if  the first range compares lexicographically less than the second.  Using  lexicographical_compare, we can finish our implementation of operator < as follows:
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    template <typename T> bool grid<T>::operator < (const grid& other) const {
        /* Compare the number of rows and return if there's a mismatch. */
        if(rows != other.rows)
            return rows < other.rows;

        /* Next compare the number of columns the same way. */
        if(cols != other.cols)
            return cols < other.cols;

        return lexicographical_compare(begin(), end(), other.begin(), other.end());
    }All that's left to do now is to implement the other five relational operators in terms of operator <.  This is done below:
    template <typename T> bool grid<T>::operator >=(const grid& other) const { 
        return !(*this < other);  
    } 
  
    template <typename T> bool grid<T>::operator ==(const grid& other) const {  
        return !(*this < other) && !(other < *this); 
    } 
  
    template <typename T> bool grid<T>::operator !=(const grid& other) const {  
        return (*this < other) || (other < *this); 
    }  
 
    template <typename T> bool grid<T>::operator > (const grid& other) const { 
        return other < *this;  
    } 
  
    template <typename T> bool grid<T>::operator <=(const grid& other) const {  
        return !(other < *this); 
    }At this point we're done!  We now have a complete working implementation of the grid class that sup-ports iteration, element access, and the relational operators.  To boot, it's implemented on top of the vec-
tor, meaning that it's slick and efficient.  This class should be your one-stop solution for applications that  require a two-dimensional array.
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More to ExploreOperator overloading is an enormous topic in C++ and there's simply not enough space to cover it all in this chapter.  If you're interested in some more advanced topics, consider reading into the following:
1. Overloaded new and delete: You are allowed to overload the new and delete operators, in case you want to change how memory is allocated for your class.  Note that the overloaded new and de-

lete operators simply change how memory is allocated, not what it means to write new MyClass. Overloading new and delete is a complicated task and requires a solid understanding of how C++ memory management works, so be sure to consult a reference for details.
2. Conversion functions: In an earlier chapter, we covered how to write conversion constructors,  functions that convert objects of other types into instances of your new class.  However, it's pos-sible to use operator overloading to define an implicit conversion from objects of your class into objects of other types.  The syntax is operator Type(), where Type is the data type to convert your object to.  Many professional programmers advise against conversion functions, so make sure that they're really the best option before proceeding.

Practice ProblemsOperator overloading is quite difficult because your functions must act as though they're the built-in oper-ators.  Here are some practice problems to get you used to overloading operators:
1. What is an overloaded operator? 
2. What is an lvalue?  An rvalue?  Does the + operator yield an lvalue or an rvalue?  How about the pointer dereference operator? 
3. Are overloaded operators inherently more efficient than regular functions? 
4. Explain how to implement operator + in terms of operator +=. 
5. What is the signature of an overloaded operator for subtraction?  For unary negation? 
6. How do you differentiate between the prefix and postfix versions of the ++ operator? 
7. What does the -> operator return? 
8. What is a friend function?  How do you declare one? 
9. How do you declare an overloaded stream insertion operator? 
10. What is trichotomy and why is it important to C++ programmers? 
11. What is transitivity and why is it important to C++ programmers? 
12. In Python, it is legal to use negative array indices to mean “the element that many positions from the  end  of  the  array.”   For  example,  myArray[-1] would  be  the  last  element  of  an  array, 

myArray[-2] the penultimate element, etc.  Using operator overloading,  it's possible to imple-ment this functionality for a custom array class.  Do you think it's a good idea to do so?  Why or  why not?  Think about the principle of least astonishment when answering.
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13. Why is it better to implement + in terms of += instead of += in terms of +? (Hint: Think about the  

number of objects created using += and using +.)

14. Consider the following definition of a Span struct:
 
struct Span {
    int start, stop;
};
 The Span struct allows us to define the range of elements from [start, stop) as a single variable. Given this definition of Span and assuming start and stop are both non-negative, provide anoth-er bracket operator for our Vector class that selects a range of elements.
 

15. Consider the following interface for a class that iterates over a container of ElemTypes:
 
class iterator {
public:
    bool operator== (const iterator& other);
    bool operator!= (const iterator& other);
 
    iterator operator++ ();

    ElemType* operator* () const;
    ElemType* operator-> () const;
};
 There are several mistakes in the definition of this iterator.  What are they?  How would you fix  them? 

16. The implementation of  the  grid class's  operator== and  operator!= functions  implemented those operators in terms of the less-than operator.  This is somewhat inefficient, since it's more direct to simply check if the two grids are equal or unequal rather than to use the comparison op-erators.  Rewrite the grid's operator== function to directly check whether the grids are identic-al.  Then rewrite operator!= in terms of operator==. 
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