
CS106B FINAL REFERENCE SHEET

For-each loop iteration over collection (not Stack,Queue,PriorityQueue): for (type name : collection) { ... }
* All Big-Oh runtimes listed are average-case; some methods perform differently under various cases.

Vector<T>
v.add(val) or v += val append value to end of vector O(1) *
v.clear() remove all elements O(1)
v.get(i) or v[i] return value at given index O(1)
v.insert(i, val) insert value at given index, shifting subsequent values right O(N)
v.isEmpty() return true if no elements O(1)
v.remove(i) remove value at given index, shifting subsequent values left O(N)
v.set(i, val) or v[i] = val replace value at given index O(1)
v.size() return count of elements O(1)
v.subList(start, length) create vector copy containing subrange of elements O(N)

Grid<T>
g.get(row, col) or g[row][col] or g[location] return value at given row/column location O(1)
g.inBounds(row, col) or g.inBounds(location) return true if given row/column location is within grid bounds O(1)
g.locations() return GridLocationRange for entire grid O(1)
g.numCols() return count of columns O(1)
g.numRows() return count of rows O(1)
g.set(row, col, val) or g[row][col] = val or
g[location] = val

replace value at given row/column location O(1)

 GridLocation GridLocationRange
GridLocation(row,col) constructor GridLocationRange(

 startRow, startCol,
 endRow, endCol)

constructor, start/end locations are inclusive

loc.row access row field r.contains(loc) return true if location contained in range
loc.col access col field r.isEmpty() return true if range is empty
 r.startLocation()

r.endLocation()
return start/end as GridLocation

 for (GridLocation loc: r) iterate over locations in range

 Stack<T> Queue<T>
s.clear() remove all elements O(1) q.clear() remove all elements O(N)
s.push(val) add value to top of stack O(1) q.enqueue(val) add value to back of queue O(1)
s.pop() remove/return top value

pop/peek error if empty
O(1) q.dequeue() remove/return front value

dequeue/peek error if empty
O(1)

s.peek() return top value without removing O(1) q.peek() return front value without removing O(1)
s.isEmpty() return true if no elements O(1) q.isEmpty() return true if no elements O(1)
s.size() return count of elements O(1) q.size() return count of elements O(1)

Set<T>, HashSet<T>
s.add(val) or s += val add value to set; if a duplicate, no effect O(log N), O(1)
s.clear() remove all elements O(N)
s.contains(val) return true if value contained in set O(log N), O(1)
s.first() return first element from set (does not remove it) O(log N), O(1)
s.isEmpty() return true if no elements O(1)
s1.isSubsetOf(s2) return true if s2 contains all elements of s1 O(N)
s.remove(val) or s -= val remove value from set if contained O(log N), O(1)
s.size() return count of elements O(1)
s1 == s2, s1 != s2 operators for set equality testing O(N)
s1.unionWith(s2) change s1 to add all elements of s2 O(NlogN), O(N)
s1.intersect(s2) change s1 to remove all elements not in s2 O(NlogN), O(N)
s1.difference(s2) change s1 to remove all elements of s2 O(NlogN), O(N)

CS106B FINAL REFERENCE SHEET

Map<K,V>, HashMap<K,V>
m.clear() remove all key/value pairs O(N)
m.containsKey(key) return true if map contains a pair for given key O(log N), O(1)
m.get(key) or m[key] return value paired with given key

(or a default value such as 0, false, "" if key is not present)
O(log N), O(1)

m.isEmpty() return true if no key/value pairs O(1)
m.keys() create Vector copy of all keys O(N)
m.put(key, val) or m[key] = val add a pairing of given key to given value O(log N), O(1)
m.remove(key) remove any existing pairing for given key O(log N), O(1)
m.size() return count of key/value pairs O(1)
m.values() create Vector copy of all values O(N)

A for-each loop on a map iterates over the keys, not the values.

PriorityQueue<V>
pq.clear() remove all entries O(N)
pq.dequeue() remove/return value of frontmost entry, frontmost = most urgent priority,

dequeue/peek error if empty
O(log N)

pq.enqueue(val, priority) add entry for value with given priority O(log N)
pq.isEmpty() return true if no entries O(1)
pq.peek() return value of frontmost entry O(1)
pq.peekPriority() return priority of frontmost entry O(1)
pq.size() return count of entries O(1)

Lexicon

lex.contains(word) return true if given word contained in lexicon O(1)
lex.containsPrefix(prefix) return true if any word in lexicon starts with given prefix O(1)

string, strlib.h
str.at(i) or s[i] return character at given 0-based index
str.append(text) add text to end of string (in-place)
str.compare(str2) return -1, 0, or 1 depending on relative ordering
str.erase(i, length) delete text of given length starting at given index (in-place)
str.find(text) return first index of matching text (or string::npos if not found)
str.insert(i, text) add text at a given index (in-place)
str.length() or str.size() return count of characters
str.replace(i, length, text) replace given length chars at given index with text (in-place)
str.substr(start, length) or
 str.substr(start)

return new string consisting of length characters from given start index
if length argument omitted, grabs from start index to end of string

endsWith(str, suffix), startsWith(str, prefix) return true if string begins or ends with the given prefix/suffix
integerToString(i), stringToInteger(str) conversion between number and string
stringContains(str, text) return true if text contained in string
stringSplit(str, separator) divide a string into Vector of substrings divided by separator
toLowerCase(str), toUpperCase(str) return new upper/lowercase string

random.h

randomChance(probability) return random bool of true/false with the given probability of true from 0..1
randomInteger(min, max) return random integer in range [min-max], inclusive

 SimpleTest
STUDENT_TEST("Example test cases") {
 Vector<int> v;
 EXPECT(v.isEmpty());
 EXPECT_EQUAL(1 + 2, 3);
 EXPECT_ERROR(empty[0]);
}

