
Practice Final 4
CS106B, Winter 2024

Last (Family) Namex

First (Given) Namex

Stanford E-mailx @stanford.edu

Exam Instructions

There are 6 questions worth a total of 105 points. Write all answers directly on the exam paper in the provided

spaces for each question. Do not add or remove pages to this exam, and do not remove the staple. This printed exam

is closed-book and closed-device; you may refer only to our provided reference sheet. You are required to write your

SUID number in the blank at the top of each odd-numbered page.

Unless otherwise restricted in the instructors for a specific problem, you are free to use any of the CS106B libraries

and classes. You don’t need #include statements in your solutions; just assume the required header files (vector.h,

strlib.h, etc.) are visible. You do not need to declare prototypes. You are free to create helper functions unless the

problem states otherwise. Comments are not required, but when your code is incorrect, comments could clarify your

intentions and help the graders award partial credit.

The Stanford University Honor Code (2023 Revision)

The Honor Code is an undertaking of the Stanford academic community, individually and collectively. Its

purpose is to uphold a culture of academic honesty.

Students will support this culture of academic honesty by neither giving nor accepting unpermitted academic aid in

any work that serves as a component of grading or evaluation, including assignments, examinations, and research.

Instructors will support this culture of academic honesty by providing clear guidance, both in their course syllabi

and in response to student questions, on what constitutes permitted and unpermitted aid. Instructors will also not

take unusual or unreasonable precautions to prevent academic dishonesty.

Students and instructors will also cultivate an environment conducive to academic integrity. While instructors alone

set academic requirements, the Honor Code is a community undertaking that requires students and instructors to

work together to ensure conditions that support academic integrity.

In signing below, I acknowledge, accept, and agree to abide by both the letter and the spirit of the Stanford Honor

Code. I will not receive any unpermitted aid on this test, nor will I give any. I do not have any advance knowledge of

what questions will be asked on this exam. My answers are my own work.

(signature) (required)

Page 2 of 16

1. Recursive Backtracking (20 pts)

Given two strings, s1 and s2 , a “drip word” for those strings is any English word that can be constructed by starting

with an empty string and then repeating the following two steps any number of times:

1. Remove the first character from either s1 or s2 .

2. Either discard the character removed in Step 1, or append it to the end of the string we are building.

For example, given the strings s1 = "cat" and s2 = "dogs" , one drip word we can create is “dot” (take the ‘d’

from s2 , take the ‘o’ from s2 , discard the ‘c’ from s1 , discard the ‘a’ from s1 , take the ‘t’ from s1 , and stop). In

contrast, “got” is not a drip word for s1 and s2 ; the only way to start our string with ‘g’ would be to discard the ‘d’ and

‘o’ from s2 , and once they are discarded, we cannot then get them back and place them in our string after the ‘g’.

(These are called “drip words” because we can imagine s1 and s2 are made of wax, and we are heating them up from

the leftmost character and “dripping” the characters one by one into our new string, or discarding the dripping characters

as we go.)

Write a function that takes two strings, s1 and s2 , and returns a set of all their drip strings.

• You must write a recursive helper function.

• Your recursive helper function must use backtracking techniques to generate its results. Namely, as you generate

drip string candidates, you should only continue to explore ones that could potentially lead to valid results. As

soon as it becomes clear that a string you have generated cannot lead to any valid results, stop exploring that

dead-end path.

• The string you are building can be passed to your helper function by value or by reference – whatever you find

easier to work with. s1 and s2 must be passed by reference. Be sure to consider the implications of passing

those parameters by reference as you construct your solution.

• You may assume we have a lexicon with valid English words. See function signature on next page.

• You may assume all alphabetic characters in s1 , s2 , and our lexicon input file are lowercase.

Please write your solution on the following page.

 Your SUID number (required): Page 3 of 16

// Finish coding this function, and write your recursive helper below.

Set<string> melt(string s1, string s2) {

Lexicon lex("EnglishWords.txt");

Page 4 of 16

2. Classes (20 pts) Let’s implement some graph functionality. You are ready for this! The Graph class stores

information about an unweighted, undirected graph using an adjacency matrix (in the form of a Grid<bool> variable).

class Graph {

 public:

 Graph(Grid<bool> matrix);

 void addEdge(int n1, int n2);

 void removeEdge(int n1, int n2);

 bool edge(int n1, int n2) const;

 Set<int> neighbors(int n1) const;

 int nodeCount() const;

 int edgeCount() const;

 private:

Grid<bool> _matrix;

 int _numNodes;

// use this space to declare any other private variables or member functions you need

 };

Constructor: Receives a grid as described below. Initialize all private class variables to reflect the graph contents. The
Grid<bool> matrix is guaranteed to be a valid adjacency matrix representation of an undirected, unweighted graph. If

matrix[n1][n2] is true , there is an edge from n1 to n2 in the graph (where n1 and n2 are node IDs, which are

just integers on the range 0 through _numNodes – 1). Otherwise, there is no edge from n1 to n2 . This matrix is

guaranteed to be well-formed: it will be a square (equal number of rows and columns, which is number of nodes in graph),

and since the graph is undirected, matrix[n1][n2] = matrix[n2][n1] for all valid indices n1 and n2 . After

instantiating a graph, the number of nodes it contains will not change, although edges may be added or removed.

Add edge: In O(1) time, add an edge between the given nodes if not already present.

Remove edge: Same as above, but remove the edge (if it exists) instead of adding. Runtime must be O(1).

Edge: In O(1) time, edge(n1, n2) returns true if there is an edge from n1 to n2 . Otherwise, return false .

Get neighbors: In O(n log n) time, neighbors(n1) returns a set of IDs (integers) for all nodes adjacent to node n1 .

Node count: In O(1) time, return the number of nodes in the graph.

Edge count: In O(1) time, return the number of edges in the graph. Since the graph is undirected, we do not count an edge
from n1 to n2 and an edge from n2 to n1 as two distinct edges. That’s just one edge.

 // sample usage

 Grid<bool> grid(3, 3); // graph will have 3 nodes, IDs 0 through 2

 grid[1][1] = true;

 grid[2][1] = true;

 grid[1][2] = true;

 Graph graph(grid); // graph has 3 nodes, 2 edges

 graph.addEdge(0, 2); // graph has 3 nodes, 3 edges

 EXPECT_EQUAL(graph.edge(2, 0), true); // this edge was added above

 EXPECT_EQUAL(graph.neighbors(1), {1, 2}); // 1 is adjacent to itself and 2

 graph.removeEdge(2, 1); // graph has 3 nodes, 2 edges

 EXPECT_EQUAL(graph.edge(1, 2), false); // this edge was removed above

 Your SUID number (required): Page 5 of 16

Implement this bare-bones Graph class, including the declaration of any additional private member variables or

functions (in the box above) and full implementation of the constructor and member functions (on this page).

Note: In the event that a function receives an invalid node ID, throw an error.

Page 6 of 16

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page unless you write a redirect from the original answer area to here.

 Your SUID number (required): Page 7 of 16

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page unless you write a redirect from the original answer area to here.

Page 8 of 16

3. Linked Lists (20 pts)

Consider the following Node struct, which is designed to implement a variation of a doubly linked list:

struct Node
 {
 int data;
 int pCnt; // count of the number of times this node has been pinged
 Node* next; // pointer to next node

Node* prev; // pointer to previous node
 };

Write a function called ping() that takes the head of a doubly linked list whose nodes are sorted by pCnt (from

largest to smallest), and some value to search for among the data fields in the list. If value is found in the list,

increment the node’s pCnt , and then rearrange the list as needed to restore the sorted order of nodes. (Thus, our nodes

end up sorted by how frequently they’ve been searched for. Neat!)

For example, suppose we call ping(head, 45) on the following list:

The resulting list would be as follows. Note that we have incremented the pCnt for the node with the value 45, and the

nodes are still sorted by pCnt (largest to smallest):

Following are various notes and restrictions for this problem:

1. There are no duplicate data values in the list. The same value will never occur in more than one node.

2. If the value passed to this function is not found in the list, the list should not change at all.

3. The list may be empty, in which case head will be nullptr .

4. The head node’s prev pointer and the tail node’s next pointer are both null.

5. You may create Node* pointer variables, but you must not allocate (new) or deallocate (delete) any nodes.

6. You cannot change the data value within a node. If a node needs to be repositioned in the list, you must rewire

the links between the nodes by modifying next and prev pointers.

7. Note that because we are incrementing pCnt , a node will only ever move left in the list (toward head), not right.

8. If a node needs to move after updating pCnt , start at the node in question and move left in the list to find its new

position. Please do not sort the whole list or remove the node and then reinsert it by starting at the head of the list.

9. When moving a node, you should not percolate it to the left one by one. Instead, seek the position where it needs

to move in the list, and then move it there. For instance, in the example shown above, there should not be an

intermediary step where the list looks like this:

data: 83
pCnt: 5

data: 12
pCnt: 2

data: 36
pCnt: 2

data: 45
pCnt: 2

data: 29
pCnt: 1

data: 62
pCnt: 1

data: 83
pCnt: 5

data: 12
pCnt: 2

data: 36
pCnt: 2

data: 29
pCnt: 1

data: 62
pCnt: 1

data: 45
pCnt: 1

data: 83
pCnt: 5

data: 12
pCnt: 2

data: 36
pCnt: 2

data: 29
pCnt: 1

data: 45
pCnt: 2

data: 62
pCnt: 1

 Your SUID number (required): Page 9 of 16

Repeated for your convenience as you start coding, here is the example list before calling ping(head, 45) :

Following is the list after calling ping(head, 45) . Note that we have incremented the pCnt for the node with the

value 45, and the nodes are still sorted by pCnt (largest to smallest):

NOTE: We have started this function for you, but there is one line to fill in below, and then the rest of your code will

be written on the following page. The space above can be used to trace through some of your ideas.

// Here is some code to get you started. Return true if we find the value, false otherwise.

bool ping(Node*& head, int value) {

 Node* current = head;

 while (current != nullptr && current->data != value) {

 current = current->next;

 }

 if (current == nullptr)

 return false;

 }

 current->pCnt++; // If we get here, we must have found what we were looking for!

 // FINISH THE LINE BELOW! What conditions would allow us to leave the function at this time?

 if (

 return true;

 }

data: 83
pCnt: 5

data: 12
pCnt: 2

data: 36
pCnt: 2

data: 29
pCnt: 1

data: 62
pCnt: 1

data: 45
pCnt: 1

data: 83
pCnt: 5

data: 12
pCnt: 2

data: 36
pCnt: 2

data: 45
pCnt: 2

data: 29
pCnt: 1

data: 62
pCnt: 1

Page 10 of 16

 // Now, find the node BEFORE which the current node needs to be placed. In the example above,

 // the goal is to find the node with 29. Be careful not to let this pointer become nullptr.

 // Once you get this pointer where it needs to be, rewire the nodes as needed. You might need

 // additional pointers for that. Be ever on the lookout not to dereference null pointers!

 Node* before = current->prev;

 Your SUID number (required): Page 11 of 16

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page unless you write a redirect from the original answer area to here.

Page 12 of 16

4. Binary Search Trees (20 pts)

a. Write a function that takes the root of a binary search tree and an integer threshold and returns the sum of all

leaf node values that meet or exceed the threshold value. Avoid unnecessary inefficiency as you traverse the BST.

For example, given the following tree and a threshold of 10, the function should return 10 + 23 + 30 = 63.

 22 // struct for this problem:

 / \ struct TreeNode {

 21 25 int data;

 / / \ TreeNode* left;

 9 23 30 TreeNode* right;

 / \ };

 7 10

 // Complete the code using this function signature. You may not write any helper functions.

int threshSum(TreeNode* root, int threshold) {

b. What is the best-case runtime for the function above, and what situation would lead to that best-case runtime?

(Be brief. Confine your answer to the space below in a fairly reasonable, non-squished font size.)

 Your SUID number (required): Page 13 of 16

5. Short Answer (15 pts)

a. Indicate whether each of the following is a valid BFS for the graph above (write “yes” or “no” in the provided box):

R A I N S L E B O U D

D O U N B I R E L S A

D O U B L E R A N I S

B O L D U E N R I A S

D O U N B E L R A I S

b. Indicate whether each of the following is a valid topological sort for the given graph (“yes” or “no”):

B A D E C A D C B E

A B C D E A D B C E

B A C D E

c. With respect to finding shortest paths in a graph, what does Dijkstra’s algorithm take into account that BFS does not?

D B

O

U

N

A

L

E

R I S

"yes" or "no"

"yes" or "no"

"yes" or "no"

"yes" or "no"

"yes" or "no"

A

B

C

D

E

"yes" or "no" "yes" or "no"

"yes" or "no""yes" or "no"

"yes" or "no"

Page 14 of 16

6. General Problem Solving (10 pts)

Consider the following backtracking code, which is attempting to find and return a pointer to an exit in a maze:

struct Cell
 {
 string content;
 Cell* up;
 Cell* down;

Cell* left;
 Cell* right;
 };

 Cell* findExit(Cell* start) {

 Cell* goal = nullptr;

 findExit(start, goal);

 return goal;

 }

bool findExit(Cell* current, Cell*& goal) {

 if (current == nullptr) {

 return false;

 }

 if (current->content == "exit") {

 goal = current;

 return true;

 } else if (findExit(current->up, goal)) {

 return true;

 } else if (findExit(current->down, goal)) {

 return true;

 } else if (findExit(current->left, goal)) {

 return true;

 } else if (findExit(current->right, goal)) {

 return true;

 } else {

 return false;

 }

 }

Given the following maze, our function is crashing from a stack overflow because it’s stuck running in circles:

The root cause of this error is that the code is not keeping track of states it has already visited. On the following page, you

will modify this code to solve this problem.

content:
start

content:
empty

content:
empty

content:
empty

content:
exit

left left

down
up

right

 Your SUID number (required): Page 15 of 16

Modify the following code so that it somehow keeps track of which cells it has already visited and returns from any

recursive call the brings it back to an already-visited cell.

• Efficiency matters. Implement a solution that is efficient both in terms of runtime and memory usage.

• You may not modify the Cell struct definition in any way, and you may not modify the contents of any of the

cells as you journey through the maze.

• You may, however, make changes to the parameters being passed to the recursive function.

• You may not remove lines of code, but you may add lines or slightly modify some of the existing lines.

• Do not simply change the order of the recursive calls so that the function works for the maze on the previous

page. The goal is to fix up the function so that it works on any maze it might receive.

• We have spaced out the following code so you can make your changes to it directly. Not every space requires a

change, however, and you might need to draw some arrows to show where exactly you want to insert certain lines.

 Cell* findExit(Cell* start) {

 Cell* goal = nullptr;

 findExit(start, goal);

 return goal;

 }

 bool findExit(Cell* current, Cell*& goal) {

 if (current == nullptr) {

return false;

 }

 if (current->content == "exit") {

 goal = current;

 return true;

 }

 else if (findExit(current->up, goal)) {

 return true;

 }

 else if (findExit(current->down, goal)) {

 return true;

 }

 else if (findExit(current->left, goal)) {

 return true;

 }

 else if (findExit(current->right, goal)) {

 return true;

 }

 else {

 return false;

 }

 }

Page 16 of 16

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page unless you write a redirect from the original answer area to here.

