Practice Final 2
CS106B, Fall 2022

Last (Family) Name

First (Given) Name

Stanford E-mail @stanford.edu

Exam Instructions

There are 4 questions on this exam. Write all answers directly on the exam paper in the provided spaces for each
question. Do not add or remove pages to this exam, and do not remove the staple. This printed exam is closed-book
and closed-device; you may refer only to our provided reference sheet. You are required to write your SUID number

in the blank at the top of each odd-numbered page.

Unless otherwise restricted in the instructors for a specific problem, you are free to use any of the CS106B libraries
and classes. You don’t need #include statements in your solutions; just assume the required header files (vector.h,
strlib.h, etc.) are visible. You do not need to declare prototypes. You are free to create helper functions unless the
problem states otherwise. Comments are not required, but when your code is incorrect, comments could clarify your

intentions and help the graders award partial credit.

The Stanford University Honor Code (This version of the Honor Code is now outdated.)

A. The Honor Code is an undertaking of the students, individually and collectively:

(1) that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in
class work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis
of grading;

(2) that they will do their share and take an active part in seeing to it that others as well as themselves uphold the
spirit and letter of the Honor Code.

B. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring
examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty
mentioned above. The faculty will also avoid as far as practicable, academic procedures that create temptations
to violate the Honor Code.

C. While the faculty alone has the right and obligation to set academic requirements, the students and faculty will

work together to establish optimal conditions for honorable academic work.

In signing below, I acknowledge, accept, and agree to abide by both the letter and the spirit of the Stanford Honor
Code. I will not receive any unpermitted aid on this test, nor will I give any. I do not have any advance knowledge of

what questions will be asked on this exam. My answers are my own work.

(signature) (required)

Page 2 of 14

Problem 1: Recursive backtracking

The game of Boggle is played using sixteen letter cubes. A letter cube is represented as a string
of length 6, one character on each of the six cube faces. Given a target word and a collection of
letter cubes, you want to spell the word using letters from the cubes, where each cube can be
used at most once.

For example, given the letter cubes {"etaoin", "shrdlu", "delwvy"}, you can spell "hey"
and "law" but neither "weld" nor "toe".

bool canSpell(string word, Vector<string>& cubes);

The function canSpell has two parameters: a word and a Vector of letter cubes. The function
returns true if possible to spell the word from the cubes and false otherwise.

Specifications:
* Your overall approach must use recursive backtracking.

* For full-credit, a solution must avoid needless inefficiency. In particular

it must stop if the word has been spelled

it must prune exploration that cannot lead to a successful result

it must not re-explore previously examined options

it must not copy or create any data structures (no additional vectors, arrays, lists, etc.
beyond the one vector passed by reference)

It is allowable to write a helper function, however, this problem can be cleanly solved
without one. Any helper function is subject to these same constraints.

Please write your answer on the following page.

Your SUID number (required): Page 3 of 14

bool canSpell(string word, Vector<string>& cubes)

Page 4 of 14

This page intentionally left blank.
You may use this space for scratch work (it will not be graded).

Your SUID number (required): Page 5 of 14

Problem 2: Classes

The RangeSet class represents a set of integer values drawn from a fixed-size range. The min
and max values of the range are configured in the constructor. Only values within the specified
range can be added to the set.

class RangeSet {
public:
RangeSet(int minValue, int maxValue);
~RangeSet();
bool add(int value);
int count() const;
private:
int getIndex(int value) const;

You are to write the complete RangeSet class, including the declaration of the private member
variables and implementation of the constructor, destructor and member functions.

Design: A RangeSet holds a set of values drawn from a specified range. The required internal
representation is a dynamic array of bool. Each array index corresponds to a value within the
range. The array element at an index is true if its corresponding value is contained in the set and
false otherwise. Your design can include other member variables as needed for the operations.
These additional variables must be of primitive type, not other ADTs or classes.

Constructor/destructor: The constructor creates an empty RangeSet over the range of values
from min to max, inclusive. The range must include at least one value to be valid; otherwise the
constructor raises an error. The constructor performs all necessary allocation and initialization
and the destructor performs any needed cleanup and deallocation.

Determine array index for a given value: The member function getIndex is a private helper that
returns the corresponding array index for a value or -1 if value is not within the range. For
example, for the RangeSet(3, 6), a call to getIndex(4) returns 1, getIndex(6) returns 3, and
getIndex(2) returns -1.

Add a value: add(value) adds a value to the set. This operation must run in O(1) time.

« If the value is not within the range or is already contained in the set, the set is unchanged and
returns false.

« If the value is within the range and not already contained in the set, the value is added to the
set and returns true.

* Hint: getIndex can be useful when implementing add.

Return count of values: count() returns the count of values contained in the set. This operation
must run in O(1) time.

Page 6 of 14

Below is sample client use of RangeSet. The comments show the contents of the internal array
after each line of code executes.

RangeSet rs(7, 11); // [false, false, false, false, false]
cout << rs.count() << endl; // prints @

rs.add(8); // [false, true, false, false, false]
rs.add(11); // [false, true, false, false, true]
cout << rs.count() << endl; // prints 2

RangeSet badset(5, 2); // Error!

Complete the RangeSet class implementation by declaring the private member variables.

class RangeSet {

public:

RangeSet(int minvalue, int maxVvalue); // Constructor

~RangeSet(); // Destructor

bool add(int value); // Add value to set

int count() const; // Return count of values in set
private:

int getIndex(int value) const; // get array index corresponding to value

// TODO: declare private member variables

Your SUID number (required): Page 7 of 14

Write the full implementation of the RangeSet class, including proper prototypes and bodies for
all five operations: constructor, destructor, add, count, and getIndex.

Page 8 of 14

Problem 3: Linked Lists

In Assignment 6, you implemented the runSort algorithm which repeatedly split a single sorted
run from the input list and combined it with the output list using binary merge. An alternate
implementation of runSort instead combines all runs using k-way merge, a generalization of
binary merge. Here is the algorithm:

Step 1) Separate (divide input into sorted runs)
* Split a sorted run from input list using provided splitRun helper function
* Enqueue run in priority queue with “priority” equal to the value of its front node
* Repeat until input list is empty, all runs now in the priority queue

Step 2) K-way Merge (combine runs into sorted output)
* Dequeue from priority queue to access the run with the smallest front value
* Detach front node of run and efficiently append node to output list
* If run remainder is non-empty, re-enqueue it with priority value of now-front node
* Repeat until all runs have been combined into output, priority queue now empty

The runSort function is given below.

struct ListNode {
int value;
ListNode* next;

};

void runSort(ListNode*& front) {
PriorityQueue<ListNode*> runs;

separate(front, runs);
front = kWayMerge(runs);

}

You are to write the functions separate and kWayMerge that work as described in Steps 1 and 2.

Specifications:

* The functions separate and kWayMerge operate by rewiring links between existing
ListNodes. Do not change/swap ListNode data values.

* You may declare ListNode* pointer variables but must not allocate nor deallocate any
ListNodes (no calls to new or delete).

* Do not copy or create other data structures (no additional queues, vectors, arrays, etc.
beyond the one priority queue declared in runSort).

Your SUID number (required): Page 9 of 14

// The splitRun helper detaches a sorted run from the front of the input
// list. It returns a pointer to the remainder of input list or nullptr if
// this was the final run.

// Example: given input {3 -> 5 -> 5 -> 4 -> 10 -> 4} splitRun detaches

// the run {3 -> 5 -> 5} and returns remainder list {4 -> 10 -> 4}.

// The runtime is O(len) where len is the length of the detached run.

ListNode* splitRun(ListNode* input);

a) Write the function separate to divide the list into sorted runs. (This is Step 1 on page 8). You
should call the splitRun helper; the code is not shown but you can assume the function works as
described above and is correctly implemented.

void separate(ListNode* front, PriorityQueue<ListNode*>& runs) {

Page 10 of 14

b) Write the function kWayMerge to merge the sorted runs. (This is Step 2 on page 8).

ListNode *kWayMerge(PriorityQueue<ListNode*>& runs) {

Your SUID number (required): Page 11 of 14

¢) What is the best-case big-O runtime of this version of runSort in terms of N, the length of the
input list? Briefly justify your reasoning and identify which kinds of inputs are best-case.

d) What is the worst-case big-O runtime of this version of runSort in terms of N, the length of
the input list? Briefly justify your reasoning and identify which kinds of inputs are worst-case.

Page 12 of 14

Problem 4: Trees

A tree is balanced if its left and right subtrees are balanced trees whose heights differ by at most
one. A binary search tree must be balanced to achieve 0(logN) runtime for insert and find. In
lecture, we discussed self-adjusting trees such as AVL that make frequent minor rearrangements
to maintain tree balance. An alternative approach is to watch and wait and if a significant
problem develops, then perform a complete tree rebalance.

The rebalance function given below is an O(N) operation that dismantles an existing tree into a
sorted vector of values and rebuilds a new balanced tree from the vector. You are to implement
the two helper functions used in the rebalance operation: dismantle and rebuild.

struct BSTNode {
int value;
BSTNode *left;
BSTNode *right;

};

BSTNode* rebalance(BSTNode* t) {
Vector<int> values;

dismantle(t, values); // fill vector with sorted values
return rebuild(values); // create balanced tree from vector

}

a) Trace the operation of rebalance on the tree below. Show the vector contents and draw the
resulting balanced tree.
22
/\
21 25
/\
23 30
/
27

\
28

Contents of vector:

Resulting tree:

Your SUID number (required): Page 13 of 14

b) Write the helper function dismantle to place the values into a vector and deallocate the tree.
The function arguments are a pointer to the root node of the tree and an empty vector. The
function fills the vector with the values from an inorder tree traversal and deallocates all nodes.
dismantle must traverse the tree only once.

void dismantle(BSTNode* t, Vector<int>& v)

Page 14 of 14

¢) Write the helper function rebuild to construct a new balanced binary search tree from the
values in a sorted vector.

Specifications:

The vector is in sorted order, which allows you to directly and efficiently build a balanced
tree. Consider which vector index to use as the root value and which indexes would belong
in the left subtree and which in the right subtree.

Hint: recall how the binary search algorithm subdivides a vector into subranges.
If possible to build more than one balanced tree, you are free to return any of them.
Your function should not traverse any path in the tree more than once (i.e. you cannot
rebuild the tree by repeatedly inserting values).
Do not copy or create other data structures (no additional vectors, arrays, stack, etc. beyond
the one vector passed by reference).
You will need a helper/wrapper function.

BSTNode* rebuild(Vector<int>& v)

