You can perform a for-each loop over any collection other than Stack and Queue:

for (type name : collection) { ... }
* Al Big-Ob runtimes listed are average-case; some methods perform differently under various cases.

Vector<T>
v.add(val) or v += val append value to end of vector o) *
v.clear() remove all elements O(1)
v.get(i) or v[i] return value at given index o)
v.insert(i, val) insert value at given index, shifting subsequent values right O(N)
v.isEmpty() return true if no elements O(1)
v.remove(1) remove value at given index, shifting subsequent values left O(N)
v.set(i, val) or Vil = val replace value at given index o)
v.size() return count of elements o)
v.subList(start, length) create vector copy containing subrange of elements O(N)

Grid<T>

g.get(row, col) or glrowllcol] or gllocation] return value at given row/column location o)
g.inBounds(row, col) or g.inBounds(location) return true if given row/column location is within grid bounds o)
g.locations() return GridLocationRange for entire grid o)
g.numCols() return count of columns o)
£.numRows () return count of rows o)
g.set(row, col, val) or glrowllcoll = val or replace value at given row/column location o)
gllocation] = val

GridLocation GridLocationRange
GridLocation(row, col) constructor GridLocationRange(constructor, start/end locations are inclusive
startRow, startCol,
endRow, endCol)
Ioc.row access row field r.contains(Joc) return true if location contained in range
Ioc.col access col field r.isEmpty() return true if range is empty
r.startLocation() return start/end as GridLocation
r.endLocation()
for (GridlLocation Ioc: r) iterate over locations in range
Stack<T> Queue<T>
s.clear() remove all elements o) g.clear() remove all elements ONN)
s.push(val) | add value to top of stack o) g-enqueue(val) | add value to back of queue o)
s.pop() remove/return top value o) g.dequeue() remove/return front value o)
pop/peek etror if empty dequeue/peek error if empty
s.peek() return top value without removing o) q-peek() return front value without removing o)
s.isEmpty() |return true if no elements oW q-isEmpty() return true if no elements o)
s.size() return count of elements O(1) g.size() return count of elements o)
Set<T>
s.add(val) or s += val add value to set; if a duplicate, no effect O(log N)
s.clear() remove all elements ONN)
s.contains(val) return true if value contained in set O(log N)
s.first() return first element from set (does not remove it) O(log N)
s.isEmpty() return true if no elements o)
s7.1isSubset0f (s2) return true if s2contains all elements of s7 O(N)
s.remove(val) or s -= val remove value from set if contained O(log N)
s.size() return count of elements o)
s7 == 52, sl 1= s2 operators for set equality testing O(N)
s7.unionWith(s2) change s7 to add all elements of s2 O(WlogN)
si.intersect(s2) change s7 to remove all elements not in s2 O(NlogN)
si.difference(s2) change s7 to remove all elements of s2 O(NlogN)

Map<K, V>

m.clear() remove all key/value pairs ONN)
m.containsKey (key) return true if map contains a pair for given key O(log N)
m.get(key) or mlkey] return value paired with given key O(log N)

(or a default value such as 0, false, "" if key is not present)

m. isEmpty () return true if no key/value pairs o)

m.keys() create Vector copy of all keys O(N)
m.put(key, val) or mlkeyl = val add a pairing of given key to given value O(log N)
m.remove (key) remove any existing pairing for given key O(log N)

m.size() return count of key/value pairs o)
m.values() create Vector copy of all values O(N)
A for-each loop on a map iterates over the £eys, not the values.
Lexicon
lex.contains (word) return true if given word contained in lexicon o)
lex.containsPrefix(prefix) return true if any word in lexicon starts with given prefix O(1)

string, strlib.h

str.at(i) or s[i] return character at given 0-based index

str.append(text) add text to end of string (in-place)

str.compare(str2) return -1, 0, or 1 depending on relative ordering

str.erase(1, length) delete text of given length starting at given index (in-place)

str.find(text) return first index of matching text (or string: :npos if not found)

str.insert(1, text) add text at a given index (in-place)

str.length() or str.size() return count of characters

str.replace(i, length, text) replace given length chars at given index with text (#-place)

str.substr(start, length) or
str.substr(start)

return new string consisting of length characters from given start index
if length argument omitted, grabs from start index to end of string

endsWith(str, suffix), startsWith(str, prefix) return true if string begins or ends with the given prefix/suffix

integerToString(Z), stringTolnteger(str) conversion between number and string

stringContains(str, text) return true if text contained in string

stringSplit(str, separator) divide a string into Vector of substrings divided by separator

toLowerCase(str), toUpperCase(str)

return new uppet/lowercase string

char

isalpha(c¢), isdigit(c), isspace(o), return true if character is alphabetic character from a-z or A-Z, digit 0-9, whitespace

ispunct(c), islower(c), isupper(c),

character (space, \t, \n, etc.), punctuation mark (#, §, |, etc.) respectively

tolower(c), toupper(c)

return lower/uppercase equivalent (unchanged if not alpha)

random. h

randomChance (probability)

return random bool of true/false with the given probability of true from 0..1

randomInteger(min, max)

return random integer in range [min-max], inclusive

randomReal (low, high)

return random real number in range [low-bigh), up to but not including high

SimpleTest

STUDENT_TEST("Example test cases") {
Vector<int> v;
EXPECT(v.isEmpty());
EXPECT_EQUAL(1 + 2, 3);
EXPECT_ERROR(empty[0]);

