
Practice Midterm 6
CS106B, Summer 2024

(Print name legibly)

(SUID number)

Exam Instructions

There are 5 questions worth a total of 100 points. Write all answers directly on the exam paper. This printed exam is

closed-book and closed-device; you may refer only to our provided reference sheet. You are required to write your

SUID number in the blank at the top of each odd-numbered page.

C++ Coding Guidelines

Unless otherwise restricted in the instructors for a specific problem, you are free to use any of the CS106B libraries

and classes. You don’t need #include statements in your solutions; just assume the required header files (vector.h,

strlib.h, etc.) are visible. You do not need to declare prototypes. You are free to create helper functions unless the

problem states otherwise. Comments are not required, but when your code is incorrect, comments could clarify your

intentions and help the graders award partial credit.

The Stanford University Honor Code (2023 Revision)

The Honor Code is an undertaking of the Stanford academic community, individually and collectively. Its

purpose is to uphold a culture of academic honesty.

Students will support this culture of academic honesty by neither giving nor accepting unpermitted academic aid in

any work that serves as a component of grading or evaluation, including assignments, examinations, and research.

Instructors will support this culture of academic honesty by providing clear guidance, both in their course syllabi

and in response to student questions, on what constitutes permitted and unpermitted aid. Instructors will also not

take unusual or unreasonable precautions to prevent academic dishonesty.

Students and instructors will also cultivate an environment conducive to academic integrity. While instructors alone

set academic requirements, the Honor Code is a community undertaking that requires students and instructors to

work together to ensure conditions that support academic integrity.

In signing below, I acknowledge, accept, and agree to abide by the Honor Code.

(signature)

This cover sheet has been revised to reflect the format you should expect to see on this quarter’s exam.

Page 2 of 14

1. C++ and ADTs (30 pts)

Moira’s Teashop of Wonderment and Whimsy serves phenomenal teas with unusual names. They are working on revising
their extensive menu of teas and would like to quickly look up all the teas on their menu whose descriptions contain
certain phrases. To help, you will write a function with the following signature (as well as two helpers described below):

 Set<string> matches(Map<int, Vector<Vector<string>>>& teaDescriptions,
 Map<string, int>& teaNamesToIDs, Vector<string>& searchPhrase)

The parameters are as follows:

• Map<int, Vector<Vector<string>>>& teaDescriptions
A map where each key is an integer that Moira’s Teashop uses as a unique ID for one of their teas, and each value
is a vector of string vectors, with one string vector per sentence in the tea’s menu description. Each vector of
strings corresponds to a single sentence and contains the words of that sentence, in order, converted to lowercase,
with all punctuation removed. For example, suppose the description for tea 42 is: “A creamy chocolate rooibos
tea. Organic, herbal, caffeine free. Available hot or iced.” If this were the only item on the menu, the map would
look as follows, with 42 mapping to the corresponding vector of string vectors:

{
 42 : {

 { "a", "creamy", "chocolate", "rooibos", "tea" },
 { "organic", "herbal", "caffeine", "free" },
 { "available", "hot", "or", "iced" }
 }
}

• Map<string, int>& teaNamesToIDs

A map where each key is the (unique) name of one of the teas on the menu, and each value is the (unique) integer
ID used to identify that tea in the map of tea descriptions above. For example:

{
 "Tea of Jollity" : 1,
 "Tea of Jubilation" : 1234,
 "Tea of Wonderment" : 42,
 "Tea of Lucid Dreams" : 333
}

• Vector<string>& searchPhrase

A vector corresponding to a phrase we want to search for in the menu item descriptions. As with the menu item
descriptions themselves, this vector contains the words of the phrase we’re searching for, in order, converted to
lowercase, with all punctuation removed. So, if someone is searching for the phrase “Caffeine free!”, we can
assume that phrase has been pre-processed elsewhere and that the vector passed to this function will be:

{ "caffeine", "free" }

The matches() function should return a set of the names of all teas (as strings) whose menu descriptions match the given
phrase. So, if we call matches(teaDescriptions, teaNames, {"chocolate", "rooibos"}), based on the values above, our
resulting set should contain the string “Tea of Wonderment” (as well as the names of any other teas whose descriptions
contain the phrase “chocolate rooibos”).

 Your SUID number (required): Page 3 of 14

Here are some restrictions:

• Your functions must be iterative (not recursive) to earn credit.
• You must use the function signatures given below.
• Other than the three functions whose signatures are given below, you cannot write any helper functions.
• Please be careful not to go out of bounds in any vectors.
• You must not modify any of the parameters passed to these functions by reference.
• You may assume all tea IDs are unique, as are the names of the teas.

To make the code more readable, you must also write – and call -- the helper functions described below. Part of this
problem is to figure out how to call these helper function appropriately from within your matches() function.

a) This function returns true if searchPhrase is found within the given sentence vector, false otherwise. All strings from
searchPhrase must be found in sentence, consecutively and in the same order in which they appear in searchPhrase.

 bool containsPhrase(Vector<string>& sentence, Vector<string>& searchPhrase) {

Page 4 of 14

b) This function returns the name of the tea (a string) associated with the given tea ID (an integer). Use the error()
function to throw an error if the tea ID is not found within the map.

 string getName(Map<string, int>& teaNamesToIDs, int teaID) {

c) Return a set of strings as required by the problem description above. Keep in mind you must design your solution to
rely on containsPhrase() and getName().

 Set<string> matches(Map<int, Vector<Vector<string>>>& teaDescriptions,
 Map<string, int>& teaNamesToIDs, Vector<string>& searchPhrase) {

 Your SUID number (required): Page 5 of 14

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page.

Page 6 of 14

2. Big-O (30 pts) Consider the following functions, both of which determine whether a vector contains all integers from
its minimum value through its maximum value with no duplicates and no missing integers along that range:

 bool containsRunWithSet(Vector<int>& v)
 {

if (v.size() == 0)
{

return true;
}

int min = v[0];
int max = v[0];

Set<int> set;

for (int i : v)
{

if (i < min) min = i;
if (i > max) max = i;
set.add(i);

}

// If set size == vector size, there must not have been any duplicates.
// If, in addition, the set size is (max - min + 1), it must contain every
// integer value on the range min through max. Hooray!
return set.size() == v.size() && set.size() == (max - min + 1);

}

 bool containsRunWithSort(Vector<int>& v)
 {

v.sort(); // Do not overlook the runtime impact of this line.

for (int i = 0; i < v.size() - 1; i++)
{

// Each successive element should be one greater than the element
// before it. If not, we either have a duplicate value or a missing
// integer on the range 'min' through 'max', so we return false.
if (v[i] + 1 != v[i + 1])
{

return false;
}

}

// If we get here, we must have every integer on the range 'min' through
// 'max' (no duplicates, no missing integers).
return true;

}

This problem continues on the following page.

 Your SUID number (required): Page 7 of 14

Please be an absolute champ and ensure all your answers below are neatly confined within the given boxes.

a) Using Big-O notation, what is the worst-case runtime for containsRunWithSet(), assuming it receives a vector with n
integers, whose minimum integer is q and whose maximum integer is t?

O()

b) Using Big-O notation, what is the best-case runtime for containsRunWithSet(), assuming it receives a vector with n
integers, whose minimum integer is q and whose maximum integer is t?

O()

c) Using Big-O notation, what is the worst-case runtime for containsRunWithSort(), assuming it receives a vector with n
integers, whose minimum integer is q and whose maximum integer is t?

O()

d) Using Big-O notation, what is the best-case runtime for containsRunWithSort(), assuming it receives a vector with n
integers, whose minimum integer is q and whose maximum integer is t?

O()

e) In just a few words, what key design flaw does containsRunWithSort() have that containsRunWithSet() does not?
(Note: The answer is unrelated to the correctness of the function’s return value or its runtime.)

Next, consider the following function:

 int foo(int n)
{

if (n == 0)
{

return 0;
}

 return n + foo(n – 1) + foo(n – 1);
}

f) Using Big-O notation, what is the runtime for foo(n)?

O()

Page 8 of 14

Consider the following function:

 int binarySearchParty(Vector<int>& haystack, Vector<int>& needles)
 {

int foundCount = 0;

for (int thisNeedle : needles)
{

// You may assume haystack is passed to binarySearch() by reference and
// that our binary search function is implemented correctly and efficiently.
if (binarySearch(haystack, thisNeedle))
{

foundCount++;
}

}

return foundCount;
}

g) Using Big-O notation, what is the best-case runtime for binarySearchParty(), assuming haystack contains k integers
and needles contains q integers?

O()

h) Using Big-O notation, what is the worst-case runtime for binarySearchParty(), assuming haystack contains k integers
and needles contains q integers?

O()

i) Give a sorted haystack vector with five elements and a needles vector with five elements that, when passed to
binarySearchParty(), will cause the function to incur its best-case runtime possible for inputs of that size.

 haystack =

 needles =

j) Give a sorted haystack vector with five elements and a needles vector with five elements that, when passed to
binarySearchParty(), will cause the function to incur its worst-case runtime possible for inputs of that size.

 haystack =

 needles =

 Your SUID number (required): Page 9 of 14

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page.

Page 10 of 14

3. Recursion (20 pts)

Write a recursive function that takes two vectors, v1 and v2, and returns true if they contain the exact same elements, but
in reverse order from one another. Otherwise, return false. For example:

 Sample Input Vectors: Sample Function Calls:
 v1 = {10, 3, 9, 15, 5} isReverse(v1, v2) // true

 v2 = {5, 15, 9, 3, 10} isReverse(v2, v1) // true

 v3 = {9, 1234, 42, 333} isReverse(v3, v4) // true

 v4 = {333, 42, 1234, 9} isReverse(v1, v4) // false

 v5 = {} isReverse(v1, v5) // false

isReverse(v5, v5) // true

In solving this problem, you must abide by the following guidelines and restrictions:

1. You must solve this problem recursively.
2. Your function cannot contain any loops.
3. You cannot create any helper functions. All your work must be done in a single function.
4. You cannot modify the function signature given below. (You cannot add additional parameters.)
5. Each call to your recursive function must process only a single element from each of the given vectors and rely

on subsequent recursive calls to handle the rest.
6. Notice that the vectors are passed by reference. You should be careful that any time your function returns, the

vectors are in the same state they were in when that function was called.
7. You cannot create new copies of the vectors to pass to the function recursively.
8. You will probably have to modify at least one vector in a way that feels inefficient. Do not worry about that.

Focus instead on correctness.

Please write your answer on the following page.

We will not grade any work on this page.

 Your SUID number (required): Page 11 of 14

bool isReverse(Vector<int>& v1, Vector<int>& v2) {

Page 12 of 14

4. Recursive Tracing (10 pts)

Consider the following fractal. Notice that until we hit a base case, each square is effectively divided into a 3x3 grid, and
we make five recursive calls to fill in five of the resulting grid’s nine squares.

level = 0 level = 1 level = 2

These images were produced with the following function. You can trust the comments in the code. You do not have to
reflect carefully on any of the math in order to answer the questions on the following page.

 void drawXBox(GWindow& w, int level, double topLeftX, double topLeftY, double width)
 {

if (level == 0)
{

w.fillRect(topLeftX, topLeftY, width, width);
return;

}

// Width of box for recursive call. Also multiplied by 2 below to calculate
// width and height 2/3 of the way across and down from this box's start point.
double mWidth = width / 3.0;

// Recursive call for top-left portion of fractal.
drawXBox(w, level - 1, topLeftX, topLeftY, mWidth);

// Recursive call for top-right portion of fractal.
drawXBox(w, level - 1, topLeftX + mWidth * 2, topLeftY, mWidth);

// Recursive call for center portion of fractal.
drawXBox(w, level - 1, topLeftX + mWidth, topLeftY + mWidth, mWidth);

// Recursive call for bottom-left portion of fractal.
drawXBox(w, level - 1, topLeftX, topLeftY + 2 * mWidth, mWidth);

// Recursive call for bottom-right portion of fractal.
drawXBox(w, level - 1, topLeftX + 2 * mWidth, topLeftY + 2 * mWidth, mWidth);

 }

 Your SUID number (required): Page 13 of 14

Here are those diagrams again for your reference:

A

B C
E G

F

D
H

level = 0 level = 1 level = 2

In order to draw the level-two fractal, we of course have to go through the recursive calls depicted for the level-zero and
level-one fractals – although rather than drawing a square, those calls will simply make further recursive calls of their
own. For example, the very first function call when drawing a level-two fractal is the one depicted by A above, although it
does not print the square labeled A. Instead, that call makes the five recursive calls depicted in the level-one image, and
those five calls each make their own five recursive calls.

The goal of this problem is to indicate the order in which certain of these recursive calls are made when drawing a level-
two fractal, as well as the order in which they return. (Note: You can trust the comments in the code about which box is
handled by each recursive call.)

First, let’s focus on the order in which the calls are made:

• Out of the calls labeled B, C, D, E, F, G, and H, which one is made first?

• Out of the calls labeled B, C, D, E, F, G, and H, which one is made second?

• Out of the calls labeled B, C, D, E, F, G, and H, which one is made third?

• Out of the calls labeled B, C, D, E, F, G, and H, which one is made fourth?

• Out of the calls labeled B, C, D, E, F, G, and H, which one is made last?

Next, let’s focus on the order in which these calls return:

• Out of the calls labeled B, C, D, E, F, G, and H, which one returns first?

• Out of the calls labeled B, C, D, E, F, G, and H, which one returns second?

• Out of the calls labeled B, C, D, E, F, G, and H, which one returns third?

• Out of the calls labeled B, C, D, E, F, G, and H, which one returns fourth?

• Out of the calls labeled B, C, D, E, F, G, and H, which one returns last?

Fill in each of the blanks above with a single letter.

Page 14 of 14

5. Problem Solving (10 pts)

Write an iterative function that takes a single integer parameter, n, and prints all sequences of coin flips of length n. For
example, for n = 2, your function should print “HH”, “HT”, “TH”, and “TT”. (As long as you print the correct results, we
don’t care how the output is formatted.)

We have seen a recursive version of this function in class. The goal is to now write this iteratively. You can do this! Here
are a few hints and restrictions to guide you:

• You can create one or two queues of strings – i.e., Queue<string> variables.
• Other than the one or two queues mentioned above, you cannot create any ADTs.
• You cannot write any helper functions. All your work must be done in a single function.
• Hint: You have done something very similar to this already! Think of the way you iterated on and extended the

paths you created while working on the DFS and BFS maze solutions.

The function signature is:

void printCoinFlips(int n) {

