
Practice Midterm 5
CS106B, Spring 2024

(Print name legibly)

(SUID number)

Exam Instructions

There are 4 questions worth a total of 100 points. Write all answers directly on the exam paper. This printed exam is

closed-book and closed-device; you may refer only to our provided reference sheet. You are required to write your

SUID number in the blank at the top of each odd-numbered page.

C++ Coding Guidelines

Unless otherwise restricted in the instructors for a specific problem, you are free to use any of the CS106B libraries

and classes. You don’t need #include statements in your solutions; just assume the required header files (vector.h,

strlib.h, etc.) are visible. You do not need to declare prototypes. You are free to create helper functions unless the

problem states otherwise. Comments are not required, but when your code is incorrect, comments could clarify your

intentions and help the graders award partial credit.

The Stanford University Honor Code (2023 Revision)

The Honor Code is an undertaking of the Stanford academic community, individually and collectively. Its

purpose is to uphold a culture of academic honesty.

Students will support this culture of academic honesty by neither giving nor accepting unpermitted academic aid in

any work that serves as a component of grading or evaluation, including assignments, examinations, and research.

Instructors will support this culture of academic honesty by providing clear guidance, both in their course syllabi

and in response to student questions, on what constitutes permitted and unpermitted aid. Instructors will also not

take unusual or unreasonable precautions to prevent academic dishonesty.

Students and instructors will also cultivate an environment conducive to academic integrity. While instructors alone

set academic requirements, the Honor Code is a community undertaking that requires students and instructors to

work together to ensure conditions that support academic integrity.

In signing below, I acknowledge, accept, and agree to abide by the Honor Code.

(signature)

This cover sheet has been revised to reflect the format you should expect to see on this quarter’s exam.

Page 2 of 10

1. C++ and ADTs (30 pts)

Write a function that takes a vector of strings – where each string contains a single sentence – and returns a map of type

Map<string, Map<string, int>> where map[s1][s2] is the number of sentences in the vector that contain both s1 and s2.

Let’s unpack that problem statement together and explore some particulars:

First of all, each string in the vector will contain a single sentence where all characters have been converted to lowercase

and all punctuation has been removed. Within each string, words are separated with a single space. For example, the

following vector contains three strings (three sentences):

{ "i like tea", "i like cupcakes", "i like cherry tea and cherry cupcakes" }

In the above vector, there is exactly one sentence that contains both “cupcakes” and “tea,” and so our map would have:

map["cupcakes"]["tea"] = map["tea"]["cupcakes"] = 1

Similarly, there are three sentences that contain both “i” and “like,” and so our map would have:

map["i"]["like"] = map["like"]["i"] = 3

Take special note of the fact that there is exactly one sentence that contains both “like” and “cherry.” Even though that

sentence contains two instances of the word “cherry,” we only count that sentence once, and so our map would have:

map["like"]["cherry"] = map["cherry"]["like"] = 1

You might be wondering about that Map<string, Map<string, int>> type. Here’s how that works: given a key, s1, this map

unlocks a submap. If we feed the key s2 to that submap, we should get an integer indicating the number of sentences in

which both s1 and s2 appear. We access that particular integer using map[s1][s2].

For example, the full map for the vector of sentences above should look like so:

{

"and" : { "cherry" : 1, "cupcakes" : 1, "i" : 1, "like" : 1, "tea" : 1 },

"cherry" : { "and" : 1, "cupcakes" : 1, "i" : 1, "like" : 1, "tea" : 1 },

"cupcakes" : { "and" : 1, "cherry" : 1, "i" : 2, "like" : 2, "tea" : 1 },

"i" : { "and" : 1, "cherry" : 1, "cupcakes" : 2, "like" : 3, "tea" : 2 },

"like" : { "and" : 1, "cherry" : 1, "cupcakes" : 2, "i" : 3, "tea" : 2 },

"tea" : { "and" : 1, "cherry" : 1, "cupcakes" : 1, "i" : 2, "like" : 2 }

}

In solving this problem, you must abide by the following guidelines and restrictions:

• Your function must be iterative (not recursive) to earn credit.

• You cannot create any helper functions. All your work must be done in a single function.

• You must use the function signature given below.

• Your function should not alter the contents of the vector in any way. When the function returns, the vector should

be just as it was when passed to the function.

• Note that the map should be symmetric: map[s1][s2] should always equal map[s2][s1].

 Your SUID number (required): Page 3 of 10

• We should never place a string in its own submap. For example, map["pie"]["pie"] = 0 (not 1).

• Trust the map[s1][s2] syntax. If you use it, it will probably work exactly as you expect it to.

• Recall that map[key] automatically adds the key to the map – no need for manual initialization. It Just Works™.

• For full credit, you must think of an efficient way to ensure we don’t double-increment a value when a sentence

contains duplicate strings. For example, in the third sentence above, when we hit the second occurrence of

“cherry,” it would be inefficient to loop through the previous words one-by-one to see if we had encountered

“cherry” earlier in the sentence.

Map<string, Map<string, int>> coOccurrenceMap(Vector<string>& sentences) {

Page 4 of 10

2. Big-O (30 pts) Consider the following functions:

 // Removes the top-most instance of the given target integer from the stack (if

 // present). Returns true if the target is found, false otherwise.

 bool seekAndDestroy(Stack<int>& original, int target)
 {

bool found = false;

Stack<int> sideDish;

while (!original.isEmpty())
{

int temp = original.pop();

if (temp == target)
{

cout << "Target found!" << endl;

found = true;

break;
}

sideDish.push(temp);
}

while (!sideDish.isEmpty())
{

original.push(sideDish.pop());

}

return found;
}

void removeAllInstances(Stack<int>& s, int target)
{

// Calls function repeatedly, removing all instances of target.
while (seekAndDestroy(s, target))
{

// Does nothing here. Just loop back around until function returns false.

}
}

a) Suppose we call seekAndDestroy() with the following input stack and target = 80:

Original Stack (original)

 +----+
 | 33 | <- top
 +----+
 | 61 |
 +----+
 | 80 |
 +----+
 | 92 |
 +----+
 | 17 |
 +----+
 | 48 |
 +----+
 | 53 | <- bottom
 +----+

Draw a vertical stack (like the one to

the left) showing the contents of

original at the moment when “Target

found!” gets printed:

Draw a vertical stack (like the one to

the left) showing the contents of

sideDish at the moment when “Target

found!” gets printed:

 Your SUID number (required): Page 5 of 10

Note: The next four questions focus on the first function above: seekAndDestroy(). Please place answers in boxes!

b) What is the worst-case Big-O runtime for seekAndDestroy(), assuming it receives a stack with n elements?

O()

c) Draw a stack with 5 elements that causes seekAndDestroy() to encounter its worst-case runtime when target = 15.

d) What is the best-case Big-O runtime for seekAndDestroy(), assuming it receives a stack with n elements?

O()

e) Draw a stack with 5 elements that causes seekAndDestroy() to encounter its best-case runtime when target = 15.

Note: These questions focus on the second function above: removeAllInstances(). Please place answers in boxes!

f) What is the runtime for removeAllInstances() if it receives a stack where all n of its values are equal to the target?

O()

g) What is the runtime for removeAllInstances() if it receives a stack where none of its n values are equal to the target?

O()

h) What is the runtime for removeAllInstances() if it receives a stack with n values, where the top k values are not equal

to the target, and the bottom m values are equal to the target (and n = k + m)?

O()

Page 6 of 10

3. Recursion (20 pts)

Write a recursive function that takes a single non-negative integer, n, and returns the sum of all of its digits. For example:

 digitSum(12538) // Returns 1 + 2 + 5 + 3 + 8 = 19

 digitSum(3) // Returns 3

 digitSum(0) // Returns 0

You may assume we will never pass a negative integer to your function.

In solving this problem, you must abide by the following guidelines and restrictions:

1. You must solve this problem recursively.

2. Your function cannot contain any loops.

3. You cannot create any helper functions. All your work must be done in a single function.

4. You cannot call any functions from the math.h library (such as an exponentiation function).

5. You cannot create any strings. If you find yourself using strings or ASCII values, you are on the wrong track.

6. You cannot modify the function signature given below.

7. Each call to your recursive function must process only a single digit from the given integer and rely on

subsequent recursive calls to handle the rest.

Hint: To get the ones digit of a number, mod by 10. To remove the ones digit, divide by 10.

The function signature is:

int digitSum(int n) {

 Your SUID number (required): Page 7 of 10

This page is intentionally left blank for you to use as scratch paper.

We will not grade anything on this page.

Page 8 of 10

4. Recursive Backtracking (20 pts)

In this problem, you will be given a vector of fruitT structs.1 The struct definition is as follows:

 struct fruitT

 {

 string label; // Name of fruit.

 int count; // Number available.

 };

Write a function that takes the following parameters and returns the number of fruit baskets we can create that satisfy

those parameters:

Vector<fruitT>& fruits : The vector of fruits available for constructing the fruit basket.

int minFruit : The minimum number of fruits we must add to our basket (otherwise, it looks too empty).

int maxFruit : The maximum number of fruits we can add to our basket (otherwise, it gets too full).

int minTypes : The min number of different types of fruit we need in our basket (otherwise, the basket is too plain).

Note that we are interested simply in the number of each kind of fruit and not the order in which they are chosen. So,

selecting two apples followed by one pear is the same as selecting one pear followed by two apples. Similarly, all fruits of

the same type should be considered equal. So, if we select two apples for our basket, it doesn’t matter which two apples

we take – only that there are two apples total.

For example, suppose we make the following call to our function:

countBaskets({{"kiwi", 2}, {"pear", 3}}, minFruit = 3, maxFruit = 4, minTypes = 1)

There are 5 possible baskets we can create:

{2 kiwis + 1 pear}, {1 kiwi + 2 pears}, {3 pears}, {2 kiwis + 2 pears}, {1 kiwi + 3 pears}

Similarly, suppose we make the following call to our function:

countBaskets({{"kiwi", 2}, {"pear", 3}}, minFruit = 3, maxFruit = 4, minTypes = 2)

There are now only 4 possible baskets we can create, because every basket must have at least two types of fruit:

{2 kiwis + 1 pear}, {1 kiwi + 2 pears}, {2 kiwis + 2 pears}, {1 kiwi + 3 pears}

Ground Rules

Please follow these ground rules when writing your function. These are here to help guide you!

• Your algorithm must be recursive and must use backtracking techniques to generate its results.

• You must not create any auxiliary data structures! (No new vectors.)

• You can never modify the contents of a fruitT struct. You may add and remove structs from the fruits vector, but

you cannot change the contents of an individual struct. You also cannot create copies of any structs.

1 Probably the most fun thing about the fruitT struct is that it can be pronounced “fruit tea” or “fruity.” Either one works! Enjoy!

 Your SUID number (required): Page 9 of 10

• You must remove elements from the fruits vector as you go. Do not use the approach we have seen in class where

we use an independent variable, k, to move through the vector.

• Notice that the vector is passed by reference, so if you remove elements from the vector, you must add them back

later. When your function terminates, the vector should be back in the original state it was in when the function

was called. (The elements should not be modified, and they should not be in a different order.)

• You should only explore sequences that could potentially lead to valid results. As soon as it becomes clear that a

sequence you have generated cannot lead to any valid results, stop exploring that dead-end path.

◦ Hint: There are at least two situations that should cause us to give up early and stop making recursive calls

without having found a valid solution on a given path.

• You can use a one-line wrapper function that leads into a recursive helper function if you wish, but beyond that,

you cannot write any other functions. (There is a way to solve this problem without a wrapper, as well!)

For your reference, here is a countSubets() function that uses backtracking to count the number of subsets we can generate

that have at least minSize elements from the given vector. Read over this code as a starting point. You can borrow code

and structure from countSubsets() when writing countBaskets(), but be warned that there is a key inefficiency with this

approach that you should avoid in your countBaskets() solution, and it also ruins the order of the elements in the vector.

int countSubsets(Vector<int>& v, int minSize, int sizeSoFar) {

if (v.size() == 0) {

if (sizeSoFar >= minSize) {

return 1;

} else {

return 0;

}

}

int total = 0;

int thisOne = v.remove(0);

total += countSubsets(v, minSize, sizeSoFar + 1); // include thisOne in subset

total += countSubsets(v, minSize, sizeSoFar); // don't include thisOne

v.add(thisOne);

return total;
}

// wrapper function
int countSubsets(Vector<int>& v, int minSize)
{

return countSubsets(v, minSize, 0);
}

The function signature is given on the following page.

Page 10 of 10

int countBaskets(Vector<fruitT>& fruits, int minFruit, int maxFruit, int minTypes) {

