Practice Midterm 3
CS106B, Fall 2023

(Print name legibly)

(SUID number)

Exam Instructions
There are 4 questions worth a total of 70 points. Write all answers directly on the exam paper. This printed exam is
closed-book and closed-device; you may refer only to our provided reference sheet. You are required to write your

SUID number in the blank at the top of each odd-numbered page.

C++ Coding Guidelines

Unless otherwise restricted in the instructors for a specific problem, you are free to use any of the CS106B libraries
and classes. You don’t need #include statements in your solutions; just assume the required header files (vector.h,
strlib.h, etc.) are visible. You do not need to declare prototypes. You are free to create helper functions unless the
problem states otherwise. Comments are not required, but when your code is incorrect, comments could clarify your

intentions and help the graders award partial credit.

The Stanford University Honor Code (2023 Revision)

The Honor Code is an undertaking of the Stanford academic community, individually and collectively. Its

purpose is to uphold a culture of academic honesty.

Students will support this culture of academic honesty by neither giving nor accepting unpermitted academic aid in

any work that serves as a component of grading or evaluation, including assignments, examinations, and research.

Instructors will support this culture of academic honesty by providing clear guidance, both in their course syllabi
and in response to student questions, on what constitutes permitted and unpermitted aid. Instructors will also not

take unusual or unreasonable precautions to prevent academic dishonesty.

Students and instructors will also cultivate an environment conducive to academic integrity. While instructors alone
set academic requirements, the Honor Code is a community undertaking that requires students and instructors to

work together to ensure conditions that support academic integrity.

In signing below, I acknowledge, accept, and agree to abide by the Honor Code.

(signature)

This cover sheet has been revised to reflect the format you should expect to see on this quarter’s exam.

Page 2 of 12

Problem 1: C++ Fundamentals and ADTs (17 points)

A concordance is a type of index that lists the words in a document and associates each word with
the position(s) at which it appears within the document. Positions are zero-indexed; the first word
is at position 0, the second at 1, and so on. A concordance can be modeled in C++ using a
Map<string, Set<int>> where the words are keys and the associated value is a set of positions.
All words in the concordance are stored in lowercase.

A document contains the text:
One Fish two fish RED FISH blue fish two red fish
List the entries in the concordance built from this document:

The buildConcordance function reads the document text from a file and builds a concordance.
The function is started below with correct code to open the file and a loop to read the words one
by one. Complete the function by adding the code to update the appropriate concordance entries.

void buildConcordance(string filename, Map<string, Set<int>>& conc)
{
int pos = 0;
ifstream in;
if (openFile(in, filename)) {
string word;
while (in >> word) { // loop read next word from file until done

Your SUID number (required): Page 3 of 12

A phrase is a sequence of words. The function findPhrase searches a concordance to find a
sequence of words in the document that matches a given phrase. It returns the start position of the
first phrase match or -1 if the phrase is not found.

Here are some valid test cases for the concordance on the previous page:

EXPECT_EQUAL(findPhrase("red", concordance), 4);
EXPECT_EQUAL(findPhrase("Fish Blue Fish", concordance), 5);
EXPECT_EQUAL(findPhrase("red blue", concordance), -1);

Write the function findPhrase. The phrase argument is a string consisting of a sequence of
words separated by spaces. The stringSplit function can be used to divide a string into words.
Words should be matched case-insensitively.

int findPhrase(string phrase, Map<string,Set<int>>& conc)

Page 4 of 12

Problem 2: Code study: ADTs and Big-O (15 points)
The echo operation accesses elements in a collection and adds the element’s “echo” (value divided
by two). Below are four versions of echo; one each for Vector, Stack, Queue, and Set. The provided
code compiles and runs without error but may or may not work as intended.

Fill in the boxes below with the Big-O runtime for each echo function in terms of N where N is

the size of the collection.

void echoVector(Vector<int>& v)
{
for (int i = v.size() - 1; i >=
int cur = v[il;
v.insert(i, cur/2);

3

void echoStack(Stack<int>& s)
{
for (int i = s.size() - 1; i >=
int cur = s.pop(Q);
s.push(cur);
s.push(cur/2);

void echoQueue(Queue<int>& q)
{
for (int i = g.size() - 1; i >=
int cur = qg.dequeue();
q.enqueue(cur);
g.enqueue(cur/2);

void echoSet(Set<int>& set)
{
Set<int> echoes;
for (int cur: set) {
echoes.add(cur/2);
3

set.unionWith(echoes);

0; i--) {
0; i--) {
0; i--) {

Your SUID number (required): Page 5 of 12

Fill in the boxes below to show the contents of each collection after the call to echo.

Vector<int> v = {3, 5, 6}; v =
echoVector(v); B
Stack<int> s = {3, 5, 6}; S =
echoStack(s); B
Queue<int> q = {3, 5, 6}; _
echoQueue(q); q -
Set<int> set = {3, 5, 6}; set =
echoSet(set);

Reminder: Stack elements are listed in order bottom to top. Queue elements listed in order front to back.

Y our co-worker is curious why the loop in echoQueue iterates backwards; it seems especially odd
given that the value of index variable i is never used. They edit the code to iterate over the same
indexes in forward order. The revised loop header is now:

for (int i = 0; i < q.size(); i++) {

Explain the consequence this change will have on the behavior/output of echoQueue.

Your boss suggests rewriting echoSet in the more direct form shown below:
void echoSet(Set<int>& set)
{
for (int cur: set) {
set.add(cur/2);
}

b

You test the above version of echoSet and it raises a runtime error. What is the problem?

Page 6 of 12

Problem 3: Recursion (18 points)
A Mondrian rectangle is a self-similar pattern that is defined recursively.
* A simple Mondrian is a filled grayscale rectangle. The simple case applies to a Mondrian
whose area is less than 500 pixels.
* A larger Mondrian can take one of three possible forms:
1) a filled white rectangle (no split)
2) two half-width Mondrian rectangles placed side-by-side (vertical split)
3) two half-height Mondrian rectangles placed top-to-bottom (horizontal split)
A random choice of which split option (1, 2, or 3) is made for each level of a Mondrian fractal.

Below are four Mondrian rectangles of size width and height 100 (total area = 10,000 pixels).
Because splits and grayscale colors are randomly chosen, each run produces a different result.
The label beneath each Mondrian is the percentage of the fractal’s total area that is filled in white.

=il
H

75% white 37.5% white 100% white 81.25% white

You are to write the recursive fractal function
double drawMondrianRect(double x, double y, double w, double h)

The parameters to drawMondrianRect specify the rectangle in which to draw. The lower-left
corner is at (x,y) and the rectangle size is h pixels tall by w pixels wide. The total areaisw * h.
The function draws a Mondrian fractal in the specified rectangle and returns the percentage of the
fractal’s total area that was filled in white.

Additional requirements

* Call randomInteger(int low, int high) to choose a random value from the range low
through high (inclusive).
» Call drawRect(double x, double y, double w, double h, string color) to draw

a rectangle filled with a specified color. The color parameter is either "white" or
"grayscale" (for a random gray value).

* The return value from drawMondrianRect is a percentage, expressed as a number from 0 to
100, indicating the ratio of the area of the white rectangles to the fractal’s total area.

* You will need a helper/wrapper function. Use the recursive helper to draw the fractal and
sum the white areas. In the wrapper, compute the percentage. (Hint: this strategy is similar
to compute power indexes!)

Your SUID number (required): Page 7 of 12

double drawMondrianRect(double x, double y, double w, double h)

Page 8 of 12

This page intentionally left blank. You may use this space for scratch work.
1t will not be graded unless you write a redirect from the original answer area to here.

Your SUID number (required): Page 9 of 12

Problem 4: Recursive backtracking (20 points)

You have a $100 gift card good for a one-outing shopping spree and want to assemble a basket of
items that spends every cent to avoid forfeiting any unspent value. This is a perfect job for your
recursive backtracking skills!

bool spendAll(double amount, Vector<itemT>& inventory)

You are to write the spendAll function which recursively forms baskets of items from the
inventory to search for a basket that exactly sums to the full amount.

The store inventory is stored in a vector of itemT, a struct for the item name, price, and count.

struct itemT {
string name;
double price;
int count; // count of item available, 0 if out of stock

};

A basket can contain 0, 1 or up to N of an item where N is the available count of the item.

If a basket is found that exactly spends the full amount, the counts of purchased items are
decremented from the inventory and true is returned. If no such basket is found, the inventory is
unchanged and the function returns false.

Additional requirements

* Your algorithm must be recursive and must use backtracking to generate the result.

* You must limit the recursive exploration by stopping at the first success and pruning all
dead-end paths as soon as you can detect they are not viable.

* You should make efficient choices in handling data structures within your recursive calls:
make no unnecessary copies, no expensive edits to the inventory vector, and use no additional
data structures. (Rule of thumb: on par with count critical votes 24 items in 5 seconds).

* The function returns a true/false result of whether the entire amount was spent. Do not print,
store, or return the basket of items.

* You will need a helper/wrapper function.

Example
Vector<itemT> inventory = {{"apple", 0.50, 1}, {"banana", 0.75, 5}};
spendAll1(1, inventory) returns false (no basket totals to exactly $1)

spendAl1(3.50, inventory) returns true and updates inventory to
{{"apple", 0.50, 0}, {"banana", 0.75, 1}}

Page 10 of 12

Below we provide the code for the function printTotalSpent which prints the total cost for each
possible basket of items. This is a different task than spendAll but has some similarities.

void printTotalSpent(double soFar, Vector<itemT>& inventory)

{
if (inventory.isEmpty()) {
cout << "Total spent: " << soFar << endl;
return;
}
itemT item = inventory.remove(0);
printTotalSpent(soFar, inventory);
printTotalSpent(soFar + item.price, inventory);
inventory.insert(0, item);
}

Review the above code to determine what you can adopt from it. Your function will take a similar
approach, but take note of key differences such as:

» printTotalSpent prints the total for every basket. Your function must not print anything.

» printTotalSpent considers adding either zero or one of an item to the basket. Your function
tries adding zero up to N where N is the available count of the item.

» printTotalSpent does not return a result. Your function returns true or false to indicates
whether a successful basket was found.

» printTotalSpent does a fully exhaustive search of all possible baskets. Your function must
stop exploration at the first successful basket and prune dead end paths.

* printTotalSpent runs very slowly due to suboptimal choices in managing the vector in the
recursive calls. Your function must use efficient handling of data structures to avoid
unnecessary slowdown.

Please write your answer on the following page.

Your SUID number (required): Page 11 of 12

bool spendAll(double amount, Vector<itemT>& inventory)

Page 12 of 12

This page intentionally left blank. You may use this space for scratch work.
1t will not be graded unless you write a redirect from the original answer area to here.

