
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

Previously (last week):

 Map interface implementation:

› Binary Search Tree (BST)

Today: Hashing

 Also a Map implementation

 Has pros and cons relative to BST

 For important announcements, be sure to see the weekly announcements post on the Ed
Q&A board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Hashing
Implementing the Map interface (or Stanford HashMap class) with Hashing/Hash Tables

PART 1: Intuition behind the invention of the hash table

Imagine you want to look up your
neighbors’ names, based on their house
number

Home addresses: 10565 Maple St. through 90600
Maple St.

 (roughly 1000 houses—there are varying gaps in
house numbers between houses)

 All the houses are on the same street, so we only
need to lookup by house number

Names: string containing the name(s) living there

We will consider two data structure options:
linked list, and array of strings

Image dedicated to public domain under Creative Commons license:
http://commons.wikimedia.org/wiki/File:Salsbury_Row_House.jpg

Option #1: Linked list

 Linked list:

 Struct has 3 fields: next pointer, int house number, and string name(s)

 Sort them by house number? (compared sorted/unsorted)

 Add/remove: O(1) or O(n) depending on sorted/unsorted

 Find: O(n)

10565,

“Kyung Suk and
Yong Han Lee”

head
10567,

“Isaiah White”

90600,

“Josie Spencer
and Solange

Clark”…

Option #2: Array of strings

 Array of strings:

 string* addressBook = new string[90601];

 Index is house number, string is name

 The first part of the array will be empty since addresses
start at 10565

 Empty string for any number that is not currently a valid
address

Array
index
(house
number)

String value
(name)

0 “”

1 “”

… …

10565 “Yong Han and Kyung
Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and
Solange Clark”

Array of Strings

 Array of strings:

 Add/remove: ____

o Ex.: if somebody moves into the vacant house at
90598, how long would it take to update?

 Find: ____

o Ex.: you want to find the name of the resident at
12475, if any

A. O(1), O(1)

B. O(logn), O(logn)

C. O(n), O(n)

D. Other/none/combination

Array
index
(house
number)

String value
(name)

0 “”

1 “”

… …

10565 “Yong Han and Kyung
Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and
Solange Clark”

Array of strings:

Array of Strings

 Wow, excellent performance on both!!

 Everything is awesome (?)

 Discuss: Can you identify 1-2 specific areas of
waste in this approach?
o Bonus: can you think of a simple fix for at least one of

the areas of waste?

Array
index
(house
number)

String value
(name)

0 “”

1 “”

… …

10565 “Yong Han and Kyung
Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and
Solange Clark”

Array of strings:

One quick fix:
/* When accessing the array, use array[hash(houseNum)]

* rather than array[houseNum]. The function hash is

* just a way to adjust houseNum for efficiency. */

int hash(int houseNumber){

return houseNumber - 10565;

}

 This solves the problem of the enormous gap from 0
to 10565

 So our array size could be ~80,000 entries instead of
90,600

 Doesn’t solve the problem of gaps between houses

 How could we do that? A tricky problem…

 Also, this approach only works for keys of type int

Array
index
(house
number)

String value
(name)

0 “”

1 “”

… …

10565 “Yong Han and Kyung
Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and
Solange Clark”

Array of strings:

Hashing
Implementing the Map interface (Stanford HashMap class) with Hashing/Hash Tables

PART 2: Getting the MAGICAL performance of our simple house numbers example on
any key type, and with less waste

Hash Table is just a modified, more flexible array

 Keys don’t have to be integers in the range [0-(size-1)]

› They don’t even have to be integers at all!

 (Ideally) avoids big gaps like we had with house numbers array

Not
necessarily

int int in range [0-(size-1)]

THANK YOU, HASH FUNCTION!!
♥ ♥ ♥

 Replicates the MAGICAL performance of our array of strings on
ANY key/value!!

hash() function

 This is where the MAGIC happens!

› These are typically mathematically sophisticated functions

› They do their best to ensure a nice uniform distribution of elements across
the available array (hash table)

› They use tricks like modulus (remainder) and prime numbers to do this

› A lot of art & science, beyond the scope of this class

› Fun times!

Hashing
Implementing the Map interface (Stanford HashMap class) with Hashing/Hash Tables

Hash table inserts Array
index

Hashed data

0

1

2 (A) "Annie", 3

3 (B) "Annie", 3

4 (C) "Annie", 3

5 (D) "Annie", 3

6

7

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash function:

int hash(string key) {

return key.length();

}

 Where does key="Annie" value=3 go?
HashMap<string,int> mymap;

mymap["Annie"] = 3;

See choices in table at right

or (E) Some other place

Hash table inserts Array
index

Hashed data

0

1

2

3

4

5 "Annie", 3

6

7

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash function:

int hash(string key) {

return key.length();

}

 Where does key="Michael", value=5 go?

mymap["Michael"] = 5;

Hash table inserts Array
index

Hashed data

0

1

2

3

4

5 "Annie", 3

6

7 "Michael", 5

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash function:

int hash(string key) {

return key.length();

}

 Where does key="Michael", value=5 go?

mymap["Michael"] = 5;

Hash table inserts Array
index

Hashed data

0

1

2

3

4

5 (A) "Annie", 3 7

6

7 (B) "Michael", 5
"Annie", 7

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash function:

int hash(string key) {

return key.length();

}

 Now insert key="Annie", value=7
mymap["Annie"] = 7;

See choices in table at right

or (C) Index 5 should store both

"Annie",3 and "Annie",7

Hash table inserts Array
index

Hashed data

0

1

2

3

4

5 (A) "Annie", 7 "Maria",
8

6 (B) "Maria", 8

7 "Michael", 5

8 (C) "Maria", 8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash function:

int hash(string key) {

return key.length();

}

 Now insert key="Maria", value=8
mymap["Maria"] = 8;

See choices in table at right

or (D) Index 5 should store both

"Annie",7 and "Maria",8

Uh-oh! Hash collisions

We can NOT overwrite the value the way we would if it really were the
same key

Can you imagine how you would feel if you used Stanford library HashMap
like this and it printed 8?!

mymap["Annie"] = 3;

mymap["Annie"] = 7;

cout << mymap["Annie"] << endl; //expect 7, not 3

mymap["Maria"] = 8;

cout << mymap["Annie"] << endl; //expect 7, not 8!

Uh-oh! Hash collisions

We may need to worry about hash collisions

Hash collision:

 Two keys a, b, a≠b, have the same hash code index (i.e. hash(a)
== hash(b))

Need a way of storing multiple values in a given “place” in the hash
table, so all user’s data is preserved

Uh-oh! Hash collisions

There are two main strategies for resolving
this:

1. Put the item in the next bin (as in the (B)
choice from our previous slide)—this is
called “open addressing”

2. Make each bin be the head of a linked list,
and elements can chain off each other as
long as needed—this is called “closed
addressing” (it will store both, as in the
(D) choice from our previous slide)

Array
index

Hashed data

0

1

2

3

4

5 (A) "Annie", 7 "Maria",
8

6 (B) "Maria", 8

7 "Michael", 5

8 (C) "Maria", 8

Map Interface: hash-map.h

…
private:

struct Cell {
KeyType key;
ValueType value;
Cell* next;

};

/* Instance variables */
Vector<Cell*> buckets;
int nBuckets;
int numEntries;
int hash(const Key& key) const;

};

HashMap NULL

NULL

NULL

NULL

NULL

0

1

2

3

4

5

6

7

…
private:

struct Cell {
KeyType key;
ValueType value;
Cell* next;

};

/* Instance variables */
Vector<Cell*> buckets;
int nBuckets;
int numEntries;
int hash(const Key& key) const;

};

// Q: Can you draw the HashMap
// object in this memory diagram,
// including filling in values for
// all fields?

Hash key collisions & Big-O of HashMap

If there are no collisions, find/add/remove are all O(1)—just compute the key
and go!

Two factors for ruining this magical land of instantaneous lookup:

 Too-small table (worst case = 1)

 Hash function doesn’t produce a good spread

int awfulHashFunction(string input) {

return 4;

}

 Find/add/remove all O(n) worst case

// h/t http://xkcd.com/221/

