
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Topics:

 Midterm Review

› Overview of what to expect

› Going over solutions to a couple new practice problems

› Q&A

 Additional resources:

› For even more review, see review session led by Jonathan last Thursday! Video and
slides available, see pinned Ed post.

 For important announcements, be sure to see the weekly announcements post on the Ed Q&A
board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

2

pollev.com/cs106b

https://edstem.org/

Midterm Exam

W h a t t o e x p e c t

The Midterm Exam

 Time: 2 Hours

› Very first thing you should do: write your SUID on every page.

• Forgetting this would be the saddest reason to lose points! And you will
NOT be given extra time after time is called to do this. No writing at all
after time is called.

› 4 questions.

› I’d plan 25 minutes per problem, which leaves you 20 minutes at the end
to re-check your work etc.

The Midterm Exam

 Format: Handwritten on paper
› I would be sure to solve some practice problems with pen & paper so this

doesn’t feel completely new and strange!
› In grading, we try to ignore minor “typos” in handwritten code that likely would

have been prevented or caught by an IDE
• Just make sure intent is clear—i.e. we are happy to ignore that you wrote

“stepcount” instead of “stepCount,” but not if you have variables with both
names in your code and we actually do need to know which one it is on a
given line.

› You won’t be able to actually compile, run, and test your paper-written code,
but you’ll very much want to be thinking in terms of what you would put in
“STUDENT_TEST”s for the code you’re writing.
• To simulate a test: pick a concrete example, then try to set your intent aside

and painstakingly trace through the example input line by line to check.
Repeat for 1-2 more concrete examples.

• (Note: familiarity with our STUDENT_TEST code format is expected
knowledge on the exam.)

The Midterm Exam

 Problem Topics:

› (Same general categories as the practice exam)

1. C++ Fundamentals

2. ADTs

3. Big-O

4. Recursion

The Midterm Exam

 Rules: Closed book, no devices

› This is actually to make the exam easier, I promise!

 Reference Sheet (included in exam)

› It’s on the course website, so study it ahead of time!

 Cheat Sheet (your own to bring with you)

› One sheet of paper (8.5x11), both sides, handwritten

Sample Problem 1:
C++ Fundamentals

W h a t t o e x p e c t , s o l u t i o n

What to expect

 Strings

 Loops, nested loops

 Multi-part conditionals inside a loop

 Thinking carefully about edge cases

Sample Q1: Grid of theater seat reservations

 You are given a Grid<string> representing the seating
chart of a theater.

 Your function will help customers looking to make
group reservations by taking the grid and looking for a
row with at least n consecutive open seats.

› If the seat has been reserved, the string is that
person’s name, otherwise the string is empty string.

 Return the GridLocation of the leftmost seat of the
matching block of seats.

› You may assume a satisfying location exists.

Sample Q1: Strategy

 We need to loop over the Grid

› Should we use for (string entry : grid) style loop?

• Not in this case, because we need to be aware of our current row
(blocks can’t cross from one row to another)

• Use int row/col nested loops

 Within a row, we need to count free seats

› Start count at 0 again each row

› Iterate over cols, incrementing if empty

• If not empty, reset count to 0

› If we find something that works, immediately store location and return

Sample Q1: Solution
GridLocation findSeats(Grid<string>& seatGrid, int n) {

GridLocation loc(0, 0);

for (int r = 0; r < seatGrid.numRows(); r++) {

int count = 0; // count consecutive empty seats

for (int c = 0; c < seatGrid.numCols(); c++) {

if (seatGrid[r][c] == "") {

count++;

if (count == n) {

loc = { r, c – n + 1 };

return loc;

}

} else {

count = 0; // if non-empty string, need to reset counter

}

}

}

return loc; // shouldn’t reach this but keep compiler happy

}

Your Turn

Q: What’s something you should be sure to include on your cheat sheet to
help with a C++ fundamentals question?

 Give one idea per pollev response

 Feel free to give multiple responses pollev.com/cs106b

Sample Problem 2: ADTs

W h a t t o e x p e c t , s o l u t i o n

What to expect

 Uses of the ADTs that really “fit” the situation

› Either by our design, or we ask you to choose the best design

 Code that is much simpler (!!) if you use elegant ADT features

› Range-based for loop (example: for (string s : themap))

› Push/pop on a Stack vs manual equivalent on a Vector

› Set operations vs manual equivalent

 One kind of ADT alongside or inside another kind of ADT

 Theme: really let the ADTs “shine”

Sample Q2: ADTs problem

Write a function that takes a Queue<int> and
returns a Queue<int> where the elements are
in reverse of the original order.

The challenge: Your function may declare only
one local variable: your choice of either a
Stack or a Queue.

Queue<int> reverse(Queue<int> q);

pollev.com/cs106b

Would you choose a
Stack or Queue for this?

Sample Q2 Solution

Queue<int> reverse(Queue<int> q) {

Stack<int> theStack;

while (!q.isEmpty()) {

int x = q.dequeue();

theStack.push(x);

}

while (!theStack.isEmpty()) {

q.enqueue(theStack.pop());

}

return q;

}

Your Turn

Q: What’s something you should be sure to include on your cheat sheet to
help with a ADTs question?

 Give one idea per pollev response

 Feel free to give multiple responses
pollev.com/cs106b

Sample Problem 3: Big O

W h a t t o e x p e c t , s o l u t i o n

What to expect

 ADT operations with known costs, inside loops and recursive function calls

› Your job is mainly to analyze the loop or recursion structure, then you can
just plug in what you see for that ADT operation, using the Reference Sheet

› Loops one after the other: additive cost

› Loops nested in one another: multiplicative cost

› Remember to simplify! (O(N), not O(3N + 5))

 (no additional samples for this one—refer to practice exams)

Practice Exam Problem 4:
Recursion

W h a t t o e x p e c t , s o l u t i o n

What to expect

 Similar to pre-backtracking recursion examples from lecture: Fibonacci, Coin
Flip, Fractals, permutations

Sample Q4: Roller Coaster seating

 This roller coaster at the Santa Cruz Beach
Boardwalk is a train of rows that are two seats wide.

 There are N amusement park guests in line for the
roller coaster, and they must board in order. The
train is loaded from front to back.

 When guests reach the front of the line, they tell the
ride attendant whether they want to ride alone (1
person that row) or share with the next person in line
(2 people in that row).

› Assume that the train has at least N rows, so it is
long enough to accommodate all N riders in any
configuration (rows aren't skipped except there are
possibly extra empty rows after all riders have been
seated).

 How many different rider configurations are
possible?

Sample Q1: Strategy

 N is the number of riders guests, and recursively will track how many remain
to be seated

 Base cases: 0 guests, 1 guest, 2 guests

 Recursive case: Each recursive call we either seat 1 or 2 guests (decreasing the
remaining guests by 1 or 2). For each choice, recursively explore how many
options from there

Sample Q1: Solution

int countConfigs(int n) {

if (n < 3) {

return n;

}

return countConfigs(n - 1) + countConfigs(n - 2);

}

