
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

 Drill down on memory and pointers
› Uninitialized memory

› Different pointer types

› C++ structs and pointers

 IMPORTANT: the Midterm is Tuesday.
› Check your room assignment on the course website.

› Information about topics, rules, etc, on the course website.

› If you have a special situation or accommodation and don’t have an email confirming your
separate time/place, we do not have you in our records, so it is critical that you reach out to
Jonathan *immediately*.

 Apply to be a section leader! Applications due Saturday Nov 2.

 For important announcements, be sure to see the weekly announcements post on the Ed Q&A
board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Recap from Last Time

S T A C K A N D H E A P A R R A Y S

Two kinds of arrays in C/C++

type name[length];

› Basic array (AKA statically allocated or stack allocated)
› Stored in the stack frame alongside other local variables

Example: int homeworkGrades[7];

type* name = new type[length];

› Dynamically allocated array (AKA heap allocated)
› The variable that refers to the array is called a pointer, and it is on the stack
› But the actual array is stored in the heap!

Example: int* homeworkGrades = new int[7];

Stack array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1; // 6

stackArr[1] = y + 1; // 4

stackArr[2] = x + y; // 8

return y;

}

Stack:
main()

x:

y:

0

5

3

myFunction()

stackArr:

Heap:

8

4

6 0

1

2

Memory

Stack array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1;

stackArr[1] = y + 1;

stackArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

x:

y:

5

3

myFunction()

stackArr:

8

4

6 0

1

2

Stack:

Heap:

Heap array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

Stack:
main()

x:

y:

0

myFunction()

heapArr:

Heap:

5

3

0 1 2

6 4 8

Memory

Heap array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Stack:
main()

x:

y:

0

myFunction()

heapArr:

Heap:

5

3

0 1 2

6 4 8

Memory

Heap array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array NOT
automatically released!

Stack:

Heap: 6 4 8
0 1 2

Heap array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array released with
delete

Stack:

Heap: 6 4 8
0 1 2

Uninitialized Memory

T W O C O D E D E M O S

How to fix the uninitialized memory danger

type* name = new type[length]; // uninitialized
type* name = new type[length](); // initialized with zeroes

› In general, memory stores uninitialized (“random”/garbage) values
› If () are written after [], all elements are zeroed out

• Slower but good if needed

int* a1 = new int[3];
cout << a1[0]; // 2395876
cout << a1[1]; // -197630894

int* a2 = new int[3]();
cout << a2[0]; // 0
cout << a2[1]; // 0

Pointers

T A K I N G A D E E P E R L O O K A T
T H E S Y N T A X O F T H A T A R R A Y

O N T H E H E A P

Memory addresses

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

bool kitkat = true;
int candies = 10;

Whenever you declare a variable, you
allocate a bucket (or more) of memory
for the value of that variable

Each bucket of memory has a unique
address

Memory addresses

cout << &candies << endl; // 20
cout << &kitkat << endl; // 4

bool kitkat = true;
int candies = 10;

Whenever you declare a variable, you
allocate a bucket (or more) of memory
for the value of that variable

Each bucket of memory has a unique
address

You can ask for any variable's address
using the & operator.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

Memory addresses

int* ptrC = &candies; // 20
bool* ptrB = &kitkat; // 4

bool kitkat = true;
int candies = 10;

You can store memory addresses in a
special type of variable called a pointer.
 i.e. A pointer is a variable that holds a

memory address.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

6 483

28

82391

32

23532

36

20

4050123

true

10

This explains what happens when we use new!
We get back the memory address of the place
in the heap to use, so we store it in a pointer.

int* heapArr = new int[3];

Memory addresses

In our example here, the memory
addresses of our local variables are very
small numbers.

Remember that in a real situation, the
stack part of memory is waaaaaay up at
the end of memory, so the addresses will
be quite large!

We typically write them in hexadecimal
(base 16) instead of deciaml (base 10).

Example:

0x7ffee40f1494

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

Memory addresses

 “Pointer” isn’t one type in C++ but many—it depends on what it
points to.

 You can declare a pointer using * and the type pointed-to:
 int*
 bool*
 string*
 double*
 Queue<GridLocation>*
 int**  Yes this is possible (!!), you’ll see this in CS107.

Memory addresses

 “Pointer” isn’t one type in C++ but many—it depends on what it
points to.

 You can declare a pointer using * and the type pointed-to:
 int*
 bool*
 string*
 double*
 Queue<GridLocation>*
 int**  Yes this is possible (!!), you’ll see this in CS107.

Does this imply that we can use new
with class types like Queue, to put the
entire Queue object in heap memory?
Yep, we sure can!

Uninitialized Pointers and
nullptr

M O R E C + + D E T A I L S

What is in an uninitialized pointer variable?

 We saw that, in general, memory stores uninitialized (“random”/garbage) values

 What is an uninitialized pointer?

› Just some number, the “arrow” of the pointer points to some “random” location

› This is REALLY BAD for bugs in code 

› You could change the value of any other variable in your code on accident

› Extremely hard to debug

int* goodPtr = new int[3]; // address 0x7ff4 belongs to us now

goodPtr[0] = 5; // address 0x7ff4 now holds 5

int* badPtr; // uninitialized – address 0x0027 not ours!

badPtr[0] = 5; // RIP whoever was using address 0x0027

Uninitialized pointers
int* goodPtr = new int[3]; // address 0x7ff4 belongs to us now

goodPtr[0] = 5; // address 0x7ff4 now holds 5

int* badPtr; // uninitialized – address 0x0027 not ours!

badPtr[0] = 5; // RIP whoever was using address 0x0027

Stack:

0

myFunction()

Heap:

0 1 2

5

Memory

0x7ff4

goodPtr: badPtr:

0

50x0027
💀

Initializing pointer variables: nullptr

 We’ve seen that uninitialized pointers are REALLY BAD 

 nullptr is a special value that we can use to initialize pointers

› Guaranteed to never be a usable memory address that belongs to anyone

› (it’s actually just the number zero, but don’t use 0 in your code)

int* ptr = nullptr; // good value to use for now

ptr[0] = 5; // this will give an error—THAT'S USEFUL

if (ptr != nullptr) { // nullptr is good to test for

ptr[0] = 5;

} else {

// don’t use ptr!

}

More on Dynamically-
Allocated Memory

N E W A N D D E L E T E F O R T H I N G S
O T H E R T H A N A R R A Y S

Dynamically-allocated objects

// Stack object with dynamically-allocated private data

Queue<GridLocation> path1;

path1.enqueue(loc);

main()

0

myFunction()

_size: 1
_capacity: 4
_elements:

path1:

{0,0}

Stack:

Heap:

Dynamically-allocated objects

// Stack object with dynamically-allocated private data

Queue<GridLocation> path1;

path1.enqueue(loc);

// Dynamically-allocated object with dynamically-allocated

// private data

Queue<GridLocation>* path2 = new Queue<GridLocation>();

path2->enqueue(loc); // note ->

Stack: main()

0

myFunction()

path2:

Heap:

_size: 1
_capacity: 4
_elements:

path1:

{0,0}

{0,0}

_size: 1
_capacity: 4
_elements:

Dynamically-allocated objects

// Stack object with dynamically-allocated private data

Queue<GridLocation> path1;

path1.enqueue(loc);

// Dynamically-allocated object with dynamically-allocated

// private data

Queue<GridLocation>* path2 = new Queue<GridLocation>();

path2->enqueue(loc); // note ->

delete path2; // don't use [] that’s only for array

Stack: main()

0

myFunction()

path2:

Heap:

_size: 1
_capacity: 4
_elements:

path1:

{0,0}

Dynamically-allocated objects

// Stack object with dynamically-allocated private data

Queue<GridLocation> path1;

path1.enqueue(loc);

// Dynamically-allocated object with dynamically-allocated

// private data

Queue<GridLocation>* path2 = new Queue<GridLocation>();

path2->enqueue(loc); // note ->

delete path2; // don't use [] that’s only for array

path2 = nullptr;

Stack: main()

0

myFunction()

path2:

Heap:

_size: 1
_capacity: 4
_elements:

path1:

{0,0}

 Tip: set pointers to nullptr right after a delete,
that way you don’t accidentally use them

 In memory diagrams, we draw nullptr as a
slash through the box

