
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

 More practice making our own classes

› Implementing Stack
• A simple Stack ADT with unlimited capacity

› In doing so, we need to learn about:

• C/C++ arrays

• Dynamic memory allocation (this is a huge topic in itself—much of CS107 is about this)

 IMPORTANT: the Midterm is Tuesday.
› Check your room assignment on the course website.

› Information about topics, rules, etc, on the course website.

› If you have a special situation or accommodation and don’t have an email confirming your
separate time/place, we do not have you in our records, so it is critical that you reach out to
Jonathan *immediately*.

 For important announcements, be sure to see the weekly announcements post on the Ed Q&A board!
https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Stack Implementation

B E H I N D T H E S C E N E S T O U R !

Implementing a classic ADT: Stack

Today let's learn how to write a Stack class

 We will implement a stack

› Not quite like the one in Stanford library—for simplicity this only
stores int

 The stack will use an array to store its elements

 The capacity will grow as needed

Recall the basic stack operations:

 push: Add an element to the top.

 pop: Remove the top element.

 peek: Examine the top element. stack

top 3

2

bottom 1

pop, peekpush

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

 Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

 Our stack will use the same array-based technique

// Diagram shows the internal state of the Stack class

// after 3 ints are pushed

Stack<int> s;

s.push(42);

s.push(-5);

s.push(17);

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 17 0 0 0 0 0 0 0

size 3 capacity 10

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

 Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

 Our stack will use the same array-based technique

// Diagram shows the internal state of the Stack class

// after 3 ints are pushed

Stack<int> s;

s.push(42);

s.push(-5);

s.push(17);

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 17 0 0 0 0 0 0 0

size 3 capacity 10

Quick check:
which end will we
consider the “top”

of the stack?

pollev.com/cs106b

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

 Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

 Our stack will use the same array-based technique

// Diagram shows the internal state of the Stack class

// after 3 ints are pushed

Stack<int> s;

s.push(42);

s.push(-5);

s.push(17);

index 0 1 2 3 4 5 6 7 8 9

values 42 -5 17 0 0 0 0 0 0 0

size 3 capacity 10

Quick check:
which end will we
consider the “top”

of the stack?

Our class member
variables will include
size and capacity.

And this storage area
is a C/C++ array.

Arrays in C++

B E H I N D T H E S C E N E S T O U R !

Basic Array in C/C++

type name[length];

› An array is has enough space for multiple values of a type

• If a regular variable is a single-family home, arrays are an apartment
building

• Similar concept as a Vector, but much more basic

– Can’t ever be resized

– No methods

– Really just several adjacent spaces of the same type

Example:

int homeworkGrades[7];

homeworkGrades[0] = 90;

homeworkGrades[3] = 95;

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1; // 6

stackArr[1] = y + 1; // 4

stackArr[2] = x + y; // 8

return y;

}

What happens when myFunction()
returns?

Stack:
main()

x:

y:

0

5

3

myFunction()

stackArr:

Heap:

8

4

6 0

1

2

Memory

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1;

stackArr[1] = y + 1;

stackArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

x:

y:

5

3

myFunction()

stackArr:

8

4

6 0

1

2

Stack:

Heap:

A second kind of array in C/C++

type name[length];

› Basic array (AKA statically allocated or stack allocated)
› Stored in the stack frame alongside other local variables

Example: int homeworkGrades[7];

type* name = new type[length];

› Dynamically allocated array (AKA heap allocated)
› The variable that refers to the array is called a pointer, and it is on the stack
› But the actual array is stored in the heap!

Example: int* homeworkGrades = new int[7];

Basic array
we just saw

New kind of
array!

new!

new!

Literally the word “new”!

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

Stack:
main()

x:

y:

0

myFunction()

heapArr:

Heap:

5

3

0 1 2

6 4 8

Memory

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Stack:
main()

x:

y:

0

myFunction()

heapArr:

Heap:

5

3

0 1 2

6 4 8

Memory

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array NOT
automatically released!

Stack:

Heap: 6 4 8
0 1 2

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array released with
delete

Stack:

Heap: 6 4 8
0 1 2

Dynamic Memory
Allocation

K e y w o r d s n e w a n d d e l e t e

Memory leaks

 The pointer variable that

points to heap allocated

memory is like the string

on a helium balloon.

 If you let go of the string

(or lose that pointer

variable), the balloon still

exists out there

somewhere, but it’s never

yours to play with ever

again.

› Also it’s polluting the

environment. Please don’t

release balloons.

Memory

main()

0

Stack:

Heap: 6 4 8
0 1 2

19

Always a pair: new and delete

 Think of new as making a hotel
room reservation.

› new int[5]

› “I’d like 5 connecting rooms,
each big enough for 1 int value,
please.”

 Think of delete as checking out of
the hotel room.

› delete [] arr

› “My trip is done. Stop charging
me for these rooms, and you can
give them to other guests.”

20

Always a pair: new and delete

Many things can go wrong with dynamic
memory that are analogous to the hotel
situation:

 Leave town but forget to check out—
you’ll keep getting charged for the
room and it can’t go to another guest

› When you forget delete, you get a
memory leak

 Check out of the room but then try to
go back in—another guest might
already be using it and will be very
angry!

› After you call delete, be sure not
to try to use that memory again!

int* arr = new int[10];
…
delete [] arr;
arr[0] = 5; // no!!

Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y;

}

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array manually
released by delete []

Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y;

}
Q: “Why would you want to do that?”

A: It’s true that there’s no point to using dynamic allocation if
we are just deleting at the end of the function. Choose a
static array instead to automatically release. Dynamic
allocation is for when you want the data to last so you can
keep using it.

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array manually
released by delete []

Destructor (12.3)

// ClassName.h // ClassName.cpp

~ClassName(); ClassName::~ClassName() { ...

Destructor: Called when the object is deleted by the program

 When the object goes out of {} scope; opposite of a constructor

 (or when you expressly call “delete” on the object, if heap-allocated)

 Useful if your object needs to do anything important as it dies,
such as freeing any array memory used by its fields

arraystack.h
#ifndef _arraystack_h

#define _arraystack_h

class ArrayStack {

public:

ArrayStack();

~ArrayStack();

void push(int n);

int pop();

int peek() const;

bool isEmpty() const;

private:

int* _elements;

int _capacity;

int _size;

void checkResize();

};

#endif

arraystack.cpp
(part 1)

#include "arraystack.h"

ArrayStack::ArrayStack() {

_elements = new int[10];

_capacity = 10;

_size = 0;

}

ArrayStack::~ArrayStack() {

delete[] _elements;

}

bool ArrayStack::isEmpty() const {

return _size == 0;

}

void ArrayStack::push(int n) {

_elements[_size] = n;

_size++;

}

arraystack.cpp (part 2)
int ArrayStack::pop() {

if (isEmpty()) {
throw "Can't pop from an empty stack!";

}
int result = _elements[_size - 1];
_elements[_size - 1] = 0;
_size--;
return result;

}

int ArrayStack::peek() const {
if (isEmpty()) {

throw "Can't peek from an empty stack!";
}
return _elements[_size - 1];

}

Resize when out of space

// grows array to twice the capacity if needed

void ArrayStack::checkResize() {

if (_size == _capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * _capacity]();

for (int i = 0; i < _capacity; i++) {

bigger[i] = _elements[i];

}

delete[] _elements;

_elements = bigger;

_capacity *= 2;

}

}

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 3 8 9 7 5 12 4 8 1 6 75 0 0 0 0 0 0 0 0 0

size 11 capacity 20

Overflow (extra) slides

F O R T H E A D V A N C E D A N D / O R
C U R I O U S S T U D E N T

Shallow copy bug (12.7)

If one stack is assigned to another, they will share one array.

 ArrayStack stack1;

 ArrayStack stack2 = stack1;

A change to one will affect the other. (That's bad!)

 stack2.pop();

 stack1.push(88);

When they fall out of scope, memory could get freed twice (error!)

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 88 0 0 0 0 0 0 0

size 3 capacity 10

stack1
_elements

stack2
_elements

Deep copy

To correct the shallow copy bug, we must define:

 a copy constructor (constructor that takes a list as a parameter)

ArrayStack(const ArrayStack& stack);

 an assignment operator (overloaded = op between two lists)

ArrayStack& operator =(const ArrayStack& stack);

› in both of these, we will make a deep copy of the array of elements.

Rule of Three: In C++, when you define one of these three items in your class, you
probably should define all three:

 1) copy constructor 2) assignment operator 3) destructor

Advanced: Forbid copying

One quick fix is to just forbid your objects from being copied.

 Declare a private copy constructor and = operator in the .h file.

 Don't give them any actual definition/body in the .cpp file.

// in arraystack.h

private:

ArrayStack(const ArrayStack& stack);

ArrayStack& operator =(const ArrayStack& stack);

 Now if the client tries stack2 = stack1; it will not compile.

 Solves the shallow copy problem, but restrictive and less usable.

