
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

 More practice making our own classes

› Implementing Stack
• A simple Stack ADT with unlimited capacity

› In doing so, we need to learn about:

• C/C++ arrays

• Dynamic memory allocation (this is a huge topic in itself—much of CS107 is about this)

 IMPORTANT: the Midterm is Tuesday.
› Check your room assignment on the course website.

› Information about topics, rules, etc, on the course website.

› If you have a special situation or accommodation and don’t have an email confirming your
separate time/place, we do not have you in our records, so it is critical that you reach out to
Jonathan *immediately*.

 For important announcements, be sure to see the weekly announcements post on the Ed Q&A board!
https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Stack Implementation

B E H I N D T H E S C E N E S T O U R !

Implementing a classic ADT: Stack

Today let's learn how to write a Stack class

 We will implement a stack

› Not quite like the one in Stanford library—for simplicity this only
stores int

 The stack will use an array to store its elements

 The capacity will grow as needed

Recall the basic stack operations:

 push: Add an element to the top.

 pop: Remove the top element.

 peek: Examine the top element. stack

top 3

2

bottom 1

pop, peekpush

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

 Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

 Our stack will use the same array-based technique

// Diagram shows the internal state of the Stack class

// after 3 ints are pushed

Stack<int> s;

s.push(42);

s.push(-5);

s.push(17);

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 17 0 0 0 0 0 0 0

size 3 capacity 10

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

 Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

 Our stack will use the same array-based technique

// Diagram shows the internal state of the Stack class

// after 3 ints are pushed

Stack<int> s;

s.push(42);

s.push(-5);

s.push(17);

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 17 0 0 0 0 0 0 0

size 3 capacity 10

Quick check:
which end will we
consider the “top”

of the stack?

pollev.com/cs106b

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

 Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

 Our stack will use the same array-based technique

// Diagram shows the internal state of the Stack class

// after 3 ints are pushed

Stack<int> s;

s.push(42);

s.push(-5);

s.push(17);

index 0 1 2 3 4 5 6 7 8 9

values 42 -5 17 0 0 0 0 0 0 0

size 3 capacity 10

Quick check:
which end will we
consider the “top”

of the stack?

Our class member
variables will include
size and capacity.

And this storage area
is a C/C++ array.

Arrays in C++

B E H I N D T H E S C E N E S T O U R !

Basic Array in C/C++

type name[length];

› An array is has enough space for multiple values of a type

• If a regular variable is a single-family home, arrays are an apartment
building

• Similar concept as a Vector, but much more basic

– Can’t ever be resized

– No methods

– Really just several adjacent spaces of the same type

Example:

int homeworkGrades[7];

homeworkGrades[0] = 90;

homeworkGrades[3] = 95;

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1; // 6

stackArr[1] = y + 1; // 4

stackArr[2] = x + y; // 8

return y;

}

What happens when myFunction()
returns?

Stack:
main()

x:

y:

0

5

3

myFunction()

stackArr:

Heap:

8

4

6 0

1

2

Memory

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1;

stackArr[1] = y + 1;

stackArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

x:

y:

5

3

myFunction()

stackArr:

8

4

6 0

1

2

Stack:

Heap:

A second kind of array in C/C++

type name[length];

› Basic array (AKA statically allocated or stack allocated)
› Stored in the stack frame alongside other local variables

Example: int homeworkGrades[7];

type* name = new type[length];

› Dynamically allocated array (AKA heap allocated)
› The variable that refers to the array is called a pointer, and it is on the stack
› But the actual array is stored in the heap!

Example: int* homeworkGrades = new int[7];

Basic array
we just saw

New kind of
array!

new!

new!

Literally the word “new”!

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

Stack:
main()

x:

y:

0

myFunction()

heapArr:

Heap:

5

3

0 1 2

6 4 8

Memory

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Stack:
main()

x:

y:

0

myFunction()

heapArr:

Heap:

5

3

0 1 2

6 4 8

Memory

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array NOT
automatically released!

Stack:

Heap: 6 4 8
0 1 2

Arrays in a memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr;

return y;

}

What happens when myFunction()
returns?

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array released with
delete

Stack:

Heap: 6 4 8
0 1 2

Dynamic Memory
Allocation

K e y w o r d s n e w a n d d e l e t e

Memory leaks

 The pointer variable that

points to heap allocated

memory is like the string

on a helium balloon.

 If you let go of the string

(or lose that pointer

variable), the balloon still

exists out there

somewhere, but it’s never

yours to play with ever

again.

› Also it’s polluting the

environment. Please don’t

release balloons.

Memory

main()

0

Stack:

Heap: 6 4 8
0 1 2

19

Always a pair: new and delete

 Think of new as making a hotel
room reservation.

› new int[5]

› “I’d like 5 connecting rooms,
each big enough for 1 int value,
please.”

 Think of delete as checking out of
the hotel room.

› delete [] arr

› “My trip is done. Stop charging
me for these rooms, and you can
give them to other guests.”

20

Always a pair: new and delete

Many things can go wrong with dynamic
memory that are analogous to the hotel
situation:

 Leave town but forget to check out—
you’ll keep getting charged for the
room and it can’t go to another guest

› When you forget delete, you get a
memory leak

 Check out of the room but then try to
go back in—another guest might
already be using it and will be very
angry!

› After you call delete, be sure not
to try to use that memory again!

int* arr = new int[10];
…
delete [] arr;
arr[0] = 5; // no!!

Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y;

}

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array manually
released by delete []

Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y;

}
Q: “Why would you want to do that?”

A: It’s true that there’s no point to using dynamic allocation if
we are just deleting at the end of the function. Choose a
static array instead to automatically release. Dynamic
allocation is for when you want the data to last so you can
keep using it.

Memory

main()

0

myFunction’s stack
frame automatically
released

Heap array manually
released by delete []

Destructor (12.3)

// ClassName.h // ClassName.cpp

~ClassName(); ClassName::~ClassName() { ...

Destructor: Called when the object is deleted by the program

 When the object goes out of {} scope; opposite of a constructor

 (or when you expressly call “delete” on the object, if heap-allocated)

 Useful if your object needs to do anything important as it dies,
such as freeing any array memory used by its fields

arraystack.h
#ifndef _arraystack_h

#define _arraystack_h

class ArrayStack {

public:

ArrayStack();

~ArrayStack();

void push(int n);

int pop();

int peek() const;

bool isEmpty() const;

private:

int* _elements;

int _capacity;

int _size;

void checkResize();

};

#endif

arraystack.cpp
(part 1)

#include "arraystack.h"

ArrayStack::ArrayStack() {

_elements = new int[10];

_capacity = 10;

_size = 0;

}

ArrayStack::~ArrayStack() {

delete[] _elements;

}

bool ArrayStack::isEmpty() const {

return _size == 0;

}

void ArrayStack::push(int n) {

_elements[_size] = n;

_size++;

}

arraystack.cpp (part 2)
int ArrayStack::pop() {

if (isEmpty()) {
throw "Can't pop from an empty stack!";

}
int result = _elements[_size - 1];
_elements[_size - 1] = 0;
_size--;
return result;

}

int ArrayStack::peek() const {
if (isEmpty()) {

throw "Can't peek from an empty stack!";
}
return _elements[_size - 1];

}

Resize when out of space

// grows array to twice the capacity if needed

void ArrayStack::checkResize() {

if (_size == _capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * _capacity]();

for (int i = 0; i < _capacity; i++) {

bigger[i] = _elements[i];

}

delete[] _elements;

_elements = bigger;

_capacity *= 2;

}

}

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 3 8 9 7 5 12 4 8 1 6 75 0 0 0 0 0 0 0 0 0

size 11 capacity 20

Overflow (extra) slides

F O R T H E A D V A N C E D A N D / O R
C U R I O U S S T U D E N T

Shallow copy bug (12.7)

If one stack is assigned to another, they will share one array.

 ArrayStack stack1;

 ArrayStack stack2 = stack1;

A change to one will affect the other. (That's bad!)

 stack2.pop();

 stack1.push(88);

When they fall out of scope, memory could get freed twice (error!)

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 88 0 0 0 0 0 0 0

size 3 capacity 10

stack1
_elements

stack2
_elements

Deep copy

To correct the shallow copy bug, we must define:

 a copy constructor (constructor that takes a list as a parameter)

ArrayStack(const ArrayStack& stack);

 an assignment operator (overloaded = op between two lists)

ArrayStack& operator =(const ArrayStack& stack);

› in both of these, we will make a deep copy of the array of elements.

Rule of Three: In C++, when you define one of these three items in your class, you
probably should define all three:

 1) copy constructor 2) assignment operator 3) destructor

Advanced: Forbid copying

One quick fix is to just forbid your objects from being copied.

 Declare a private copy constructor and = operator in the .h file.

 Don't give them any actual definition/body in the .cpp file.

// in arraystack.h

private:

ArrayStack(const ArrayStack& stack);

ArrayStack& operator =(const ArrayStack& stack);

 Now if the client tries stack2 = stack1; it will not compile.

 Solves the shallow copy problem, but restrictive and less usable.

