Programming Abstractions
CS106B

Cynthia Bailey
Chris Gregg

Stanford University

pollev.com/cs106b

Today’s Topics

= C++Classes
> You’ve used them, now make your own!

= Forimportant announcements, be sure to see the weekly announcements post on the Ed
Q&A board! https://edstem.org

= Alsoon Ed: live lecture Q&A with Chris & Jonathan

Stanford University

https://edstem.org/

Quick Course Overview

Week 1: C++
Week 2: ADTs, how to use them
Weeks 3-4: Recursion

Weeks 5-10: ADTs, behind the scenes! € YOU ARE HERE

> actually implement them yourself

Stanford University

Classes and Objects

KEY VOCABULARY AND
CONCEPTS

Stanford University

Classes and objects

Class: Allows us to add new types to the language! e
A template for what the type holds and how it works —— Bt

4 V. p.
Object: One instance of a class type , = e rerd

{1 [[
E] - K : b | u_ b |

Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

Abstraction: Separation between concepts and details.

Stanford University

Classes and objects

Class: Allows us to add new types to the language!

A template for what the type holds and how it works ——— §

Object: One instance of a class type

Vector<int> c;

Object-oriented programming (OOP): Programs that perform their behavior

as interactions between objects.

Abstraction: Separation between concepts and details.

Stanford University

Elements of a class

Member variables: State inside each object
= Also called "instance variables" or "fields"
» Each object has a copy of each member variable

Member functions: Behavior each object can perform
= Also called "methods"
= The method can interact with the data inside that object

Stanford University

Abstraction: Interface vs. code

C++ separates classes into two kinds of code files:

= h: A "header" file containing the interface (declarations)

= Cpp: A "source" file containing definitions (method bodies)
> class Foo => must write both foo.h and foo.cpp

The content of .h files is #included inside .cpp files

Makes them aware of the blueprint plans for the class and its members

Stanford University

Essentially a collection of
function prototypes for the class

Abstraction: Interface vs. code

, , B methods (among other things)
C++ separates classes into two kinds of code file

= h: A "header" file containing the interface (declarations)

= Cpp: A "source" file containing definitions (method bodies)

> class Foo => must write both foo.h and foo. c ERI-EIa 0 Rillsledle]s

definitions

The content of .h files is #included inside .cpp files

Makes them aware of the blueprint plans for the class and its members

Stanford University

C++ Class Implementation

HOW TO ACTUALLY DO THIS!

Stanford University

Class declaration (.h)

class ClassName {
public: // in ClassName.h
ClassName(parameters); // constructor

returnType name(parameters); // member functi
returnType name(parameters); // (behaviog~inside

returnType name(parameters); // object)

ea

private:
type _name; // me
type _name; (data inside each object)

er variables

P

} - /

This C++ detail provides protection in
case multiple .cpp files include this .h,
so that its contents won't get
declared twice

IMPORTANT: must put a
semicolon at end of class
declaration

Stanford University

Class example (v1)

// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {

public:
BankAccount(string n); // constructor
void deposit(double amount); // methods

void withdraw(double amount);
void setName(string name);

private:
string _name; // each BankAccount object
double _balance; // has a name and balance
¥
#endif

Stanford University

Using objects

// client code in bankmai bal

client code in bankmain.cpp » "
BankAccount bal("Cynthia"); _hame = Oyn
bal.deposit(2.00); _balance = 0.50
bal.withdraw(1.50);

bal.setName("Cyn"); ba2

__name = "Chris"

BankAccount ba2("Chris"); balance = 50.00

ba2.deposit(60.00);
ba2.withdraw(5.00);
ba2.withdraw(5.00);

An object groups multiple variables together

= Each object contains its own name and balance field inside it
= We can get/set them individually

= Code thatuses yourobjectsis called client code

Stanford University

Member function bodies

In ClassName. cpp, we write bodies (definitions) for the member functions

that were declared in the .h file:

#include "ClassName.h"

// member function

returnType ClassName: :methodName(parameters) {
statements;
statements;

= Member functions/constructors can refer to the object's member variables.

Stanford University

Member func diagram

// BankAccount.cpp
void BankAccount::withdraw(double amount) {
if (_balance »>= amount) {

) _balance -= amount; _name "Cynthia" _balance 1.25
} /7 void withdraw(double amount) {
7 if (_balance >= amount) {
7/
, _balance -= amount;
7/
// client program e) }
BankAccount cynth(...);”
BankAccount chris(...);
N\
* o 0 N\
cynthia.withdraw(5.00); MJ _name "Chris" _balance 9999
julie.withdraw(5.00); void withdraw(double amount) {
if (_balance >= amount) {
_balance -= amount;
}
}

Constructors

ClassName: :ClassName(parameters) { // note no return type is specified
statements to initialize the object;

}

Constructor: Initializes state of new objects as they are created.
= without constructor:

BankAccount ba;
ba.setName("Cynthia"); // tedious, also what is the balance??

= with constructor:
BankAccount: :BankAccount(string name) {
_hame = name;
_balance = 0.0;

}

BankAccount ba("Cynthia"); // convenient, clearly starts $0.0 balance

Stanford University

Private data

private:
type name;

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() {
return _balance;

}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {
_hame = newName;

}

Stanford University

Your Turn!

| want to add a second
constructor to my
BankAccount class

* Current constructor takes
the name and initializes

 |’d like to have one that
takes both a name and an
initial account balance

In PollEv: write the line of
code | would need to add to

the .h file to do this.
In discussion: what new code
goes in the new .cpp file?

// BankAccount.h

#ifndef _bankaccount h
#define _bankaccount_h

class BankAccount {

public:
BankAccount(string n); // constructor
void deposit(double amount); // methods

void withdraw(double amount);

private:
string name; // each BankAccount object
double balance; // has a name and balance
}s
#endif

Stanford University

Preconditions

Precondition: Something your code assumes is true at the start of its execution
» Often documented as a comment on the function's header.
= |fviolated, the class often throws an exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {
error("Balance must be positive.");
}
_hame = name;
_balance = balance;

Stanford University

Bouncing Ball Demo

APPLYING WHAT WE LEARNED
WITH THE BANK CLASS TO A
NEW PROBLEM

Stanford University

Bouncing Ball demo

Write a class Ball that represents a bouncing ball.
» What state (private instance variables) should each ball store?
= window functions: setColor and drawOval

Finish the provided client code to draw many balls in a window.
= Make each ball appear at arandom location.

= Make the balls move at random velocities
and "bounce" if they hit window edges.

Enhance the provided client code to add colors.
= Make each ball appear a random color choice.

Stanford University

Extra Slides

MORE COOL TRICKS WITH C++
CLASSES

Stanford University

Operator overloading (6.2) unary: 4 - ++ -- * &
I ~ new delete

operator overloading: Redefining the binary: + - * | % += -=

behavior of a common operator

in the C++ language. *= /= %= & | && ||
N== = < > K= >=
Syntax: << > =[] ->0,
returnType operator op(parameters); // in the .h file for the class
returnType operator op(parameters) { // in the .cpp file for the class
statements;

}s

» Forexample, for two variables of type Foo, a + b will use the code you write in:
Foo operator +(Foo& a, Foo& b) {
// function body

}

Stanford University

Make objects printable

To make it easy to print your object to cout, overload <<
ostream& operator <<(ostream& out, Type& name) {

statements;
return out;

= ostreamisa base class that represents cout, file output streames, ...

Stanford University

<< overload example

// BankAccount.h
class BankAccount {

}s
// notice operators go OUTSIDE of the class' closing }; brace!
ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {

out << ba.getName() << ": $" << ba.getBalance();
return out;

Stanford University

== overload example

// BankAccount.h
class BankAccount {

s

bool operator ==(const BankAccount& bal,
const BankAccount& ba2);

// BankAccount.cpp
bool operator ==(const BankAccount& bal,
const BankAccount& ba2) {
return bal.getName() == ba2.getName()
&& bal.getBalance() == ba2.getBalance();

Stanford University

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName: :~ClassName() { ...

Destructor: Called when the object is deleted by the program.
» (when the object falls out of {} scope)

» Useful if your object needs to free any memory as it dies.
» delete any pointers stored as private members
» delete[] any arrays stored as private members
> (we haven’t learned about delete yet, that’s in a couple weeks!)

Stanford University

