
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

C++ intro, continued.

 Hamilton example (continued)

› Writing good tests

 Parameter passing in C++

› Pass by value semantics

› Pass by reference

 A special C/C++ type: struct

 Important info for your first coding assignment that goes out today!

› Including: Ethics discussion of C++ strings and representational harms

 For important announcements, be sure to see the weekly announcements post on
the Ed Q&A board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Code Quality in CS106B

 More details about our expectations
on the website 

 Take-home messages:

› Testing is an essential part of software development.

• “If you haven’t tested it, it doesn’t work.”

› Just as important as writing code that works is writing it well, and making
it readable by other humans.

Writing Good Tests

 “Good” means thorough: covers all code paths and cases

 But don’t just add loads of tests for the sake of having many—each should
have a purpose

 Be extra attentive to unusual circumstances

 These will vary, specific to the function you are testing, but common
examples include:

› Integer inputs: negative numbers, zero, very large numbers

› String inputs: very short strings (length 0 or 1), very long strings

Writing Good Tests

 A QA engineer is a software developer who specializes in writing tests and
finding bugs in other engineers’ code

 It’s their job to think of creative ways to “break” things.

CS106B Testing Framework

 We provide a framework for testing your code in this class

 Quick version: (more details on the website)

› In main(), write:
• runSimpleTests(SELECTED_TESTS);

› Write tests as:
• EXPECT_EQUAL(functionBeingTested(input), expectedOutput);

• EXPECT_EQUAL(generateLyrics(2), "Da Da ");

 Your Turn: What are some good test cases for our Hamilton code?

pollev.com/cs106b

C++ Parameter Passing

T W O P A R A D I G M S :

P A S S B Y V A L U E

P A S S B Y R E F E R E N C E

"Pass by value"
(default behavior of parameters)

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int n) {

n++;

}

8

What is printed?

A. 5

B. 6

C. Error or something else

pollev.com/cs106b

"Pass by value"
(default behavior of parameters)

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int n) {

n++;

}

9

What is printed?

A. 5

B. 6

C. Error or something else

Correct answer: 5
The function foo takes

the value of main’s
variable num as input,
but the change in foo

only happens to a
local copy named n.

"Pass by value"
(default behavior of parameters)

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int n) {

n++;

}

10

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int num) {

num++;

}

Q: Does the answer
change if our variable in
foo is called num also?

A: NO, this version also
prints 5, because foo’s
variable is still a local

copy only.

"Pass by reference"

#include <iostream>

void foo(int &num);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int &n) {

n++;

}

11

 This one prints 6!

 I like to think of the & as a
rope lasso that grabs the
input parameter and drags it
into the function call
directly, rather than making
a copy of its value and then
leaving it in place.

Extra practice problem (review after class if desired)
void mystery(int c, int& a, int b) {

cout << b << " + " << c << " = " << a << endl;
a++;
b--;

}

int main() {
int a = 4;
int b = 7;
int c = -2;

mystery(b, a, c);
mystery(c, b, 3);
mystery(b, c, b + a);
return 0;

}

Why though??

 We’ve looked at the how of pass-by-reference, but we haven’t yet discussed
the why.

 We’ll see some examples of when this feature comes especially in handy next
week when we learn about containers for data!

C/C++ type: struct

S O R T O F A V E R Y B A S I C
C L A S S

A special type in C/C++: struct

 struct is like a very basic class

 It’s a way to group a fixed number of pieces of data together for convenience

› As we’ve discussed before, C was invented before classes and objects—this was C’s early
attempt at something like a class

 Example: GPoint struct in the Stanford libraries

GPoint loc; // this struct type has 2 fields, x and y

loc.x = 5; // like an object, use . to access fields

loc.y = -10;

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/GPoint.html

Important info for your
first coding assignment

A S S I G N M E N T 1 G O E S O U T
T O D A Y , I S D U E A W E E K F R O M

M O N D A Y

Assignment Advice

 Start early!

 Refer to our Style Guide

 Take your time and really engage with each step of the process

› Tip: don’t be in too much of a rush to get past the warm-up steps to the
“real” part—the warm-ups are very thoughtfully designed to help you

 Read the late policy on the course website

› Late days are to be used in case of emergencies, such as illness, injury,
personal crisis; as well as mishaps like forgetting to submit even though
you did finish or laptop breaking

• Email Head TA Jonathan Coronado jonathan.coronado@stanford.edu if
you have a true emergency that consumes all your allocation but you still
need more

mailto:jonathan.coronado@stanford.edu

Assignment Advice

 FAQ: Why aren’t we allowed to use tools like Copilot, ChatGPT, or StackOverflow, or
copy and adapt code, when professional engineers often do those exact things?

 Answer:

› We have nothing against that per se. These are indeed good approaches (that we
ourselves use!), in the right context.

 Analogy:

› Many times a personal trainer will direct you to use motions that make a task
harder

• Keep body in a flat line when doing a push-up

• Run from here to there but doing high knees

› Your turn: Why do you think trainers impose these artificial conditions on
people’s motions, when that’s not how you would do it in “real life”?

pollev.com/cs106b

Ethics in CS106B

 This will be a recurring series throughout the quarter, and will tie in to your
homework assignments

 What we’ll talk about this time:

› Learn about some philosophical frameworks for making ethical
decisions, which we will be a formal guide for our thinking throughout the
quarter

› Consider the ethical implications of C++ variable types char and string,
which you just learned about this week

• That’s right, even something as simple as strings has ethical concerns!

Soundex project in Assignment 1

 Soundex is a phonetic algorithm used to identify and group words that
sound the same.

 Phonetic algorithms help us identify words with different spellings that have
similar pronunciation, such as names in the U.S. Census.

› Example: identify members of the same family in old census records, when
their names may have slight spelling variations.

 Pretty cool that you’re already implementing real algorithms that are really
used in the real world!

 Choosing an algorithm for social science research involves tradeoffs—choose
wisely!

Tradeoffs in algorithms like Soundex

Representational Accuracy vs Ease of Analysis

What kind of harm is lack of
representation?

Distributional Harms

 How should goods or outcomes in society be distributed?

Distributional Harms

 Equality of Opportunity:

› Everyone has the same opportunity to pursue the good thing

› …but may result in unequal outcomes.

Distributional Harms

 Equality of Outcome:

› Everyone gets the same good things, and the same responsibilities

Distributional Harms

 Equality of Welfare:

› Everyone gets equal well-being/happiness, but not everyone may need the
same amount of same resources to achieve that

Back to representational harms

Representational Harms

 Am I represented in this system?

 Can I express myself in it?

 Does this system recognize me, my culture, my language, or my self-
expression?

Representational Harms

 Comes up ALL. THE. TIME. in website/app interface design and database
design!

Representational Harms

 C originally had only ASCII code for its string type, which only allows A-Z and
a-z (plus digits, punctuation) as available characters

› Can’t do accents like Frédéric

› Forget about Arabic, Korean, Chinese, etc, etc.

Representational Harms

 Unicode is a more modern option

› As of Unicode version 16.0, there are 155,063 characters

› 168 modern and historical scripts

› Also emoji and other symbols

› Full coverage of 90 languages

› Basic coverage of 200 languages

