
Programming Abstractions in C++

Instructors:

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Meet your instructors:
Chris Gregg

 Undergraduate degree in Electrical Engineering
(Johns Hopkins), Master’s in Education (Harvard),
Ph.D. in Computer Engineering (University of Virginia).

 After undergrad school, I joined the Navy as a
Cryptologist. I was on active duty for about seven
years, and then in the reserves for another 15 years. I
deployed all over the world, and lived in Australia for
two years.

 After my active duty service, I became a high school
physics teacher, and did that for about seven years in
Massachusetts and in Santa Cruz.

 Eventually, I got my Ph.D. and decided to keep
teaching, first at Tufts University, and then at
Stanford. This is my eighth year at Stanford.

 I love to tinker — my espresso machine is connected to
the internet. stop by my office some time to see my
typewriter projects.

Meet your instructors:
Cynthia Bailey

 This year my partner and I are the new RFs in J-Ro
House in Sequoia.

 Last year I was on leave from Stanford, living in DC and
advising the U.S. Senate on AI legislation. I met with
stakeholders like NATO officials, CEOs, artists, and
academics, and wrote bills relating to AI/tech.

 I’ve been teaching at Stanford for over 10 years,
primarily CS106B and CS103. I also teach seminars “AI
Governance” and “Race & Gender in Silicon Valley.”

 For both undergrad and PhD, I studied CS at UC San
Diego, focus on supercomputing and machine learning.

 I’ve worked as a software engineer or consultant at
startups, NASA, and law firms.

 Hobbies: Family, biking, hiking, cooking, “like a cat
lady, but for chickens”

Meet your Head TA:
Jonathan Coronado

STANFORD BS '24, CURRENTLY MS '25

• I took CS106B Winter 2021!

TEACHING

• SL since Fall '22, first time head TA!

• Here to help you succeed in 106B! Please do
not hesitate to reach out to me at
jonathan.coronado@stanford.edu with
anything you need!

SOFTWARE ENGINEERING

• Most recently Backend Engineer at
DoorDash, AWS before that

AWAY FROM KEYBOARD

• Running, crosswords, lifting, the seahawks!

mailto:jonathan.coronado@stanford.edu

Discussion Section, Section Leaders (“SLs”)

Section Leaders are helpful undergraduate assistants

 Your personal trainer in 106B

 Meet with the same SL each week

 (consider being one in the future!)

Course Logistics

Q U I C K O V E R V I E W O F H O W T O
E A R N T H E G R A D E Y O U W A N T

I N C S 1 0 6 B

7

Course Grade Overview

Your course grade will be calculated as
follows:

• 40% assignments

• 20% Midterm

• 30% Final

• 5% Section participation

• 5% Lecture participation

(Details and caveats on next slide.)

8

Course Grade Overview

• The assignments are the most important part
of the course, and weighted accordingly.

• We also want section discussions to be
robust, so we are including a section
participation component.

• To get an “A” in the class, you may only
miss one section.

• Midterm: Tuesday, October 29th, 7-9pm PST

• Final: Monday, December 9th, 8:30am-
11:30am, PST Note:

• You must pass the final exam in order to
pass the course.

• Important: If you are an undergraduate, you
must take the course for 5 units. We will not
assign grades to undergraduates who take
the course for fewer than 5 units.

CS106L: Standard C++ Programming

• 1 unit

• T/Th 4:30-5:50pm, Thornton 110

• Course Info: cs106l.stanford.edu

• Covers additional topics on C++ features not included in CS106B, where our
focus is on the algorithms used to manage large datasets—which apply
regardless of programming language used—and not as much on the details of
C++ syntax.

• Templates, streams, lambdas, operator overloading, R-values, and more!

• Questions? Reach out to Fabio and Jacob!
(fabioi@stanford.edu & jtrb@stanford.edu)

mailto:jtrb@stanford.edu

CS106B Course Culture

H O W T O S U C C E E D I N T H I S
L O N G S T A N D I N G C O M M U N I T Y

A T S T A N F O R D

Community norms and expectations

• Celebrate discovery and growth. No gatekeeping, shaming, or comparisons
based on who knew what coming in.

• Example of things we’re not going to do: audience “questions” in lecture that
are just showing off that you know some jargon.

• Shed “zero-sum” and scarcity attitudes. There are plenty of tech jobs.

• Others gaining strength in the power of coding doesn’t take power away
from you. Be helpful and encouraging, try to feel as genuinely happy when
others around you succeed as when you succeed.

• Do your own work. We take this very seriously, because that’s how you grow.

• Nobody gets good at yoga by watching videos. You have to get on the mat,
and sometimes you have to sweat. No shortcuts. We do enforce, but it can’t
only be about enforcement—you need to decide within yourself to hold the
line on integrity.

Programming
Abstractions in C++

W H A T A R E “ P R O G R A M M I N G
A B S T R A C T I O N S ” ?

What is CS 106B?

CS 106B: Programming Abstractions

 solving big(ger) problems and processing big(ger) data

 learning to manage complex data structures

 algorithmic analysis and algorithmic techniques such as recursion

 programming style and software development practices

 familiarity with the C++ programming language

Prerequisite: CS 106A or equivalent

http://cs106b.stanford.edu/

http://cs106b.stanford.edu/

What is this class
about?

What do we mean by
“abstractions”?

This file is licensed under the Creative Commons Attribution 3.0 Unported license.

Colatina, Carlos Nemer

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:Colatina&action=edit&redlink=1

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

CS106B totally rocks my socks

In CS106B, you’ll learn to:
1. Identify common underlying structures
2. Apply known algorithmic tools that solve diverse

problems that share that structure

Building a vocabulary of abstractions
makes it possible to represent and solve a huge

variety of problems using known tools.

After this course…

Spend some time thinking about how
you’ll use it.

24

you’ll have what is
effectively a superpower.

Welcome to C++

L E T ’ S S T A R T C O D I N G ! !

First C++ program (1.1)

/*
* hello.cpp
* This program prints a welcome message
* to the user.
*/

#include <iostream>
#include "console.h"
using namespace std;

int main() {
cout << "Hello, world!" << endl;
return 0;

}

helloWorld

Every C++ program has a main function.

The program starts at main and

executes its statements in sequence.

At program end, main returns 0 to indicate

successful completion. A non-zero return value is an

error code, but we won’t use this method of error

reporting in this class so we will always return zero.

Include statements are like imports in

Java/Python. More on this in a moment.

C++ variables and types (1.5-1.8)

 The C++ compiler is rather picky
about types when it comes to
variables.

 Types exist in languages like Python
(see the two code examples at right),
but you don’t need to say much
about them in the code. They just
happen.

 The first time you introduce a
variable in C++, you need to
announce its type to the compiler
(what kind of data it will hold).
› After that, just use the variable

name (don’t repeat the type).
› You won’t be able to change the

type of data later! C++ variables
can only do one thing.

int x = 42 + 7 * -5;
double pi = 3.14159;
char letter = 'Q';
bool done = true;

C++

Python

x = 42 + 7 * -5
pi = 3.14159
letter = 'Q'
done = True

x = x – 3;

x = x - 3

More C++ syntax examples (1.5-1.8)

for (int i = 0; i < 10; i++) { // for loops
if (i % 2 == 0) { // if statements

x += i;
} /* two comment styles */

}

while (letter != 'Q' && !done) { // while loops, logic
x = x / 2;
if (x == 42) { return 0; }

}

binky(pi, 17); // function call
winky("this is a string"); // string usage

Some C++ logistical details (2.2)

#include <libraryname> // standard C++ library

#include "libraryname.h" // local project library

 Attaches a library for use in your program

 Note the differences (common bugs):

 <> vs " "

 .h vs no .h

using namespace name;

 Mostly, just don’t worry about what this actually does/means! Copy & paste the
std line below into the top of your programs.

 Brings a group of features into global scope so your program can directly
refer to them

 Many C++ standard library features are in namespace std so we write:

› using namespace std;

› “std” is short for “standard”

