
Final Review
Amrita Kaur and Elyse Cornwall

August 15, 2023

Announcements

• Course evals are now open - find these on Canvas
• This is a chance for you to provide feedback on the instructors and

CS106B in general (not your SL)

• We’ve got our final lecture tomorrow, “Life After CS106B”

2

Final Exam Logistics

• 8/18 from 3:30-6:30pm in Hewlett Teaching Center, Room 200
• Students with exam accommodations have already been contacted

• Same logistics as midterm
• On paper, using pen/pencil

• Closed-book and closed-device

• Reference sheet on Stanford library functions

• Notes sheet (one page, front and back, 8-1/2" x 11")

• All information is here

3

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/refsheet_final.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/

Final Exam Logistics

• Evaluate your problem-solving skills and conceptual understanding

of the material, not your ability to use perfect syntax
• Most points awarded for valid approach to solving the problem, fewer

points for the minute details of executing your plan

• Mix of different problem types (see practice exams for examples)

• Not taking off points for
• Missing braces around clearly indented blocks of code

• Missing semicolons

• Missing #include

4

Roadmap - Final Coverage

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

Roadmap - Final Coverage

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

Not covered:
week 8 material

Recursion and
Recursive Backtracking

7

What is recursion?

• A problem-solving technique in which

tasks are completed by reducing them

into repeated, smaller tasks of the same

form

• The function calls itself and every time,

the problem becomes a little smaller

8

Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• The point where we’ve reached our answer

• Recursive case
• More complex version of the problem that cannot be directly answered

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the

problem for you!

9

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that does not make recursive calls

3. When you make a recursive call it should be to a simpler instance

of the same problem, and make progress towards the base case

10

An efficient solution:
Binary Search

11

Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Let’s try to find the number 6 in our Vector

0 8

12

Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Too big, look left

0 8

Let’s try to find the number 6

13

Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Let’s try to find the number 6

14

Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Too small, look right

Let’s try to find the number 6

15

Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Let’s try to find the number 6

16

Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Found it! 🎉🎉🎉

17

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. If element is greater than our target, do binary search to the left

18

Binary Search Code

int binarySearchHelper(Vector<int>& v, int target, int start, int end) {
if (start > end) return -1; // base case 1: element not in vector

 int mid = (start + end) / 2;
 int elem = v[mid];
 if (elem == target) { // base case 2: found element
 return mid;
 } else if (elem < target) {
 return binarySearchHelper(v, target, mid + 1, end);
 } else {
 return binarySearchHelper(v, target, start, mid - 1);
 }
}

19

Runtime of Binary Search

• Binary search has runtime O(log n)
• Common runtime for algorithms that halve search space at every step

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2)

20

A dynamic solution:
Recursive Backtracking

21

Two Types of Recursion

Basic recursion

• One repeated task that builds up a
solution as you come back up the call
stack

• The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

• Initial call to the recursive function
produces the final solution

22

Backtracking recursion

• Build up many possible solutions
through multiple recursive calls at
each step

• Seed the initial recursive call with an
“empty” solution

• At each base case, you have a
potential solution

factorial(2)

factorial(1)

factorial(0)

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

23

All of these involve exploring many possible
solutions, rather than proceeding down a linear

path towards one solution.

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into?

(generate/count all solutions, find one solution/prove its existence,

or pick one best solution)

24

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into?

(generate/count all solutions, find one solution/prove its existence,

or pick one best solution)

• What’s the provided function prototype and requirements? Do we

need a helper function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to

our solution? If yes, what parameters are we already given and what

others might be useful?

25

Patterns

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and

the decisions we have left to make

• Backtracking recursion can have variable branching factors at each

level

26

“”

“T” “E” “T”“P”“Y”

“TE” “TT”“TP”“TY” …

Word Jumble

• We’d like to print every ordering of “TEYPT” to solve the puzzle

• This is much like coin sequences, but instead of choosing H or T, we

are choosing a letter at each step

27

28

“tca”

“”string sequence
string lettersRemaining

29

“tca”

“t”

“”

“ca”

“c”

“ta”

“a”

“tc”

string sequence
string lettersRemaining

30

“tca”

“t”

“tc” “ta”

“”

“a” “c”

“ca”

“c”

“ct” “ca”

“a” “t”

“ta”

“a”

“at” “ac”

“c” “t”

“tc”

string sequence
string lettersRemaining

31

“tca”

“t”

“tc” “ta”

“tca” “tac”

“”

“” “”

“a” “c”

“ca”

“c”

“ct” “ca”

“cta” “cat”

“” “”

“a” “t”

“ta”

“a”

“at” “ac”

“atc” “act”

“” “”

“c” “t”

“tc”

string sequence
string lettersRemaining

Permutations Solution Code
void generatePermutationsHelper(string lettersRemaining, string sequence) {

 // Base case: lettersRemaining = 0, no more letters to choose from

 if (lettersRemaining.length() == 0) {

 cout << sequence << endl;

 } else {

 // Many recursive cases (when lettersRemaining > 0)

 for (int i = 0; i < lettersRemaining.length(); i++) {

 char letter = lettersRemaining[i]; // choose one of our remaining letters to build on sequence

 generatePermutationsHelper(lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1),

sequence + letter);

 }

 }

}

void generatePermutations(string word) {

 generatePermutationsHelper(word, "");

}

32

Subsets

Given a group of people, generate all possible teams, or subsets, of

these people:

33

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Making a Decision Tree

• Decision at each step (each level of the tree)
• Are we going to include a given element in our subset?

• Options at each decision (branches from each node)
• Include the element

• Don’t Include the element

• Information you need to store along the way
• Set you’ve built so far

• Remaining elements in original set

34

35

No Amrita Yes Amrita

No Elyse No Elyse

No
Taylor

No
Taylor

No
Taylor

No
Taylor

Yes Elyse Yes Elyse

Yes
Taylor

Yes
Taylor

Yes
Taylor

Yes
Taylor

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

{“Elyse”,
“Taylor”}

{“Taylor”}

{}

Subsets Solution Code

36

void listSubsetsHelper(Set<string>& remaining, Set<string>& chosen) {

// (base case omitted for space)

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;

}

Choose / explore / unchoose

• Implicit “unchoose” step
• Pass by value; usually when memory constraints aren’t an issue
• Works because you’re making edits to a copy
• E.g. Building up a string over time

• Explicit “unchoose” step
• Uses pass by reference; usually with large data structures
• “Undoing” prior modifications to structure
• E.g. Generating subsets (one set passed around by reference to track
• subsets)

37

Practice Problem: Weights

Problem 6 from Section 4 (see description)

bool isMeasurable(int target, Vector<int>& weights) {

}

38

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/section/section4/#6-weights-and-balances-weightscpp

Practice Problem: Weights (Solution)

bool isMeasurable(int target, Vector<int>& weights) {

if (weights.isEmpty()) {

return target == 0; // base case; no weights left to place

} else {

// choose

int last = weights[weights.size() - 1]; // just because removing last index is faster

weights.remove(weights.size() - 1);

// explore

bool result = isMeasurable(target + last, weights) || isMeasurable(target - last, weights)

|| isMeasurable(target, weights);

// un-choose

weights.add(last);

return result;

 }

}

39

Classes / OOP

40

Class

• Defines a new data type for our program to use

• Help us create types of objects
• Which is why we call this object-oriented programming!

41

What is a class?

• The main difference between structs and classes are the

encapsulation defaults
• Struct defaults to public members (accessible outside the struct itself).

• Class defaults to private members (accessible only inside the class

implementation).

42

Creating C++ Class

• Defining a class in C++ (typically) requires two steps:
• Create a header file (typically suffixed with .h) describing what

operations the class can perform and what internal state it needs.

• Create an implementation file (typically suffixed with .cpp) that

contains the implementation of the class.

• Clients of the class can then include (using the #include directive)

the header file to use the class.

43

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• These are the variables stored within the class

• Usually not accessible outside the class implementation

• Member functions (What functions can you call on a variable of this type?)

• Functions you can call on the object

• Known as methods

• Constructor (What happens when you make a new instance of this type?)
• Gets called when you create the object

• Sets the initial state of each new object

44

What is in a header file?

45

What is in a header file?

46

#pragma once

class RandomBag {

};

This is a class definition. We’re
creating a new class called
RandomBag. Like a struct,
this defines the name of a new
type that we can use in our
programs.

When naming classes, use
UpperCamelCase.

What is in a header file?

47

#pragma once

class RandomBag {
public:

private:

};

What is in a header file?

48

#pragma once

class RandomBag {
public:

private:

};

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

Think things like the Vector
.add() function or the string’s
.find().

What is in a header file?

49

#pragma once

class RandomBag {
public:

private:

};

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

Think things like the Vector
.add() function or the string’s
.find().

The private implementation
contains information that objects
of this class type will need in order
to do their job properly. This is
invisible to people using the class.

What is in a header file?

50

#pragma once

class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:

int size();
};

These are member functions of
the RandomBag class. They're
functions you can call on
objects of type RandomBag.

All member functions must be
defined in the class definition.
We'll implement these
functions in the C++ file.

What is in a header file?

51

#pragma once

class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:

int size();
};

Member functions of a class
can be public or private,
depending on if you want a
client to be able to access the
functionality.

What is in a header file?

52

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:
Vector<int> elems;
int size();

};

This is a member variable of
the class. This tells us how the
class is implemented. Internally,
we're going to store a
Vector<int> holding all the
elements. The only code that
can access or touch this
Vector is the RandomBag
implementation

What is in a header file?

53

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:
Vector<int> elems;
int size();

};

Member variables of a class can
be public or private. You should
default towards member
variables being private if
possible.

What is in a header file?

54

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:
Vector<int> elems;
int size();

};

55
#include "RandomBag.h"

If we're going to implement the
RandomBag type, the .cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

56
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 bool isEmpty();
private:
 Vector<int> elems;
 int size();
};

57
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

The syntax RandomBag::add means “the
add function defined inside of RandomBag."
The :: operator is called the scope
resolution operator in C++ and is used to
say where to look for things. #pragma once

#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 bool isEmpty();
private:
 Vector<int> elems;
 int size();
};

58
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

If we had written something like this
instead, then the compiler would think we
were just making a free function named add
that has nothing to do with RandomBag’s
version of add. That’s an easy mistake to
make!

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 bool isEmpty();
private:
 Vector<int> elems;
 int size();
};

59
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

We don't need to specify where elems is. The
compiler knows that we're inside RandomBag,
and so it knows that this means "the current
RandomBag's collection of elements."

Using the scope resolution operator is like
passing in an invisible parameter to the function
to indicate what the current instance is.

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 bool isEmpty();
private:
 Vector<int> elems;
 int size();
};

60
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 bool isEmpty();
private:
 Vector<int> elems;
 int size();
};

61
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

This code calls our own
size() function. The
class implementation can
use the public or private
interface.

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 bool isEmpty();
private:
 Vector<int> elems;
 int size();
};

Constructor

• Specially defined method for classes that initializes the state of

new objects as they are created
• Often accepts parameters for the initial state of the fields.

• Special naming convention defined as ClassName()
• You can never directly call a constructor, but one will always be called

when declaring a new instance of an object

62

63

// MyClass.h
class MyClass {
public:
 MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

64

// MyClass.h
class MyClass {
public:
 MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

65

// MyClass.h
class MyClass {
public:
 MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

// main.cpp
int main() {

MyClass firstInstance;
}

66

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

// main.cpp
int main() {

MyClass firstInstance;
}

67

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

// main.cpp
int main() {

MyClass firstInstance;
}

68

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(3, 4);

}

Destructor

• Specially defined method for classes
• Special naming convention defined as ~ClassName()

• Does not take in parameters and does not return anything

• Automatically called when the object’s lifetime ends (for example,

if it’s a local variable that goes out of scope)

• Responsible for cleaning up an object's memory

69

70

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
~MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);
private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(3, 4);

}

Memory and Pointers

71

How is computer memory organized?

• Memory in your computer is just a giant array!
• Can think of it as a long row of boxes, with each box having a value in it

and an associated index

72

…

0 1 2 3 4 5 6 7 8 9 10 …

• How can we communicate with the computer to find exactly which

box we want to access/store information in?
• We’ll give each box an associated numerical location, called a memory

address

Memory on Stack vs Heap

Vector<string> varOnStack;
• Before 106B, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

73

Memory on Stack vs Heap

Vector<string> varOnStack;
• Before 106B, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

74

• We can now request memory from
the heap

• This is dynamic memory allocation

• We have more control over
variables on the heap

• But this means that we also have
to handle the memory we’re using
carefully and properly clean it up
when done

string* arr = new string[numValues];

Dynamic Memory Allocation: new

• To request memory from the heap to allocate one element:

type* variable = new type;

• To allocate multiple (n) elements on the heap:

type* variable = new type[n];

75

Dynamic Memory Allocation: new

type* variable = new type;

76

Declaring a variable that will
point at our newly-allocated
memory

● Name is variable
● Type is type* (match the

type of the element)

Allocating heap memory with
the new keyword

Assigning the pointer to point
to the heap memory

Pointer

• Data type that allows us to work directly with computer memory

addresses

• Just like all other data types, pointers take up space in memory and

store specific values

• Always stores a memory address, telling us where in the computer

to look for a certain value

• They quite literally "point" to another location on your computer

77

What is a pointer?

78

A memory address!!

Pointer Syntax

• Pointers are necessary to store the value generated by the new

keyword (which is just a memory address on the heap)

int* oneElem = new int;

79

0x94bce8e4oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap

Pointer Syntax

• To read or modify the variable that a pointer points to, we use the

* (asterisk) operator (in a different way than before!)

• Known as dereferencing the pointer

• Follow the arrow to the memory location

80

0x94bce8e4oneElem:

0x3840c030

5

0x94bce8e4

Stack Heap

*oneElem = 5;

nullptr

• When we declare/initialize a pointer but don’t have anything to

point it at yet, that can be dangerous and unpredictable

• To ensure that we can tell if a pointer has a valid address or not, set

your declared pointer to nullptr, which means "no valid address"

81

string* showPtr = nullptr;

showPtr:

0x35efcdf8

nullptr

• How can we tell if a pointer is safe to use (dereference)?

• If you are unsure if your pointer holds a valid address, you should

check for nullptr!

82

void printShowName(string* showPtr) {
 if (showPtr != nullptr) {
 cout << *showPtr << endl; // prints out the value pointed to by showPtr
 // if it is not nullptr
 } else {
 cout << "showPtr is not valid!" << endl;
 }
}

Under the Hood

int* tenInts = new int[10];

83

Under the Hood

int* tenInts = new int[10];

84

Under the Hood

int* tenInts = new int[10];

85

Pitfalls and Dangers

• The array you get from new[] is fixed-size: it can neither grow nor

shrink once it’s created

• The array you get from new[] has no bounds-checking: accessing

anything past the beginning or end of an array triggers undefined

behavior

86

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory

you allocate

• If you don't, you get a memory leak
• Your program will never be able to use that memory again

• Too many leaks can cause a program to crash – it’s important to not leak

memory!

87

Cleaning Up: delete

• You can deallocate (free) memory with the delete keyword

• To deallocate a single element:

delete var;

• To deallocate an array of elements:

delete[] arr;

88

Cleaning Up: delete

• This destroys the array pointed to by the given pointer, not the

pointer itself

• You can think of this operation as relinquishing control over the

memory back to the computer

• Once you’ve deleted the memory pointed at by a pointer, you have a

dangling pointer and shouldn’t read or write from it

89

Linked Lists

90

Linked Lists

• Unlike arrays, linked lists allow us to store our data in

non-contiguous memory on the heap

91

Benefits of Linked Lists

92

95 1 4 7 26

• Easily resizable

• Efficient to insert elements at the beginning

Okay, but what are these little boxes?

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

93

6
struct Node {

int data;
Node* next;

};

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

94

Node* list = new Node;
list->data = 6;
list->next = nullptr;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: nullptr

Dereference AND access the
field for struct pointers using ->

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

95

1 6 4

nullptr

head

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

96

1 6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

97

1 6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

98

1 6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

99

???

???

6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

100

???

???

6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

101

???

???

6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

102

???

???

6 4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

103

???

???

???

???

4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

104

???

???

???

???

4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

105

???

???

???

???

4

nullptr

head temp

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

106

???

???

???

???

4

nullptr

head temp:
nullptr

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

107

???

???

???

???

???

???

head temp:
nullptr

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

108

???

???

???

???

???

???

head:
nullptr

temp:
nullptr

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

109

???

???

???

???

???

???

head:
nullptr

temp:
nullptr

Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

110

???

???

???

???

???

???

head:
nullptr

temp:
nullptr

HAPPY TIMES 👍

A Few Applications of Traversal

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

int measureList(Node* list) {
 int count = 0;
 while (list != nullptr) {
 count++;
 list = list->next;
 }
 return count;
}

111

void freeList(Node* list) {
 while (list != nullptr) {
 Node* temp = list->next;
 delete list;
 list = temp;
 }
}

Pitfalls of Recursive List Traversal

• Recursive solutions to list traversal look elegant, but they generate

a recursive call for every element in the list - a linked list with n

elements would require n stack frames

• For most computers, the stack frame limit is somewhere in the

range of 16-64K - we can’t traverse lists with more than 64K

elements recursively!

112

Linked Lists vs. Arrays

Linked Lists

• Chain of nodes, not
contiguous in heap memory

• Access nodes starting at head,
following the -> next pointer

• Good for implementing other
data structures

• Has no member functions like
.size() or .add()

Arrays

• Contiguous chunk of memory
on the heap

• Access elements by index

• Same!

• Same!

113

Linked Lists vs. Arrays, Big-O

Linked Lists

• Prepend - O(1)
• Append - O(n)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

Arrays

• Prepend - O(n)
• Append - O(1)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

114

Passing Pointers by Value

• Unless specified otherwise, parameters in C++ are passed by value

– this includes pointers!

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

115

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

• When you want a helper function to modify the address a pointer

points to, you should pass it by reference

116

Practice Problem: Reverse List

Given a pointer to the head of a linked list, reverse the elements of the
list and update the head pointer to point to the new head.

void reverseList(ListNode*& head) {

}

117

Practice Problem: Reverse List (Solution)

void reverse(ListNode*& head) {

 ListNode* prev = nullptr;

 ListNode* cur = head;

 ListNode* next = nullptr;

 while (cur != nullptr) {

 next = cur->next;

 cur->next = prev;

 prev = cur;

 cur = next;

 }

 head = prev;

}

118

Trees

119

Throwback

• We’ve seen trees a ton in this class!

120

8

7 1

0

10 3

Tree Terminology

Types of nodes

• The root node defines the "top" of the tree

• Every node has 0 or more children nodes descended from it

• Nodes with no children are called leaf nodes

• Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

• The length of a path between two nodes is the number of edges between them

• The depth of a node is the length of the path from the root to that node

• The height of a tree is the number of nodes in the longest path through the tree

(i.e. the number of levels in the tree)

121

Tree Properties

• Any node in a tree can only have one parent

122

Not trees!

Tree Properties

• Any node in a tree can only have one parent

• A tree cannot have cycles or loops

123

Not a tree!

Binary Trees

• Most common trees in CS
• We’ve seen these before, Binary Heaps!

• Every node has either 0, 1, or 2 children

• Children are referred to as left child and right child

124

8

7 1

0

10 3

Building Binary Trees

• A binary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the right child

125

6

struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

};

Tree Traversal Recap

126

Post-order Traversal - Freeing a Tree

void freeTree(TreeNode* node) {
if (node == nullptr) {

return;
}
freeTree(node->left);
freeTree(node->right);
delete node;

}

127

Post-order Traversal - Freeing a Tree

void freeTree(TreeNode* node) {
if (node == nullptr) {

return;
}
freeTree(node->left);
freeTree(node->right);
delete node;

}

128

Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X

129

6

82

41

3

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

130

8

102

12

7

4

8

12

10

4

2 72

BALANCEDUNBALANCED

Binary Search Trees (BSTs)

131

8

124

211072

159 1161 3

This tree is balanced; we’ve got
13 nodes in this tree, and its

height is log213 ≈ 4.

BST Lookups

132

8

124

211072

159 1161 3

Worst case, we have to take
O(log n) steps in the tree to

find an element.

BST Insertion

133

8

124

211072

159 1161 3

Search for where the 5
should be…

How might we insert 5 into
this BST?

BST Insertion

134

8

124

211072

159 111 3

How might we insert 5 into
this BST?

… and insert the 5 there

5

6

BST Deletion

135

8

124

211072

159 1161 3

Three cases:
1. Leaf node, just delete!

BST Deletion

136

8

124

211072

159 1161

Three cases:
1. Leaf node, just delete!

BST Deletion

137

8

124

211072

159 1161 3

Three cases:
2. One child, swap and delete.

BST Deletion

138

8

124

151072

219 1161 3

Three cases:
2. One child, swap and delete.

BST Deletion

139

8

124

151072

9 1161 3

Three cases:
2. One child, swap and delete.

BST Deletion

140

8

124

211072

159 1161

Idea: swap 12 with its inorder
predecessor or successor

Three cases:
3. Two children…

BST Deletion

141

8

124

211072

159 1161

Inorder predecessor:
largest node in left subtree

Inorder successor:
smallest node in right subtree

BST Deletion

142

8

124

211072

159 1161

Three cases:
Swap with inorder

predecessor and delete.

BST Deletion

143

8

114

211072

159 1261

Three cases:
Swap with inorder

predecessor and delete.

BST Deletion

144

8

114

211072

15961

Three cases:
Swap with inorder

predecessor and delete.

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

145

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Sets and Maps have
O(log n) lookups, insertion, and

deletion because they use BSTs behind
the scenes to store data!

Practice Problem: Copy Tree

Given a pointer to the root of a tree, write a function that returns a
copy of this tree by allocating new ListNodes on the heap.

ListNode* copyTree(ListNode* root) {

}

146

Practice Problem: Copy Tree (Solution)

TreeNode* copyTree(TreeNode* root) {

 if (root == nullptr) return nullptr;

// pre-order traversal, not the only order that would work

 TreeNode* leftSubtree = copyTree(root->left);

 TreeNode* rightSubtree = copyTree(root->right);

 TreeNode* currentNode = new TreeNode();

 currentNode->data = root->data;

 currentNode->left = leftSubtree;

 currentNode->right = rightSubtree;

 return currentNode;

}

147

Hashing

148

Binary Search Tree (and Set)

149

Operation Runtime

Contains O(log n)

Insert O(log n)

Remove O(log n)

8

12

10

4

2 7 15

Motivating question:
CAN WE DO BETTER?

Hash Functions

• A hash function is a function that assigns elements to buckets

150

Hash Function15 Bucket 7!

Good Hash Functions

• A good hash function distributes elements evenly across buckets
• This way, no bucket contains too many elements

• Similar inputs will not necessarily have similar hash codes

151

Hash Function

😇
“starling” Bucket 3!

“staring” Bucket 193252!

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

152

Hash
Function

0 1 2 3 4 5 6 7

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

153

Hash
Function

Add 51

0 1 2 3 4 5 6 7

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

154

Hash
Function

Add 51
51 Bucket 2!

0 1 2 3 4 5 6 7

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

155

Hash
Function

Add 51
51 Bucket 2!

0 1 2 3 4 5 6 751

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

156

Hash
Function

Add 14

0 1 2 3 4 5 6 751

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

157

Hash
Function

Add 14

0 1 2 3 4 5 6 751

14 Bucket 1!

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

158

Hash
Function

Add 14

0 1 2 3 4 5 6 751

14 Bucket 1!

14

159

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

160

0 1 2 3 4 5 6 7

Hash
Function

22 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73 1928

Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

161

0 1 2 3 4 5 6 7

Hash
Function

22 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

12

1928

If we’ve got a good hash function, and
we’ve hashed n elements into b buckets,

what’s our average bucket size?

Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for

contains and remove… is this better than O(n)?

162

Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for

contains and remove… is this better than O(n)?

163

Big idea: if we choose b (# of buckets) to be a
number close to n, then n/b will be constant.

Hashing Walkthrough

Let’s walk through the operations of a Chaining Hash Table. This works

much like a Chaining Hash Set, but we’ll allow duplicates.

We’ll begin with 4 buckets. We’ll keep a load factor (n/b) of ¾ or less.

This means that our ratio of elements to buckets cannot exceed ¾.

164

0 1 2 3

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

165

0 1 2 3

numElements = 0
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

166

0 1 2 3

numElements = 0
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(3 - 1) % 4 = 2

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

167

0 1 2 3

numElements = 1
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(3 - 1) % 4 = 2

3

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

168

0 1 2 3

numElements = 1
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(2 - 1) % 4 = 1

3

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

169

0 1 2 3

numElements = 2
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(2 - 1) % 4 = 1

32

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

170

0 1 2 3

numElements = 2
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(1 - 1) % 4 = 0

32

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

171

0 1 2 3

numElements = 3
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(1 - 1) % 4 = 0

321

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

172

0 1 2 3

numElements = 3
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

321

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

173

0 1 2 3

numElements = 4
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

174

0 1 2 3

numElements = 4
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Our load factor, ¾, has been exceeded! To
reduce it, we double the number of buckets.

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

175

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Our load factor, ¾, has been exceeded! To
reduce it, we double the number of buckets.

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

176

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Now, we must rehash our elements, since our
numBuckets has changed.

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

177

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

178

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 8 = 4

325

1

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

179

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 8 = 4

32 51

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

180

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(1 - 1) % 8 = 0

32 51

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

181

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(2 - 1) % 8 = 1

32 51

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

182

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(3 - 1) % 8 = 2

32 51

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

183

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

32 51

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

184

numElements = 3
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

185

numElements = 3
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(1 - 1) % 8 = 0

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

186

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(1 - 1) % 8 = 0

1

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

187

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(-4 - 1) % 8 = 3

1

0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

188

numElements = 5
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(-4 - 1) % 8 = 3

1

-4

Practice Problem: Multiple Choice

Q1. What happens to our load factor when we increase the number of

buckets in our hash table?

189

Practice Problem: Multiple Choice (Solutions)

Q1. The load factor is n/b (# elems / # buckets), so increasing b will

make the load factor smaller. More intuitively, spreading the elements

across more buckets means there will be fewer elements in each

bucket.

190

Practice Problem: Multiple Choice

Q2. Let’s say we have a hash function hash that we’re using to determine which bucket to place strings into:

bucket = hash(input);

Suppose we compute the following three hash values:

A = hash(“desert”);

B = hash(“dessert”);

C = hash(“brownie”);

Which of the following are guaranteed to be true about these values (select all that apply):

1. The values A and B will be closer together than A and C since “desert” and “dessert” are more similar.

2. The values B and C will be closer together than A and C since “dessert” and “brownie” are the same length.

3. The values A, B, and C are not equal.

4. None of the above.

191

Practice Problem: Multiple Choice (Solutions)

Q2. 4. Without knowing anything about our hash function, we have no

guarantees on how the input string will be related to its output hash

value - this is a property of good hash functions! Although good hash

functions will spread elements evenly between buckets, we also aren’t

guaranteed that two (or even three) different elements won’t hash to

the same bucket.

192

Graphs

193

Graph Terminology

A graph consists of

a set of nodes

connected by edges.

194

graph
a structured way to represent

relationships between different
entities

Linked Data Structures

• We've already seen nodes connected by edges before when

discussing linked lists and trees

• What differentiates these linked data structures?
• Linked lists: Linear structure, each node connected to at most one other

node

• Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.

• Graphs: No restrictions. It's the wild, wild west of the node-based world!

195

Wild World of Graphs

• Can have cycles

• No notion of a parent-child

relationship between nodes

• No root node

• Most powerful, flexible, and

expressive abstraction that we can

use to model relationships between

different distributed entities

196

Approach 1: Adjacency List

• We can represent a graph as a map

from nodes to the collection of

nodes that each node is adjacent to.

197

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

198

DFS Algorithm

199

BFS Algorithm

200

BFS vs DFS

• Running BFS or DFS from a node in a graph will visit the same set of

nodes, but probably in a different order

• BFS will visit nodes in increasing order of distance
• Will give you the shortest path

• DFS does visit nodes in some interesting order, but not order of

distance
• Take CS161 for more info

201

Shortest Weighted Path

202

D C

12949

10

5

2

A B

What is the shortest weighted path

from A to B?

Shortest Weighted Path

What is the shortest weighted path

from A to B?

• BFS doesn’t work here

203

D C

12949

10

5

2

A B

Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of
electricity lines and oil pipelines, network routing protocols

204

Dijkstra's Algorithm

205

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

Algorithm:

1. Of the unseen nodes, find the node that
currently has the shortest distance from the
start

2. Look at this node's neighbors, and update the
total distance to the neighbors based on their
distance and the distance already to this node.

3. If the node visited is the destination, stop
4. Repeat from step 1

A* Algorithm

• Finds the shortest weighted path from one node to another

• Uses external information about the graph

• Heuristic: estimates the cost of the cheapest path to the goal
• Should always underestimate the distance to the goal, because if it

overestimates, it could find a non-optimal solution

• If the distance to the destination is closer, weight the nodes in that

direction to be preferable
• priority(u) = weight(s, u) + heuristic(u, d)

206

Recap

• Graphs are a linked data structure with almost no rules
• Represent in code with either an adjacency list or matrix

• Depth-First Search: does not always return the shortest path, though it
may be faster in some cases

• Breadth-First Search: returns the shortest path, but it only works on
unweighted graphs

• Dijkstra’s Algorithm: returns the shortest weighted path, but not
necessarily the most efficient

• A* Algorithm: returns the shortest weighted path using heuristics, and
is often thought of as gold standard

207

Good luck on the final!
You’re almost done with CS106B!!

208

