Final Review

Amrita Kaur and Elyse Cornwall
August 15, 2023

Stanford University

Announcements

* Course evals are now open - find these on Canvas

e Thisis a chance for you to provide feedback on the instructors and
CS106B in general (not your SL)

 We've got our final lecture tomorrow, “Life After CS106B”

Stanford University

Final Exam Logistics

 8/18 from 3:30-6:30pm in Hewlett Teaching Center, Room 200
e Students with exam accommodations have already been contacted
e Same logistics as midterm
* On paper, using pen/pencil
* Closed-book and closed-device
» Reference sheet on Stanford library functions
* Notes sheet (one page, front and back, 8-1/2" x 11")

 Allinformation is here

Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/refsheet_final.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/

Final Exam Logistics

e Evaluate your problem-solving skills and conceptual understanding

of the material, not your ability to use perfect syntax
* Most points awarded for valid approach to solving the problem, fewer
points for the minute details of executing your plan

* Mix of different problem types (see practice exams for examples)
* Not taking off points for
* Missing braces around clearly indented blocks of code

* Missing semicolons
* Missing #include

Stanford University

Roadmap - Final Coverage

Using Abstractions Bwldmg Abstractions

Linked
Data

\ Structures
Core\
Tools A 4

Stanford University

Not covered:

Roadmap - Final Coverage week 8 material

Using Abstractions Bwldmg Abstractions

TN
Linked
Data
\ Structures
N \
- \/

Core

Stanford University

Recursion and
Recursive Backtracking

Stanford University

What is recursion?

A problem-solving technique in which
tasks are completed by reducing them
into repeated, smaller tasks of the same
form

The function calls itself and every time,
the problem becomes a little smaller

Rqu&gION
RECURSION
RECURSION

Here we go again

Stanford University

Two main components

e Base case

The simplest version of your problem that all other cases reduce to
The point where we’ve reached our answer

e Recursive case

More complex version of the problem that cannot be directly answered
Break down the task into smaller occurrences

Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Stanford University

10

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs
2. You must have a base case that does not make recursive calls

3. When you make a recursive call it should be to a simpler instance
of the same problem, and make progress towards the base case

Stanford University

11

An efficient solution:
Binary Search

Stanford University

12

Binary Search

* Let’s say we have a sorted Vector of integers

Let’s try to find the number 6 in our Vector

Stanford University

13

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers

Too big, look left

Stanford University

14

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers

Stanford University

15

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers

Too small, look right

Stanford University

16

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers

Stanford University

17

Binary Search

* Let’s say we have a sorted Vector of integers

Found it! €7 & &

Stanford University

18

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. |If element is greater than our target, do binary search to the left

Stanford University

19

Binary Search Code

int binarySearchHelper (Vector<int>& v, int target, 1int start, int end) {
if (start > end) return -1; // base case 1: element not in vector
int mid = (start + end) / 2;
int elem = v[mid];
if (elem == target) { // base case 2: found element
return mid;
} else if (elem < target) {
return binarySearchHelper(v, target, mid + 1, end);
} else {
return binarySearchHelper(v, target, start, mid - 1);

Stanford University

20

Runtime of Binary Search

e Binary search has runtime O(log n)
« Common runtime for algorithms that halve search space at every step

Quadratic O(n?)
/ Linear O(n)

Runtime /

____Logarithmic O(log n)

Constant O(1)

yasisss

Input size (n) Stanford University

21

A dynamic solution:
Recursive Backtracking

Stanford University

22

Two Types of Recursion

Basic recursion Backtracking recursion
* One repeated task that builds up a * Build up many possible solutions
solution as you come back up the call through multiple recursive calls at
stack each step

e The final base case defines the initial Seed the initial recursive call with an
seed of the solution and each call “empty” solution

contributes a little bit to the solution « At each base case, you have a

* Initial call to the recursive function potential solution
produces the final solution

(iR
L%

oo, s

YN N

YD 8 8D 88

Stanford University

23

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions
2. Find one specific solution or prove that one exists
3. Find the best possible solution to a problem

All of these involve exploring many possible
solutions, rather than proceeding down a linear
path towards one solution.

Stanford University

24

Solving Recursive Backtracking

* Which of our three use cases does our problem fall into?
(generate/count all solutions, find one solution/prove its existence,
or pick one best solution)

Stanford University

25

Solving Recursive Backtracking

* Which of our three use cases does our problem fall into?

(generate/count all solutions, find one solution/prove its existence,
or pick one best solution)

 What's the provided function prototype and requirements? Do we
need a helper function?

What are we returning as our solution?

Do we care about returning or keeping track of the path we took to get to
our solution? If yes, what parameters are we already given and what
others might be useful?

Stanford University

Patterns

e "Choose / explore / unchoose" pattern in backtracking

26

* Itisimportant to keep track of the decisions we've made so far and

the decisions we have left to make

* Backtracking recursion can have variable branching factors at each

level

SR,
T)
&

lITElI

an

" TY”

IITPII

" TT"

Stanford University

27

Word Jumble

* We'd like to print every ordering of “TEYPT” to solve the puzzle
* This is much like coin sequences, but instead of choosing H or T, we
are choosing a letter at each step

TEYPT

o0

Stanford University

28
string sequence

Stanford University

29

string sequence

Stanford University

30

string sequence

llta” llct” llca” llat”

Stanford University

31
string sequence

[/ (PN
t

awyn

ow_n”

o ” " ” o ”n
at

”tC” ac

” ” o ” o ” o ” o ”

“tca “tac cta cat atc act

antord University

32

Permutations Solution Code

void generatePermutationsHelper(string lettersRemaining, string sequence) {
// Base case: lettersRemaining = 0, no more letters to choose from
if (lettersRemaining.length() == 0) {
cout << sequence << endl;
} else {
// Many recursive cases (when lettersRemaining > 0)
for (int i = 0; i < lettersRemaining.length(); i++) {
char letter = lettersRemaining[i]; // choose one of our remaining letters to build on sequence
generatePermutationsHelper (lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1),

sequence + letter);

void generatePermutations(string word) {

generatePermutationsHelper (word, "");

Stanford University

33

Subsets

Given a group of people, generate all possible teams, or subsets, of
these people:

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}
{“Amrita”, “Elyse”}
{“Amrita”, “Taylor”}
{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}
Stanford University

34

Making a Decision Tree

* Decision at each step (each level of the tree)
* Are we going to include a given element in our subset?
e Options at each decision (branches from each node)
* Include the element
 Don’t Include the element
* Information you need to store along the way

* Set you’ve built so far
* Remaining elements in original set

Stanford University

35

Remaining Elements:

{“Amrita”,

bh

“Elyse”,

“Taylor”}
No Amrita Yes Amrita

¢ b2l
n {“Elyse”,
“Taylor”}

No Elyse Yes Elyse No Elyse Yes Elyse
0 ‘I {“Taylor”}
No Yes No Yes No Yes No Yes
Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor

D) (e (w)

Stanford University

36

Subsets Solution Code

void listSubsetsHelper(Set<string>& remaining, Set<string>& chosen) {
// (base case omitted for space)
// choose
string elem = remaining.first();
remaining = remaining - elem;
// explore
listSubsetHelper (remaining, chosen);
chosen = chosen + elem
listSubsetHelper (remaining, chosen);
// unchoose by adding it back to possible choices
chosen = chosen - elem;

remaining = remaining + elem;

Stanford University

37

Choose / explore / unchoose

* Implicit “unchoose” step
e Pass by value; usually when memory constraints aren’t an issue
* Works because you’re making edits to a copy
e E.g. Building up a string over time

* Explicit “unchoose” step
* Uses pass by reference; usually with large data structures
* “Undoing” prior modifications to structure
* E.g. Generating subsets (one set passed around by reference to track
* subsets)

Stanford University

38

Practice Problem: Weights

Problem 6 from Section 4 (see description)

o a

l |

A

bool isMeasurable(int target, Vector<int>& weights) {

Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/section/section4/#6-weights-and-balances-weightscpp

39

Practice Problem: Weights (Solution)

bool isMeasurable(int target, Vector<int>& weights) {

if (weights.isEmpty()) {
return target == 0; // base case; no weights left to place

} else {
// choose
int last = weights[weights.size() - 1]; // just because removing last index is faster
weights.remove (weights.size() - 1);
// explore
bool result = isMeasurable(target + last, weights) || isMeasurable(target - last, weights)

|| isMeasurable(target, weights);

// un-choose
weights.add(last);

return result;

Stanford University

40

Classes / OOP

Stanford University

41

Class

* Defines a new data type for our program to use

* Help us create types of objects
* Which is why we call this object-oriented programming!

Stanford University

42

What is a class?

e The main difference between structs and classes are the

encapsulation defaults
» Struct defaults to public members (accessible outside the struct itself).
* Class defaults to private members (accessible only inside the class
implementation).

Stanford University

43

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:
* Create a header file (typically suffixed with . h) describing what
operations the class can perform and what internal state it needs.
* Create an implementation file (typically suffixed with . cpp) that
contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.

Stanford University

44

Three Main Parts

* Member variables (What subvariables make up this new variable type?)
e These are the variables stored within the class
e Usually not accessible outside the class implementation
 Member functions (What functions can you call on a variable of this type?)
* Functions you can call on the object
* Known as methods
e Constructor (What happens when you make a new instance of this type?)
* Gets called when you create the object
* Sets the initial state of each new object

Stanford University

45

What is in a header file?

Stanford University

46

What is in a header file?

#pragma once

This is a class definition. We're
creating a new class called
RandomBag. Like a struct,
this defines the name of a new
type that we can use in our
programs.

class RandomBag {

When naming classes, use
UpperCamelCase.

33

Stanford University

47

What is in a header file?

Interface
#pragma once (What it looks like)
class RandomBag {
public:
private:
. Implementation
} ’ (How it works)

Stanford University

48

What is in a header file?

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

#pragma once

class RandomBag { Think things like the Vector

public: 3 .add () function or the string’s
.find ().

private: 7

I

Stanford University

49

What is in a header file?

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

#pragma once

class RandomBag { Think things like the Vector

public: \ .add () function or the string’s
.find().
The private implementation

private: < contains information that objects

/ of this class type will need in order

to do their job properly. This is

1 / invisible to people using the class.

b

Stanford University

nat is in a header file?

50

#pragma once

class RandomBag {
public:
void add(int value);
int removeRandom()
bool isEmpty();
private:

int size();

s

These are member functions of
the RandomBag class. They're
functions you can call on
objects of type RandomBag.

All member functions must be
defined in the class definition.
We'll implement these
functions in the C++ file.

Stanford University

nat is in a header file?

51

#pragma once

class RandomBag {
public:
void add(int value);
int removeRandom()
bool isEmpty();
private:

int size();

s

Member functions of a class
can be public or private,
depending on if you want a
client to be able to access the
functionality.

Stanford University

nat is in a header file?

52

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
bool isEmpty();
private:
Vector<int> elems}
int size();

s

This is a member variable of
the class. This tells us how the
class is implemented. Internally,
we're going to store a
Vector<int> holding all the
elements. The only code that
can access or touch this
Vector is the RandomBag
implementation

Stanford University

nat is in a header file?

53

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
bool isEmpty();
private:
Vector<int> elems}
int size();

s

Member variables of a class can
be public or private. You should
default towards member
variables being private if
possible.

Stanford University

nat is in a header file?

54

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
bool isEmpty();
private:
Vector<int> elems;
int size();

s

Stanford University

#include "RandomBag.h"

If we're going to implement the
RandomBag type, the . cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

55

Stanford Unjiversity

56

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
bool disEmpty();
private:
Vector<int> elems;
int size();

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

The syntax RandomBag: : add means “the
add function defined inside of RandomBag."
The : : operator is called the scope
resolution operator in C++ and is used to
say where to look for things.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
bool disEmpty();
private:
Vector<int> elems;
int size();

}s

57

njiversity

58

#include "RandomBag.h"

void RandemBagttadd(int value){

elems.add(value);

}

If we had written something like this
instead, then the compiler would think we
were just making a free function named add
that has nothing to do with RandomBag’s
version of add. That’s an easy mistake to #pragma once
make! #include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
bool disEmpty();
private:
Vector<int> elems;
int size();

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

We don't need to specify where elems is. The
compiler knows that we're inside RandomBag,
and so it knows that this means "the current
RandomBag's collection of elements."

Using the scope resolution operator is like
passing in an invisible parameter to the function
to indicate what the current instance is.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
bool disEmpty();
private:
Vector<int> elems;
int size();

}s

59

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!")
}
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

int RandomBag::size() {
return elems.size()}

bool RandomBag::isEmpty() {
return size() == 03

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
bool disEmpty();
private:
Vector<int> elems;
int size();

}s

60

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

This code calls our own
size () function. The
class implementation can
use the public or private
interface.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
bool disEmpty();
private:
Vector<int> elems;
int size();

}s

61

njiversity

62

Constructor

* Specially defined method for classes that initializes the state of

new objects as they are created
» Often accepts parameters for the initial state of the fields.
e Special naming convention defined as ClassName ()
* You can never directly call a constructor, but one will always be called
when declaring a new instance of an object

Stanford University

// MyClass.h
class MyClass {
public:

MyClass ()

returnType
returnType
returnType

private:
int varl;
int var2;
type func4(

}s

funcl(parameters);
func2(parameters);
func3 (parameters) ;

)3

63

Stanford University

// MyClass.h

class MyClass {

public:
MyClass () ;

returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varl;
int var2;
type func4();
s

// MyClass.cpp
MyClass::MyClass() {
varl = 1;
var2 = 1;

64

Stanford University

// MyClass.h

class MyClass {

public:
MyClass () ;

returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varl;
int var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

65

// main.cpp
int main() {

MyClass firstInstance;

rsity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(int varl, 1int var2);
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varl;
int var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {

66

varl = 1;
var2 = 1;
}
// main.cpp

int main() {
MyClass firstInstance;

rsity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(int varl, int var2);
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varl;
int var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass::MyClass(int varl, 1int var2) {

this->varl = varl;
this->var2 = var2;

67

// main.cpp
int main() {

MyClass firstInstance;

rsity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(int varl, int var2);
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varl;
int var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass::MyClass(int varl, 1int var2) {

this->varl = varl;
this->var2 = var2;

68

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(3, 4);

rsity

69

Destructor

* Specially defined method for classes
» Special naming convention defined as ~ClassName ()

* Does not take in parameters and does not return anything

* Automatically called when the object’s lifetime ends (for example,
if it’s a local variable that goes out of scope)

* Responsible for cleaning up an object's memory

Stanford University

// MyClass.h
class MyClass {
public:
MyClass () ;
MyClass(int varl, int var2);
~MyClass()
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);
private:
int varl;
int var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass: :MyClass(int varl, 1int var2) {
this->varl = varl;
this->var2 = var2;

70

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(3, 4);

rsity

71

Memory and Pointers

Stanford University

72

How is computer memory organized?

* Memory in your computer is just a giant array!

* Can think of it as a long row of boxes, with each box having a value in it
and an associated index

0 1 2 3 4 5 6 7 8 9 10

 How can we communicate with the computer to find exactly which

box we want to access/store information in?

 We'll give each box an associated numerical location, called a memory
address

Stanford University

73

Memory on Stack vs Heap

Vector<string> varOnStack;

Before 106B, all variables we’ve
created get defined on the stack

This is static memory allocation

Variables on the stack are stored
directly to the memory and access
to this memory is very fast

We don’t have to worry about
memory management

Stanford University

74

Memory on Stack vs Heap

Vector<string> varOnStack; string* arr = new string[numValues];
Before 106B, all variables we’ve - We can now request memory from
created get defined on the stack the heap

We have more control over

Variables on the stack are stored)
variables on the heap

directly to the memory and access

to this memory is very fast - But this means that we also have

) to handle the memory we’re using
We don’t have to worry about carefully and properly clean it up
memory management when done

Stanford University

Dynamic Memory Allocation: new

* Torequest memory from the heap to allocate one element:

typex variable = new type;

* To allocate multiple (n) elements on the heap:

type*x variable = new type[n];

75

Stanford University

76

Dynamic Memory Allocation: new

type* variable = new type;

. J . J
Y Y
Declaring a variable that will Allocating heap memory with
point at our newly-allocated the new keyword

memory
e Nameisvariable
e Typeis typex (match the
type of the element) Assigning the pointer to point
to the heap memory

Stanford University

77

Pointer

e Data type that allows us to work directly with computer memory

addresses
* Just like all other data types, pointers take up space in memory and

store specific values
* Always stores a memory address, telling us where in the computer

to look for a certain value
* They quite literally "point" to another location on your computer

Stanford University

78

What is a pointer?

A memory address!!

Stanford University

79

Pointer Syntax

* Pointers are necessary to store the value generated by the new
keyword (which is just a memory address on the heap)

int* oneElem = new int;

Stack Heap
B
— A
oneElem: | O9x94bce8e4 227
Ox3840c030 Ox94bce8e4
Stanford University

80

Pointer Syntax

To read or modify the variable that a pointer points to, we use the
* (asterisk) operator (in a different way than before!)
* Known as dereferencing the pointer

: xoneElem = 5;
* Follow the arrow to the memory location

Stack Heap
N
— i
oneElem: | O9x94bce8e4 5
Ox3840c030 Ox94bce8e4

Stanford University

81

nullptr

 When we declare/initialize a pointer but don’t have anything to
point it at yet, that can be dangerous and unpredictable

* To ensure that we can tell if a pointer has a valid address or not, set
your declared pointer to nullptr, which means "no valid address"

stringx showPtr = nullptr;

[showPtr: J

Ox35efcdf8

Stanford University

82

nullptr

* How can we tell if a pointer is safe to use (dereference)?
e If you are unsure if your pointer holds a valid address, you should
check for nullptr!

void printShowName(string* showPtr) {
if (showPtr != nullptr) {
cout << xshowPtr << endl; // prints out the value pointed to by showPtr
// 1f 1t is not nullptr
} else {
cout << "showPtr is not valid!" << endl;

}

Stanford University

83

Under the Hood

int* tenInts = new int[10];

Stanford University

84

Under the Hood

int* tenInts = new int[10];

Stanford University

85

Under the Hood

int* tenInts = new int[10];

Stanford University

86

Pitfalls and Dangers

* The array you get from new/[] is fixed-size: it can neither grow nor
shrink once it’s created

 The array you get from new[] has no bounds-checking: accessing

anything past the beginning or end of an array triggers undefined
behavior

Stanford University

87

Cleaning Up

 When declaring local variables or parameters, C++ automatically
handles memory allocation and deallocation for you

 When using new, you are responsible for deallocating the memory
you allocate

* If you don't, you get a memory leak

* Your program will never be able to use that memory again

* Too many leaks can cause a program to crash —it’s important to not leak
memory!

Stanford University

88

Cleaning Up: delete

* You can deallocate (free) memory with the delete keyword
* To deallocate a single element:
delete var;

* To deallocate an array of elements:
delete[] arr;

Stanford University

89

Cleaning Up: delete

* This destroys the array pointed to by the given pointer, not the
pointer itself
* You can think of this operation as relinquishing control over the
memory back to the computer
* Once you’ve deleted the memory pointed at by a pointer, you have a
dangling pointer and shouldn’t read or write from it

Stanford University

90

Linked Lists

Stanford University

91

Linked Lists

* Unlike arrays, linked lists allow us to store our data in
non-contiguous memory on the heap

Stanford University

92

Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

Okay, but what are these little boxes?

Stanford University

93

Linked Lists, Structurally

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Stanford University

94

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
list->data = 6;
list->next = nullptr;

Dereference AND access the
field for struct pointers using ->

data: 6

list: Oxfca20b006 >

n e X t : nullptr

Lives at Oxfca20b00 on the heap

Stanford University

95

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head
temp = temp->next;
delete head;
head = temp;
¥ 1 6 4
} — — nullptr

Stanford University

96

Code Trace: Free Linked List

void freeList(Nodex head) {
Node*x temp = head;
hile (head != nullptr
Wi (utlptr) 1 head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University

97

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {
head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University

98

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hile (head != nullptr
Wi (utlptr) 1 head temp
temp = temp->next;

delete head; \\\
head = temp;
1

6 4

nullptr

Stanford University

99

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\
head = temp;
¥ 222 6 4
: 222 — nullptr

Stanford University

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hile (head != nullptr
Wi (utlptr) 1 head temp
temp = temp->next;

delete head; \~\‘
head = temp;

¥ 999

100

227?

4

nullptr

Stanford University

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

101

head temp
temp = temp->next;
delete head; \~\‘
head = temp;
} 227
b
227

4

nullptr

Stanford University

102

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\\\\;:\\\\\\\\\\\\k‘
head = temp;
¥ 222 6 4
: 222 — nullptr

Stanford University

103

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\\\\\x
head = temp;
¥ 2272 222 4
) 2727 27272 nullptr

Stanford University

104

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head;
head = temp;
} 2272 222 4
: 227 27272 nullptr

Stanford University

105

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head;
head = temp;
} 2272 222 4
: 227 2272 nullptr

Stanford University

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) { head temp:
temp = temp->next; nullptr
delete head;
head = temp;

106

} 227 227

4

227? 227?

nullptr

Stanford University

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) { head temp:
temp = temp->next; nullptr
delete head;
head = temp;

} 227 227

107

227? 227?

227?

227?

Stanford University

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

108

head: temp:
temp = temp->next; nullptr nullptr
delete head;
head = temp;
} 227 227
J 2727 27272

227?

227?

Stanford University

Code Trace: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hile (head != nullptr
Wi (ptr) 1 head: temp:

temp = temp->next; nullptr nullptr
delete head;

head = temp;

} 227 227

109

227? 227?

227?

227?

Stanford University

110

Code Trace: Free Linked List

void freelList(Nodex head) { [HAPPY TIMES }
Nodex temp = head;

hi'l head != 1llpt
while (hea nutlptr) { head: temp:

temp = temp->next; nullptr nullptr
delete head;

head = temp;

} 227 227 227

227? 227? 227?

Stanford University

A Few Applications of Traversal

void printList(Node*x list) { void freelList(Node* list) {
while (list != nullptr) { while (list != nullptr) {
cout << list->data << endl; Nodex temp = list->next;

. SN .
. list list->next; delete list;

! list = temp;

int measurelList(Nodex 1list) { }
int count = 0;
while (list != nullptr) {
count++;
list = list->next;
}

return count;

Stanford University

112

Pitfalls of Recursive List Traversal

Recursive solutions to list traversal look elegant, but they generate
a recursive call for every element in the list - a linked list with n
elements would require n stack frames

For most computers, the stack frame limit is somewhere in the
range of 16-64K - we can’t traverse lists with more than 64K
elements recursively!

Stanford University

113

Linked Lists vs. Arrays

Linked Lists Arrays
Chain of nodes, not - Contiguous chunk of memory
contiguous in heap memory on the heap

Access nodes starting at head, - Access elements by index
following the -> next pointer

Good for implementing other

Same!
data structures
Has no member functions like
.size() or .add () + Same!

Stanford University

114

Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
* Append-0(n) Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n) Delete-0(n)
* Traverse-0(n) * Traverse-0(n)

Stanford University

115

Passing Pointers by Value

* Unless specified otherwise, parameters in C++ are passed by value
— this includes pointers!

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

Stanford University

116

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

* When you want a helper function to modify the address a pointer
points to, you should pass it by reference

Stanford University

117

Practice Problem: Reverse List

Given a pointer to the head of a linked list, reverse the elements of the
list and update the head pointer to point to the new head.

void reverselList(ListNode*& head) {

Stanford University

Practice Problem: Reverse List (Solution)

void reverse(ListNode*x& head) {
ListNodex prev = nullptr;
ListNodex cur = head;

ListNodex next = nullptr;

while (cur != nullptr) {
next = cur->next;
cur->next = prev;
prev = cur;
cur = next;

}

head = prev;

118

Stanford University

119

Trees

Stanford University

120

Throwback

e \We've seen trees a ton in this class!

Stanford University

121

Tree Terminology

Types of nodes

* The root node defines the "top" of the tree

* Every node has 0 or more children nodes descended from it
* Nodes with no children are called leaf nodes

* Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

* The length of a path between two nodes is the number of edges between them

* The depth of a node is the length of the path from the root to that node

* The height of a tree is the number of nodes in the longest path through the tree
(i.e. the number of levels in the tree)

Stanford University

122

Tree Properties

* Any node in a tree can only have one parent

\/®
o
/N
O G

Stanford University

®\®/® Not trees! CTj/

123

Tree Properties

* Any node in a tree can only have one parent
* Atree cannot have cycles or loops

v @\.
JolRo

Not a tree!

Stanford University

124

Binary Trees

* Most common trees in CS
* We've seen these before, Binary Heaps!
 Every node has either 0, 1, or 2 children
* Children are referred to as left child and right child . u
0
@

X 7

R\
) B,
& 0
8 10 3

Stanford University

Building Binary Trees

A binary tree is composed of nodes

Each node is a struct that contains:

A piece of data (like an int, or string)
A pointer to the left child
A pointer to the right child

125

struct TreeNode {
int data;
TreeNode* left;
TreeNodex*x right;

}s

Stanford University

Tree Traversal Recap

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589

126

Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985
Stanford University

127

Post-order Traversal - Freeing a Tree

void freeTree(TreeNodex node) {
it (node == nullptr) {
return;

}

freeTree(node->1left);
freeTree(node->right);
delete node;

Stanford University

128

Post-order Traversal - Freeing a Tree

: Post-order
void freeTree(TreeNodex node) {

it (node == nullptr) { 0

return;) ()

1 ® ® ©

freeTree(node->1left);

freeTree(node->right); bl

delete nOde; do something (aka cout)

} 142985

Stanford University

129

Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X
b. All nodes in its right subtree must be greater than X

e Stanford University

130

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[BALANCED]

Stanford University

131

Bina ry Search Trees (BSTS) This tree is balanced; we’ve got

13 nodes in this tree, and its

° height is Log,13 = 4.

Stanford University

132

BST LOOkU PS Worst case, we have to take
O(log n) steps in the tree to

° find an element.

069 00 aﬁe

Stanford University

133

BST Insertion How might we insert 5 into
this BST?

Search for where the 5
should be...

Stanford University

134

BST Insertion How might we insert 5 into
this BST?

... and insert the 5 there

@ Stanford University

135

BST Deletion Three cases:
° 1. Leaf node, just delete!

Stanford University

136

BST Deletion Three cases:
° 1. Leaf node, just delete!

Stanford University

137

BST Deletion Three cases:
° 2. One child, swap and delete.

Stanford University

138

BST Deletion Three cases:
° 2. One child, swap and delete.

Stanford University

139

BST Deletion

° 2. One child, swap and delete.

Three cases:

Stanford University

140

BST Deletion Three cases:

3. Two children...

Idea: swap 12 with its inorder
predecessor or successor

Stanford University

141

BST Deletion

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree

Stanford University

142

BST Deletion Three cases:

Swap with inorder
° predecessor and delete.

Stanford University

143

BST Deletion Three cases:

Swap with inorder
° predecessor and delete.

Stanford University

144

BST Deletion Three cases:

Swap with inorder
predecessor and delete.

Stanford University

145

Big-O of ADT Operations

Vectors Queues Sets
e .size() - 0(1) e .size() - 0O(1 .size() - 0O(1
Sdd0) = 0013 size() - 9(1) () = 0(1)

o . lisEmpty() - 0(1)
v[i] e .add() - 0(log n)
- NS Sets and Maps have e .remove() - 0(log n)

. ren
.suf O(log n) lookups, insertion, and -contains() - 0(log n)
traversal - 0(n)

_dtra\' deletion because they use BSTs behind y
orids the scenes to store data! aps .
.size() - 0(1)

.isEmpty() - 0(1)
m[key] - 0(log n)
.contains() - 0(log n)
traversal - 0(n)

e .Nun
. NUNMMCOTST) OX>)

grid[i1[3] - 0(1)
.inBounds() -

0(1)

traversal - 0(n?)

-PEER() - O(1)
.push() - 0(1)
.pop() - 0(1)
.isEmpty() - 0(1)
traversal - 0(n)

Stanford University

146

Practice Problem: Copy Tree

Given a pointer to the root of a tree, write a function that returns a
copy of this tree by allocating new ListNodes on the heap.

ListNodex copyTree(ListNode*x root) {

Stanford University

147

Practice Problem: Copy Tree (Solution)

TreeNodex copyTree(TreeNodex root) {

if (root == nullptr) return nullptr;

// pre-order traversal, not the only order that would work
TreeNodex leftSubtree = copyTree(root->left);
TreeNodex rightSubtree = copyTree(root->right);

TreeNodex currentNode = new TreeNode();
currentNode->data = root->data;
currentNode->left = leftSubtree;
currentNode->right = rightSubtree;

return currentNode;

Stanford University

148

Hashing

Stanford University

149

Binary Search Tree (and Set)

Operation Runtime

Contains O(log n)

Insert O(log n)

Remove O(log n)
(&)

Motivating question:
CAN WE DO BETTER? 0 @

e a @ @ Stanford University

Hash Functions

150

A hash function is a function that assigns elements to buckets

15 ——»

N\

1

Hash Function

| <

——» Bucket 7!

N

Stanford University

Good Hash Functions

151

* A good hash function distributes elements evenly across buckets
* This way, no bucket contains too many elements

e Similar inputs will not necessarily have similar hash codes

“starling” ———»

“staring” ———»

N\

1

Hash Function

AN
A

| <

—— Bucket 3!

» Bucket 193252!

N

Stanford University

152

Chaining Hash Table

* We have an array of linked lists with b “buckets”
* We store each value num in the linked list of bucket hash (num)

Hash
Function

0 1 2 3 4 5 6 7

Stanford University

153

Chaining Hash Table

* We have an array of linked lists with b “buckets”
* We store each value num in the linked list of bucket hash (num)

Add 51
Hash
D Function j

0 1 2 3 4 5 6 7

Stanford University

154

Chaining Hash Table

* We have an array of linked lists with b “buckets”
* We store each value num in the linked list of bucket hash (num)

Add 51
51 —>D akEL j—» Bucket 2!

Function

Stanford University

155

Chaining Hash Table

* We have an array of linked lists with b “buckets”

* We store each value num in the linked list of bucket hash (num)

Add 51
51 —>D akEL j—» Bucket 2!

Function

3 4 5 6 7

Stanford University

156

Chaining Hash Table

* We have an array of linked lists with b “buckets”
* We store each value num in the linked list of bucket hash (num)

Add 14
Hash
D Function j

0 1 51 3 4 5 6 7

Stanford University

157

Chaining Hash Table

* We have an array of linked lists with b “buckets”

* We store each value num in the linked list of bucket hash (num)

Add 14
14 —>D akEL j—» Bucket 1!

Function

3 4 5 6 7

Stanford University

158

Chaining Hash Table

* We have an array of linked lists with b “buckets”

* We store each value num in the linked list of bucket hash (num)

Add 14

Function

14 —>D akEL j—» Bucket 1!

3 4 5 6 7

Stanford University

A FEW

., MOMENTS LRTER

\.— -—
o

160

Chaining Hash Table

* We have an array of linked lists with b “buckets”
* We store each value num in the linked list of bucket hash (num)

Hash
Function

1928 12 -99

w
=
N
|
\]
N
N

—
—
—
—
—
—
—

<4~ | o fa—

Stanford University

161

Chaining Hash Table

* We have an array of linked lists with b “buckets”
* We store each value num in the linked list of bucket hash (num)

If we’ve got a good hash function, and
we’ve hashed n elements into b buckets,
what’s our average bucket size?

w
=
S
I
~
N
N

1928 12 -99

—
—
1
—
—
—
—
<4~ | o fa—

Stanford University

162

Load Factor: n/b

 The average number of elements in each bucket

* |If the load factor is low: lots of empty buckets, wasted space
* |f the load factor is high: very full buckets, slow operations

* This means we’ll have to look through O (n/b) elements for
contains and remove... is this better than O(n)?

Stanford University

163

Load Factor: n/b

 The average number of elements in each bucket

* |If the load factor is low: lots of empty buckets, wasted space
* |f the load factor is high: very full buckets, slow operations

* This means we’ll have to look through O (n/b) elements for
contains and remove... is this better than O(n)?

Big idea: if we choose b (# of buckets) to be a
number close to n, then n/b will be constant.

Stanford University

164

Hashing Walkthrough

Let’s walk through the operations of a Chaining Hash Table. This works
much like a Chaining Hash Set, but we’ll allow duplicates.

We'll begin with 4 buckets. We'll keep a load factor (n/b) of % or less.
This means that our ratio of elements to buckets cannot exceed .

Stanford University

165

Hashing Walkthrough

numElements = 0
numBuckets = 4

hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

Stanford University

166

Hashing Walkthrough

numElements = 0

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(3-1) %4 = 2 Add 1
Add 5
Remove 2
Add 1
Add -4

Stanford University

167

Hashing Walkthrough

NumE lements = 1

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(3-1) %4 = 2 Add 1
Add 5
Remove 2
Add 1
Add -4

:
=

Stanford University

168

Hashing Walkthrough

NumE lements = 1

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(2-1) %4=1 Add 1
Add 5
Remove 2
Add 1
Add -4

:
=

Stanford University

169

Hashing Walkthrough

numElements = 2

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(2-1) %4=1 Add 1
Add 5
Remove 2
Add 1
Add -4

L
—1 L

Stanford University

170

Hashing Walkthrough

numElements = 2

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(1-1) %4=20 Add 1
Add 5
Remove 2
Add 1
Add -4

L
—1 L

Stanford University

171

Hashing Walkthrough

numElements = 3

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(1-1) %4=20 Add 1
Add 5
Remove 2
Add 1
Add -4

=

L
— 1 1 [

Stanford University

172

Hashing Walkthrough

numElements = 3

numBuckets = 4
hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(5-1) %4 =20 Add 1
Add 5
Remove 2
Add 1
Add -4

=

L
— 1 1 [

Stanford University

173

Hashing Walkthrough

numElements = 4
numBuckets = 4

hash(elem) :

(elem - 1) % numBuckets Add 3

Add 2
(5-1) %4 =20 Add 1
Add 5
Remove 2
Add 1
Add -4

Ul j—

L
—1 L

ol

Stanford University

174

Hashing Walkthrough

numElements = 4
numBuckets = 4

Our load factor, %, has been exceeded! To
reduce it, we double the number of buckets. Add 3

Add 2
(5-1) %4 =20 Add 1
Add 5
Remove 2
Add 1
Add -4

Ul [—

L
—1 L

ol

Stanford University

175

Hashing Walkthrough

numElements = 4
numBuckets = 8

Our load factor, %, has been exceeded! To
reduce it, we double the number of buckets. Add 5

Remove 2
(5-1) %4 =20 Add 1
Add -4
5 2 3 3 4 5 6 7
_—1

ol

Stanford University

176

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
Add 1

Now, we must rehash our elements, since our | Add -4
numBuckets has changed.

Y

2

'
3
_—1 =

Ul j—

ol

Stanford University

177

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem):
(elem - 1) % numBuckets Add 5
Remove 2
(5 -1) %4 =20 Add 1
Add -4
t t t 3 4 5 6 7
//

ol

Stanford University

178

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem):
(elem - 1) % numBuckets Add 5
Remove 2
(5 -1) %8 =24 Add 1
Add -4
t t t 3 4 5 6 7
//

ol

Stanford University

179

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(5 -1) %8 =24 Add 1
Add -4
* 3 5 6 7

=

:
—

L
— 1 1 [

Stanford University

180

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(1 -1) %$8 =20 Add 1
Add -4
* 3 5 6 7

=

:
—

L
— 1 1 [

Stanford University

181

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(2 -1) 8 =1 Add 1
Add -4
3 5 6 7

=

:
—

L
— 1 1 [

Stanford University

182

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(3 -1) %8 =2 Add 1
Add -4
3 5 6 7

=

:
—

L
— 1 1 [

Stanford University

183

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem):
(elem - 1) % numBuckets Add 5
Remove 2
Add 1
Add -4
* 3 5 6 7

=

:
—

L
— 1 1 [

Stanford University

184

Hashing Walkthrough

numElements = 3
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
Add 1
Add -4
1 1 3 5 6 7

:
—

'
3
_— _—1

Stanford University

185

Hashing Walkthrough

numElements = 3
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(1 -1) %$8 =20 Add 1
Add -4
t 1 3 5 6 .

:
—

'
3
_— _—

Stanford University

186

Hashing Walkthrough

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(1 -1) %$8 =20 Add 1
Add -4
t 1 3 5 6 .

L
: _— L—

I+I Stanford University

Hashing Walkthrough

187

numElements = 4
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(-4 - 1) %¥8=3 Add 1
Add -4
* 3 5 6 7

:
—

:
. =

Stanford University

Hashing Walkthrough

188

numElements = 5
numBuckets = 8

hash(elem) :
(elem - 1) % numBuckets Add 5
Remove 2
(-4 - 1) %8 =3 Add 1
Add -4
t 1 3 -4 5 5 6 7
L / / /

Stanford University

189

Practice Problem: Multiple Choice

Q1. What happens to our load factor when we increase the number of
buckets in our hash table?

Stanford University

190

Practice Problem: Multiple Choice (Solutions)

Q1. The load factor is n/b (# elems / # buckets), so increasing b will
make the load factor smaller. More intuitively, spreading the elements
across more buckets means there will be fewer elements in each

bucket.

Stanford University

Practice Problem: Multiple Choice

Q2. Let’s say we have a hash function hash that we’re using to determine which bucket to place strings into:
bucket = hash(input);

Suppose we compute the following three hash values:

A = hash(“desert”);
B = hash(“dessert”);
C = hash(“brownie”);

Which of the following are guaranteed to be true about these values (select all that apply):

The values A and B will be closer together than A and C since “desert” and “dessert” are more similar.

The values B and C will be closer together than A and C since “dessert” and “brownie” are the same length.
The values A, B, and C are not equal.

None of the above.

=

Stanford University

192

Practice Problem: Multiple Choice (Solutions)

Q2. 4. Without knowing anything about our hash function, we have no
guarantees on how the input string will be related to its output hash
value - this is a property of good hash functions! Although good hash
functions will spread elements evenly between buckets, we also aren’t
guaranteed that two (or even three) different elements won’t hash to

the same bucket.

Stanford University

193

Graphs

Stanford University

194

Graph Terminology graph

a structured way to represent
relationships between different
entities

A graph consists of
a set of nodes

connected by edges.

Stanford University

195

Linked Data Structures

 We've already seen nodes connected by edges before when

discussing linked lists and trees
 What differentiates these linked data structures?
* Linked lists: Linear structure, each node connected to at most one other

node
* Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.
* Graphs: No restrictions. It's the wild, wild west of the node-based world!

Stanford University

196

Wild World of Graphs

* (Can have cycles
* No notion of a parent-child

relationship between nodes
* No root node
* Most powerful, flexible, and

expressive abstraction that we can
use to model relationships between
different distributed entities

Stanford University

Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

197

Map< , Setk >>

Stanford University

198

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

00000

1 1
1 1 1
%) 1 1

- 1 1 -

Stanford University

199

DFS Algorithm

dfs-from(node v) {
make a stack of nodes, initially seeded with v.

while the stack isn't empty:
pop a node curr.
process the node curr.

for each node adjacent to curr:
if that node has never been pushed:
push that node.

Stanford University

200

BFS Algorithm

bfs-from(node v) {
make a queue of nodes, initially seeded with v.

while the queue isn't empty:
dequeue a node curr.
process the node curr.

for each node adjacent to curr:
if that node has never been enqueued:
enqueue that node.

Stanford University

201

BFS vs DFS

* Running BFS or DFS from a node in a graph will visit the same set of
nodes, but probably in a different order

e BFS will visit nodes in increasing order of distance
e Will give you the shortest path
* DFS does visit nodes in some interesting order, but not order of

distance
e Take CS161 for more info

Stanford University

202

Shortest Weighted Path

What is the shortest weighted path

from A to B? C\ 12949
A

10 2

A\

©

Stanford University

203

Shortest Weighted Path

What is the shortest weighted path

from A to B? 12949
e BFS doesn’t work here

C“

Stanford University

Dijkstra's Algorithm

Finds the shortest weighted path from one node to another

Greedy algorithm
* Prioritizes finding a solution by what is "best right now"
* Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation
* Ex: Change We Can Believe In (Section 4, Problem 2)
Many different ways to model this
e Can use a priority queue, where weights become priorities
* (Can use a table of nodes
Real world uses: shortest paths on maps (Ethiopia), tracks of

electricity lines and oil pipelines, network routing protocols

204

Stanford University

Dijkstra's Algorithm

Algorithm:

1.

B

Of the unseen nodes, find the node that
currently has the shortest distance from the
start

Look at this node's neighbors, and update the
total distance to the neighbors based on their

distance and the distance already to this node.

If the node visited is the destination, stop
Repeat from step 1

205

Stanford University

A* Algorithm

* Finds the shortest weighted path from one node to another
e Uses external information about the graph

* Heuristic: estimates the cost of the cheapest path to the goal
* Should always underestimate the distance to the goal, because if it
overestimates, it could find a non-optimal solution

* If the distance to the destination is closer, weight the nodes in that

direction to be preferable
e priority(u) = weight(s, u) + heuristic(u, d)

Stanford University

207

Recap

* Graphs are a linked data structure with almost no rules
* Represent in code with either an adjacency list or matrix

* Depth-First Search: does not always return the shortest path, though it
may be faster in some cases

* Breadth-First Search: returns the shortest path, but it only works on
unweighted graphs

e Dijkstra’s Algorithm: returns the shortest weighted path, but not
necessarily the most efficient

 A* Algorithm: returns the shortest weighted path using heuristics, and
is often thought of as gold standard

Stanford University

208

Good luck on the finall
You’'re almost done with CS106B!!

Stanford University

