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Announcements

• Course evals are now open - find these on Canvas
• This is a chance for you to provide feedback on the instructors and 

CS106B in general (not your SL)

• We’ve got our final lecture tomorrow, “Life After CS106B”
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Final Exam Logistics

• 8/18 from 3:30-6:30pm in Hewlett Teaching Center, Room 200
• Students with exam accommodations have already been contacted

• Same logistics as midterm
• On paper, using pen/pencil

• Closed-book and closed-device

• Reference sheet on Stanford library functions

• Notes sheet (one page, front and back, 8-1/2" x 11")

• All information is here
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https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/refsheet_final.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/


Final Exam Logistics

• Evaluate your problem-solving skills and conceptual understanding 

of the material, not your ability to use perfect syntax
• Most points awarded for valid approach to solving the problem, fewer 

points for the minute details of executing your plan

• Mix of different problem types (see practice exams for examples)

• Not taking off points for
• Missing braces around clearly indented blocks of code

• Missing semicolons 

• Missing #include

4



Roadmap - Final Coverage

Core 
Tools

C++
Algorithmic 

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data 
Structures

Object-Oriented 
Programming

Memory 
Management

Linked 
Data 

Structures

Advanced 
Algorithms



Roadmap - Final Coverage

Core 
Tools

C++
Algorithmic 

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data 
Structures

Object-Oriented 
Programming

Memory 
Management

Linked 
Data 

Structures

Advanced 
Algorithms

Not covered: 
week 8 material



Recursion and 
Recursive Backtracking
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What is recursion?

• A problem-solving technique in which 

tasks are completed by reducing them 

into repeated, smaller tasks of the same 

form

• The function calls itself and every time, 

the problem becomes a little smaller
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Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• The point where we’ve reached our answer

• Recursive case
• More complex version of the problem that cannot be directly answered 

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the 

problem for you!

9



Three “Musts” of Recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that does not make recursive calls

3. When you make a recursive call it should be to a simpler instance 

of the same problem, and make progress towards the base case
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An efficient solution:
Binary Search
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Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Let’s try to find the number 6 in our Vector

0 8
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Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Too big, look left

0 8

Let’s try to find the number 6
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Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Let’s try to find the number 6
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Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Too small, look right

Let’s try to find the number 6
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Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Let’s try to find the number 6
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Binary Search

• Let’s say we have a sorted Vector of integers

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Found it! 🎉🎉🎉
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Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. If element is greater than our target, do binary search to the left
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Binary Search Code

int binarySearchHelper(Vector<int>& v, int target, int start, int end) {
if (start > end) return -1; // base case 1: element not in vector

 int mid = (start + end) / 2;
 int elem = v[mid];
 if (elem == target) { // base case 2: found element
 return mid;
 } else if (elem < target) {
 return binarySearchHelper(v, target, mid + 1, end);
 } else {
 return binarySearchHelper(v, target, start, mid - 1);
 }
}
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Runtime of Binary Search

• Binary search has runtime O(log n)
• Common runtime for algorithms that halve search space at every step

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2)
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A dynamic solution:
Recursive Backtracking
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Two Types of Recursion

Basic recursion

• One repeated task that builds up a 
solution as you come back up the call 
stack

• The final base case defines the initial 
seed of the solution and each call 
contributes a little bit to the solution

• Initial call to the recursive function 
produces the final solution
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Backtracking recursion

• Build up many possible solutions 
through multiple recursive calls at 
each step

• Seed the initial recursive call with an 
“empty” solution

• At each base case, you have a 
potential solution

factorial(2)

factorial(1)

factorial(0)



3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

23

All of these involve exploring many possible 
solutions, rather than proceeding down a linear 

path towards one solution.



Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? 

(generate/count all solutions, find one solution/prove its existence, 

or pick one best solution)
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? 

(generate/count all solutions, find one solution/prove its existence, 

or pick one best solution)

• What’s the provided function prototype and requirements? Do we 

need a helper function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to 

our solution?  If yes, what parameters are we already given and what 

others might be useful?
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Patterns

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and 

the decisions we have left to make

• Backtracking recursion can have variable branching factors at each 

level

26
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Word Jumble

• We’d like to print every ordering of “TEYPT” to solve the puzzle

• This is much like coin sequences, but instead of choosing H or T, we 

are choosing a letter at each step
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“tca”

“”string sequence
string lettersRemaining 
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Permutations Solution Code 
void generatePermutationsHelper(string lettersRemaining, string sequence) {

    // Base case: lettersRemaining = 0, no more letters to choose from

    if (lettersRemaining.length() == 0) {

        cout << sequence << endl;

    } else {

        // Many recursive cases (when lettersRemaining > 0)

        for (int i = 0; i < lettersRemaining.length(); i++) {

            char letter = lettersRemaining[i]; // choose one of our remaining letters to build on sequence

            generatePermutationsHelper(lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1), 

sequence + letter);

        }

    }

}

void generatePermutations(string word) {

    generatePermutationsHelper(word, "");

}
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Subsets

Given a group of people, generate all possible teams, or subsets, of 

these people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}



Making a Decision Tree

• Decision at each step (each level of the tree)
• Are we going to include a given element in our subset?

• Options at each decision (branches from each node)
• Include the element

• Don’t Include the element

• Information you need to store along the way
• Set you’ve built so far

• Remaining elements in original set
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No Amrita Yes Amrita

No Elyse No Elyse

No 
Taylor

No 
Taylor

No 
Taylor

No 
Taylor

Yes Elyse Yes Elyse

Yes 
Taylor

Yes 
Taylor

Yes 
Taylor

Yes 
Taylor

Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}

{“Elyse”, 
“Taylor”}

{“Taylor”}

{}



Subsets Solution Code
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void listSubsetsHelper(Set<string>& remaining, Set<string>& chosen) {

// (base case omitted for space)

// choose 

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;

}



Choose / explore / unchoose

• Implicit “unchoose” step
• Pass by value; usually when memory constraints aren’t an issue
• Works because you’re making edits to a copy
• E.g. Building up a string over time

• Explicit “unchoose” step
• Uses pass by reference; usually with large data structures
• “Undoing” prior modifications to structure
• E.g. Generating subsets (one set passed around by reference to track
• subsets)

37



Practice Problem: Weights

Problem 6 from Section 4 (see description)

bool isMeasurable(int target, Vector<int>& weights) {

}

38

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/section/section4/#6-weights-and-balances-weightscpp


Practice Problem: Weights (Solution)

bool isMeasurable(int target, Vector<int>& weights) {

if (weights.isEmpty()) {

return target == 0; // base case; no weights left to place

} else {

// choose

int last = weights[weights.size() - 1]; // just because removing last index is faster

weights.remove(weights.size() - 1);

// explore

bool result = isMeasurable(target + last, weights) || isMeasurable(target - last, weights) 

|| isMeasurable(target, weights);

// un-choose

weights.add(last);

return result;

 }

}
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Classes / OOP
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Class

• Defines a new data type for our program to use

• Help us create types of objects
• Which is why we call this object-oriented programming!
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What is a class?

• The main difference between structs and classes are the 

encapsulation defaults
• Struct defaults to public members (accessible outside the struct itself).

• Class defaults to private members (accessible only inside the class 

implementation).
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Creating C++ Class

• Defining a class in C++ (typically) requires two steps:
• Create a header file (typically suffixed with .h) describing what 

operations the class can perform and what internal state it needs.

• Create an implementation file (typically suffixed with .cpp) that 

contains the implementation of the class.

• Clients of the class can then include (using the #include directive) 

the header file to use the class.
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Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• These are the variables stored within the class

• Usually not accessible outside the class implementation

• Member functions (What functions can you call on a variable of this type?)

• Functions you can call on the object

• Known as methods

• Constructor (What happens when you make a new instance of this type?)
• Gets called when you create the object

• Sets the initial state of each new object

44



What is in a header file?
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What is in a header file?
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#pragma once

class RandomBag {

};

This is a class definition. We’re 
creating a new class called 
RandomBag. Like a struct, 
this defines the name of a new 
type that we can use in our 
programs.

When naming classes, use 
UpperCamelCase.



What is in a header file?
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#pragma once

class RandomBag {
public:
 

private:

};



What is in a header file?
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#pragma once

class RandomBag {
public:
 

private:

};

The public interface specifies what 
functions you can call on objects of 
this type. (i.e. its methods)

Think things like the Vector
.add() function or the string’s 
.find().



What is in a header file?
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#pragma once

class RandomBag {
public:
 

private:

};

The public interface specifies what 
functions you can call on objects of 
this type. (i.e. its methods)

Think things like the Vector
.add() function or the string’s 
.find().

The private implementation
contains information that objects
of this class type will need in order 
to do their job properly. This is 
invisible to people using the class.



What is in a header file?
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#pragma once

class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:

int size();
};

These are member functions of
the RandomBag class. They're
functions you can call on 
objects of type RandomBag.

All member functions must be
defined in the class definition. 
We'll implement these 
functions in the C++ file.



What is in a header file?
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#pragma once

class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:

int size();
};

Member functions of a class 
can be public or private, 
depending on if you want a 
client to be able to access the 
functionality. 



What is in a header file?
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#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:
Vector<int> elems;
int size();

};

This is a member variable of 
the class. This tells us how the 
class is implemented. Internally, 
we're going to store a 
Vector<int> holding all the 
elements. The only code that 
can access or touch this 
Vector is the RandomBag 
implementation



What is in a header file?

53

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:
Vector<int> elems;
int size();

};

Member variables of a class can 
be public or private. You should 
default towards member 
variables being private if 
possible. 



What is in a header file?
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#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();
bool isEmpty();

private:
Vector<int> elems;
int size();

};
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#include "RandomBag.h"

If we're going to implement the 
RandomBag type, the .cpp file 
needs to have the class definition 
available. All implementation files 
need to include the relevant 
headers.
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#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
  void add(int value);
  int removeRandom();
  bool isEmpty();
private:
  Vector<int> elems;
  int size();
};
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#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

The syntax RandomBag::add means “the 
add function defined inside of RandomBag." 
The :: operator is called the scope 
resolution operator in C++ and is used to 
say where to look for things. #pragma once

#include "vector.h"
class RandomBag {
public:
  void add(int value);
  int removeRandom();
  bool isEmpty();
private:
  Vector<int> elems;
  int size();
};
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#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

If we had written something like this 
instead, then the compiler would think we 
were just making a free function named add 
that has nothing to do with RandomBag’s 
version of add. That’s an easy mistake to 
make!

#pragma once
#include "vector.h"
class RandomBag {
public:
  void add(int value);
  int removeRandom();
  bool isEmpty();
private:
  Vector<int> elems;
  int size();
};
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#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

We don't need to specify where elems is. The 
compiler knows that we're inside RandomBag, 
and so it knows that this means "the current 
RandomBag's collection of elements." 

Using the scope resolution operator is like 
passing in an invisible parameter to the function 
to indicate what the current instance is.

#pragma once
#include "vector.h"
class RandomBag {
public:
  void add(int value);
  int removeRandom();
  bool isEmpty();
private:
  Vector<int> elems;
  int size();
};
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#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
  void add(int value);
  int removeRandom();
  bool isEmpty();
private:
  Vector<int> elems;
  int size();
};
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#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

This code calls our own 
size() function. The 
class implementation can 
use the public or private  
interface.

#pragma once
#include "vector.h"
class RandomBag {
public:
  void add(int value);
  int removeRandom();
  bool isEmpty();
private:
  Vector<int> elems;
  int size();
};



Constructor

• Specially defined method for classes that initializes the state of 

new objects as they are created
• Often accepts parameters for the initial state of the fields.

• Special naming convention defined as ClassName()
• You can never directly call a constructor, but one will always be called 

when declaring a new instance of an object
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// MyClass.h
class MyClass {
public:
    MyClass();

    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
  
private:
    int var1;
    int var2;
    type func4();
};
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// MyClass.h
class MyClass {
public:
    MyClass();

    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
  
private:
    int var1;
    int var2;
    type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...



65

// MyClass.h
class MyClass {
public:
    MyClass();

    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
  
private:
    int var1;
    int var2;
    type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

// main.cpp
int main() {

MyClass firstInstance;
}
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// MyClass.h
class MyClass {
public:
    MyClass();

MyClass(int var1, int var2);
    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
  
private:
    int var1;
    int var2;
    type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

// main.cpp
int main() {

MyClass firstInstance;
}
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// MyClass.h
class MyClass {
public:
    MyClass();

MyClass(int var1, int var2);
    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
  
private:
    int var1;
    int var2;
    type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

// main.cpp
int main() {

MyClass firstInstance;
}
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// MyClass.h
class MyClass {
public:
    MyClass();

MyClass(int var1, int var2);
    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
  
private:
    int var1;
    int var2;
    type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(3, 4);

}



Destructor

• Specially defined method for classes
• Special naming convention defined as ~ClassName()

• Does not take in parameters and does not return anything

• Automatically called when the object’s lifetime ends (for example, 

if it’s a local variable that goes out of scope)

• Responsible for cleaning up an object's memory
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// MyClass.h
class MyClass {
public:
    MyClass();

MyClass(int var1, int var2);
~MyClass();

    returnType func1(parameters);
    returnType func2(parameters);
    returnType func3(parameters); 
private:
    int var1;
    int var2;
    type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(3, 4);

}



Memory and Pointers
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How is computer memory organized?

• Memory in your computer is just a giant array!
• Can think of it as a long row of boxes, with each box having a value in it 

and an associated index
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…

0 1 2 3 4 5 6 7 8 9 10 …

• How can we communicate with the computer to find exactly which 

box we want to access/store information in?
• We’ll give each box an associated numerical location, called a memory 

address



Memory on Stack vs Heap

Vector<string> varOnStack;
• Before 106B, all variables we’ve 

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored 
directly to the memory and access 
to this memory is very fast

• We don’t have to worry about 
memory management

73



Memory on Stack vs Heap

Vector<string> varOnStack;
• Before 106B, all variables we’ve 

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored 
directly to the memory and access 
to this memory is very fast

• We don’t have to worry about 
memory management

74

• We can now request memory from 
the heap

• This is dynamic memory allocation

• We have more control over 
variables on the heap

• But this means that we also have 
to handle the memory we’re using 
carefully and properly clean it up 
when done

string* arr = new string[numValues];



Dynamic Memory Allocation: new

• To request memory from the heap to allocate one element:

type* variable = new type;

• To allocate multiple (n) elements on the heap:

type* variable = new type[n];
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Dynamic Memory Allocation: new

type* variable = new type;

76

Declaring a variable that will 
point at our newly-allocated 
memory

● Name is variable
● Type is type* (match the 

type of the element) 

Allocating heap memory with 
the new keyword

Assigning the pointer to point 
to the heap memory



Pointer

• Data type that allows us to work directly with computer memory 

addresses

• Just like all other data types, pointers take up space in memory and 

store specific values

• Always stores a memory address, telling us where in the computer 

to look for a certain value

• They quite literally "point" to another location on your computer
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What is a pointer?

78

A memory address!!



Pointer Syntax

• Pointers are necessary to store the value generated by the new 

keyword (which is just a memory address on the heap)

int* oneElem = new int;

79

0x94bce8e4oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap



Pointer Syntax

• To read or modify the variable that a pointer points to, we use the 

* (asterisk) operator (in a different way than before!)

• Known as dereferencing the pointer

• Follow the arrow to the memory location
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0x94bce8e4oneElem:

0x3840c030

5

0x94bce8e4

Stack Heap

*oneElem = 5;



nullptr

• When we declare/initialize a pointer but don’t have anything to 

point it at yet, that can be dangerous and unpredictable

• To ensure that we can tell if a pointer has a valid address or not, set 

your declared pointer to nullptr, which means "no valid address"

81

string* showPtr = nullptr;

showPtr:

0x35efcdf8



nullptr

• How can we tell if a pointer is safe to use (dereference)?

• If you are unsure if your pointer holds a valid address, you should 

check for nullptr!
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void printShowName(string* showPtr) {
    if (showPtr != nullptr) {
        cout << *showPtr << endl; // prints out the value pointed to by showPtr
                                 // if it is not nullptr
    } else {
        cout << "showPtr is not valid!" << endl;
    }
}



Under the Hood

int* tenInts = new int[10];
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Under the Hood

int* tenInts = new int[10];
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Under the Hood

int* tenInts = new int[10];
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Pitfalls and Dangers

• The array you get from new[] is fixed-size: it can neither grow nor 

shrink once it’s created

• The array you get from new[] has no bounds-checking: accessing 

anything past the beginning or end of an array triggers undefined 

behavior
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Cleaning Up

• When declaring local variables or parameters, C++ automatically 

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory 

you allocate

• If you don't, you get a memory leak
• Your program will never be able to use that memory again

• Too many leaks can cause a program to crash – it’s important to not leak 

memory!
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Cleaning Up: delete

• You can deallocate (free) memory with the delete keyword

• To deallocate a single element:

delete var;

• To deallocate an array of elements: 

delete[] arr;
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Cleaning Up: delete

• This destroys the array pointed to by the given pointer, not the 

pointer itself

• You can think of this operation as relinquishing control over the 

memory back to the computer

• Once you’ve deleted the memory pointed at by a pointer, you have a 

dangling pointer and shouldn’t read or write from it
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Linked Lists
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Linked Lists

• Unlike arrays, linked lists allow us to store our data in 

non-contiguous memory on the heap
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Benefits of Linked Lists
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95 1 4 7 26

• Easily resizable

• Efficient to insert elements at the beginning

Okay, but what are these little boxes?



Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

93

6
struct Node {

int data;
Node* next;

};



Creating a Linked List

• Create a new Node on the heap and store a pointer to it
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Node* list = new Node;
list->data = 6;
list->next = nullptr;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: nullptr

Dereference AND access the 
field for struct pointers using ->



Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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1 6 4

nullptr

head temp



Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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1 6 4

nullptr

head temp



Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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6 4
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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???

???

???

4

nullptr

head temp: 
nullptr



Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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???

???

???

???

???

???

head: 
nullptr

temp: 
nullptr



Code Trace: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

} 
}
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???

???

???

???

???

???

head: 
nullptr

temp: 
nullptr

HAPPY TIMES 👍



A Few Applications of Traversal

void printList(Node* list) {
    while (list != nullptr) {
        cout << list->data << endl;
        list = list->next;
    }
}

int measureList(Node* list) {
    int count = 0;
    while (list != nullptr) {
        count++;
        list = list->next;
    }
    return count;
}
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void freeList(Node* list) {
    while (list != nullptr) {
        Node* temp = list->next;
        delete list;
        list = temp;
    }
}



Pitfalls of Recursive List Traversal

• Recursive solutions to list traversal look elegant, but they generate 

a recursive call for every element in the list - a linked list with n 

elements would require n stack frames

• For most computers, the stack frame limit is somewhere in the 

range of 16-64K - we can’t traverse lists with more than 64K 

elements recursively!
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Linked Lists vs. Arrays

Linked Lists

• Chain of nodes, not 
contiguous in heap memory

• Access nodes starting at head, 
following the -> next pointer

• Good for implementing other 
data structures

• Has no member functions like 
.size() or .add()

Arrays

• Contiguous chunk of memory 
on the heap

• Access elements by index

• Same!

• Same!
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Linked Lists vs. Arrays, Big-O

Linked Lists

• Prepend - O(1)
• Append - O(n)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

Arrays

• Prepend - O(n)
• Append - O(1)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

114



Passing Pointers by Value

• Unless specified otherwise, parameters in C++ are passed by value 

– this includes pointers!

• When passed by value, callee function gets a copy of the pointer;  

it cannot change where the original pointer points
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Passing Pointers by Reference

• When passed by reference, the callee function can change where 

the original pointer points

• When you want a helper function to modify the address a pointer 

points to, you should pass it by reference
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Practice Problem: Reverse List

Given a pointer to the head of a linked list, reverse the elements of the 
list and update the head pointer to point to the new head.

void reverseList(ListNode*& head) {

}
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Practice Problem: Reverse List (Solution)

void reverse(ListNode*& head) {

    ListNode* prev = nullptr;

    ListNode* cur = head;

    ListNode* next = nullptr;

    while (cur != nullptr) {

        next = cur->next;

        cur->next = prev;

        prev = cur;

        cur = next;

    }

    head = prev;

}
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Trees

119



Throwback 

• We’ve seen trees a ton in this class!

120
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Tree Terminology

Types of nodes

• The root node defines the "top" of the tree

• Every node has 0 or more children nodes descended from it

• Nodes with no children are called leaf nodes

• Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

• The length of a path between two nodes is the number of edges between them

• The depth of a node is the length of the path from the root to that node

• The height of a tree is the number of nodes in the longest path through the tree 

(i.e. the number of levels in the tree)
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Tree Properties

• Any node in a tree can only have one parent

122

Not trees!



Tree Properties

• Any node in a tree can only have one parent

• A tree cannot have cycles or loops

123

Not a tree!



Binary Trees

• Most common trees in CS
• We’ve seen these before, Binary Heaps!

• Every node has either 0, 1, or 2 children

• Children are referred to as left child and right child

124
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Building Binary Trees

• A binary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the right child

125

6

struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

};



Tree Traversal Recap
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Post-order Traversal - Freeing a Tree

void freeTree(TreeNode* node) {
if (node == nullptr) {

return;
}
freeTree(node->left);
freeTree(node->right);
delete node;

}
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Post-order Traversal - Freeing a Tree

void freeTree(TreeNode* node) {
if (node == nullptr) {

return;
}
freeTree(node->left);
freeTree(node->right);
delete node;

}
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Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Binary Search Trees (BSTs)
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8

124

211072

159 1161 3

This tree is balanced; we’ve got 
13 nodes in this tree, and its 

height is log213 ≈ 4.



BST Lookups
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Worst case, we have to take 
O(log n) steps in the tree to 

find an element.



BST Insertion
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8
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211072

159 1161 3

Search for where the 5 
should be…

How might we insert 5 into 
this BST?



BST Insertion
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211072

159 111 3

How might we insert 5 into 
this BST?

… and insert the 5 there

5

6



BST Deletion
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Three cases:
1. Leaf node, just delete!



BST Deletion
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159 1161

Three cases:
1. Leaf node, just delete!



BST Deletion
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Three cases:
2. One child, swap and delete.



BST Deletion
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Three cases:
2. One child, swap and delete.



BST Deletion
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Three cases:
2. One child, swap and delete.



BST Deletion
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211072

159 1161

Idea: swap 12 with its inorder 
predecessor or successor

Three cases:
3. Two children…



BST Deletion
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159 1161

Inorder predecessor: 
largest node in left subtree

Inorder successor: 
smallest node in right subtree



BST Deletion
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Three cases:
Swap with inorder 

predecessor and delete.



BST Deletion
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Three cases:
Swap with inorder 

predecessor and delete.



BST Deletion
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Three cases:
Swap with inorder 

predecessor and delete.



Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() - 

O(1)
• traversal - O(n2)
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Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Sets and Maps have 
O(log n) lookups, insertion, and 

deletion because they use BSTs behind 
the scenes to store data!



Practice Problem: Copy Tree

Given a pointer to the root of a tree, write a function that returns a 
copy of this tree by allocating new ListNodes on the heap.

ListNode* copyTree(ListNode* root) {

}
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Practice Problem: Copy Tree (Solution)

TreeNode* copyTree(TreeNode* root) {

    if (root == nullptr) return nullptr;

// pre-order traversal, not the only order that would work

    TreeNode* leftSubtree = copyTree(root->left);

    TreeNode* rightSubtree = copyTree(root->right);

    TreeNode* currentNode = new TreeNode();

    currentNode->data = root->data;

    currentNode->left = leftSubtree;

    currentNode->right = rightSubtree;

    return currentNode;

}
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Hashing

148



Binary Search Tree (and Set)

149

Operation Runtime

Contains O(log n)

Insert O(log n)

Remove O(log n)

8

12

10

4

2 7 15

Motivating question:
CAN WE DO BETTER?



Hash Functions

• A hash function is a function that assigns elements to buckets

150

Hash Function15 Bucket 7!



Good Hash Functions

• A good hash function distributes elements evenly across buckets
• This way, no bucket contains too many elements

• Similar inputs will not necessarily have similar hash codes

151

Hash Function

😇
“starling” Bucket 3!

“staring” Bucket 193252!



Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

152
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

153
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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Hash 
Function

Add 51
51 Bucket 2!
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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Hash 
Function
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

156
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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Hash 
Function

Add 14

0 1 2 3 4 5 6 751

14 Bucket 1!



Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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Hash 
Function

Add 14

0 1 2 3 4 5 6 751

14 Bucket 1!

14
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

160
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Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

161

0 1 2 3 4 5 6 7

Hash 
Function

22 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

12

1928

If we’ve got a good hash function, and 
we’ve hashed n elements into b buckets, 

what’s our average bucket size?



Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for 

contains and remove… is this better than O(n)?
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Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for 

contains and remove… is this better than O(n)?
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Big idea: if we choose b (# of buckets) to be a 
number close to n, then n/b will be constant.



Hashing Walkthrough

Let’s walk through the operations of a Chaining Hash Table. This works 

much like a Chaining Hash Set, but we’ll allow duplicates.

We’ll begin with 4 buckets. We’ll keep a load factor (n/b) of ¾ or less. 

This means that our ratio of elements to buckets cannot exceed ¾.
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

165
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numElements = 0
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 0
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(3 - 1) % 4 = 2



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 1
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(3 - 1) % 4 = 2

3



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 1
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(2 - 1) % 4 = 1

3



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 2
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(2 - 1) % 4 = 1

32



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 2
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(1 - 1) % 4 = 0

32



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 3
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(1 - 1) % 4 = 0

321



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 3
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

321



Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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0 1 2 3

numElements = 4
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

174

0 1 2 3

numElements = 4
numBuckets = 4

Add 3
Add 2
Add 1
Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Our load factor, ¾, has been exceeded! To 
reduce it, we double the number of buckets.



0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Our load factor, ¾, has been exceeded! To 
reduce it, we double the number of buckets.



0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0

325

1

Now, we must rehash our elements, since our 
numBuckets has changed. 
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 4 = 0
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0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 8 = 4

325

1



0 1 2 3 4 5 6 7

Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(5 - 1) % 8 = 4
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(1 - 1) % 8 = 0

32 51
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(2 - 1) % 8 = 1

32 51
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets

182

numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

(3 - 1) % 8 = 2
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

32 51
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 3
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 3
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(1 - 1) % 8 = 0
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(1 - 1) % 8 = 0
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 4
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(-4 - 1) % 8 = 3

1
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Hashing Walkthrough

hash(elem):

(elem - 1) % numBuckets
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numElements = 5
numBuckets = 8

Add 5
Remove 2
Add 1
Add -4

3 51

(-4 - 1) % 8 = 3

1

-4



Practice Problem: Multiple Choice

Q1. What happens to our load factor when we increase the number of 

buckets in our hash table?
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Practice Problem: Multiple Choice (Solutions)

Q1. The load factor is n/b (# elems / # buckets), so increasing b will 

make the load factor smaller. More intuitively, spreading the elements 

across more buckets means there will be fewer elements in each 

bucket.
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Practice Problem: Multiple Choice

Q2. Let’s say we have a hash function hash that we’re using to determine which bucket to place strings into:

bucket = hash(input);

Suppose we compute the following three hash values:

A = hash(“desert”);

B = hash(“dessert”);

C = hash(“brownie”);

Which of the following are guaranteed to be true about these values (select all that apply):

1. The values A and B will be closer together than A and C since “desert” and “dessert” are more similar.

2. The values B and C will be closer together than A and C since “dessert” and “brownie” are the same length.

3. The values A, B, and C are not equal.

4. None of the above.
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Practice Problem: Multiple Choice (Solutions)

Q2. 4. Without knowing anything about our hash function, we have no 

guarantees on how the input string will be related to its output hash 

value - this is a property of good hash functions! Although good hash 

functions will spread elements evenly between buckets, we also aren’t 

guaranteed that two (or even three) different elements won’t hash to 

the same bucket.
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Graphs
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Graph Terminology

A graph consists of      

a set of nodes 

connected by edges.
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graph
a structured way to represent

relationships between different 
entities



Linked Data Structures

• We've already seen nodes connected by edges before when 

discussing linked lists and trees

• What differentiates these linked data structures?
• Linked lists: Linear structure, each node connected to at most one other 

node

• Trees: Nodes can connect to multiple other nodes, no cycles, parent/child 

relationship and a single, special root node.

• Graphs: No restrictions. It's the wild, wild west of the node-based world!
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Wild World of Graphs

• Can have cycles

• No notion of a parent-child 

relationship between nodes

• No root node

• Most powerful, flexible, and 

expressive abstraction that we can 

use to model relationships between 

different distributed entities
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Approach 1: Adjacency List

• We can represent a graph as a map 

from nodes to the collection of 

nodes that each node is adjacent to.
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Approach 2: Adjacency Matrix

• We can also use a two-dimensional 

matrix to represent the relationships 

in a graph.
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DFS Algorithm
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BFS Algorithm
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BFS vs DFS

• Running BFS or DFS from a node in a graph will visit the same set of 

nodes, but probably in a different order

• BFS will visit nodes in increasing order of distance
• Will give you the shortest path

• DFS does visit nodes in some interesting order, but not order of 

distance
• Take CS161 for more info
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Shortest Weighted Path
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from A to B?



Shortest Weighted Path

What is the shortest weighted path         

from A to B?

• BFS doesn’t work here
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Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a 

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of 
electricity lines and oil pipelines, network routing protocols

204



Dijkstra's Algorithm
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Algorithm:

1. Of the unseen nodes, find the node that 
currently has the shortest distance from the 
start

2. Look at this node's neighbors, and update the 
total distance to the neighbors based on their 
distance and the distance already to this node.

3. If the node visited is the destination, stop
4. Repeat from step 1



A* Algorithm

• Finds the shortest weighted path from one node to another

• Uses external information about the graph

• Heuristic: estimates the cost of the cheapest path to the goal
• Should always underestimate the distance to the goal, because if it 

overestimates, it could find a non-optimal solution

• If the distance to the destination is closer, weight the nodes in that 

direction to be preferable
• priority(u) = weight(s, u) + heuristic(u, d)
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Recap

• Graphs are a linked data structure with almost no rules
• Represent in code with either an adjacency list or matrix

• Depth-First Search: does not always return the shortest path, though it 
may be faster in some cases

• Breadth-First Search: returns the shortest path, but it only works on 
unweighted graphs

• Dijkstra’s Algorithm: returns the shortest weighted path, but not 
necessarily the most efficient

• A* Algorithm: returns the shortest weighted path using heuristics, and 
is often thought of as gold standard
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Good luck on the final!
You’re almost done with CS106B!!
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