
Virtual Memory
Yasmine Alonso & Poojan Pandya

August 14, 2023

Inspired by slides from Winter ‘23 offering of CS111

Announcements

● Final Exam on 8/18 - see all logistics and practice materials here

● No late days on Assignment 6 beyond the grace period
○ Hard deadline Thursday 8/17 at 11:59pm

● Retroactive citations due 8/18 at 11:59pm
○ See our honor code policy and the citation handout

○ Reach out to Amrita and Elyse with any questions, or ask your SL

● Fill out End of Quarter Survey by 5pm for a participation bonus!
○ Let us know what to focus on in the review session tomorrow

● Amrita’s OH: Wednesday hosted by SLs, Friday canceled

2

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/honor_code
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/citation
https://forms.gle/pBwBdioERF7jZEWy9

Relevant prior information – OS

3

Relevant prior information – OS

● What is an Operating System (OS)?

4

Relevant prior information – OS

● What is an Operating System (OS)?
○ Super great software that allows everything we do on the computer to

communicate with the actual hardware!

5

Relevant prior information – OS

● What is an Operating System (OS)?
○ Super great software that allows everything we do on the computer to

communicate with the actual hardware!

○ Supports the basic functions of a computer
■ Scheduling which processes get to run when

■ Manages memory – which program gets memory where?

6

Relevant prior information – OS

● What is an Operating System (OS)?
○ Super great software that allows everything we do on the computer to

communicate with the actual hardware!

○ Supports the basic functions of a computer
■ Scheduling which processes get to run when

■ Manages memory – which program gets memory where?

○ Apple macOS, Linux OS, Microsoft Windows, Apple iOS, Android OS…

and more!

7

Relevant prior information – OS

● What is an Operating System (OS)?
○ Super great software that allows everything we do on the computer to

communicate with the actual hardware!

○ Supports the basic functions of a computer
■ Scheduling which processes get to run when

■ Manages memory – which program gets memory where?

○ Apple macOS, Linux OS, Microsoft Windows, Apple iOS, Android OS…

and more!

● Want to learn more about operating systems? Take CS111!

8

Relevant prior information – Process

9

Relevant prior information – Process

● What is a process?
○ An instance of a program running on your computer!

■ Running your CS106B Recursion Adventures assignment
■ Application processes: processes related to stuff you currently have open

● Chrome browser
● Spotify
● Microsoft PowerPoint

■ Stuff going on in the background
● Anti-virus software
● OS processes – stuff the OS has to run to manage everything properly

● Activity Monitor on Mac
● ‘Ctrl’ + ‘Shift’ + ‘Esc’ and select Task Manager on Windows

10

Relevant prior information – Process

● What is a process?
○ An instance of a program running on your computer!

■ Running your CS106B Recursion Adventures assignment
■ Application processes: processes related to stuff you currently have open

● Chrome browser
● Spotify
● Microsoft PowerPoint

■ Stuff going on in the background
● Anti-virus software
● OS processes – stuff the OS has to run to manage everything properly

● Activity Monitor on Mac
● ‘Ctrl’ + ‘Shift’ + ‘Esc’ and select Task Manager on Windows

11

Relevant prior information – Process

● What is a process?
○ An instance of a program running on your computer!

■ Running your CS106B Recursion Adventures assignment
■ Application processes: processes related to stuff you currently have open

● Chrome browser
● Spotify
● Microsoft PowerPoint

■ Stuff going on in the background
● Anti-virus software
● OS processes – stuff the OS has to run to manage everything properly

● Activity Monitor on Mac
● ‘Ctrl’ + ‘Shift’ + ‘Esc’ and select Task Manager on Windows

12

Relevant prior information – Process

● What is a process?
○ An instance of a program running on your computer!

■ Running your CS106B Recursion Adventures assignment
■ Application processes: processes related to stuff you currently have open

● Chrome browser
● Spotify
● Microsoft PowerPoint

■ Stuff going on in the background
● Anti-virus software
● OS processes – stuff the OS has to run to manage everything properly

● Activity Monitor on Mac
● ‘Ctrl’ + ‘Shift’ + ‘Esc’ and select Task Manager on Windows

13

Relevant prior information – Disk

● What is the disk on your computer?
○ Another place where we can store data

14

Relevant prior information – Disk

● What is the disk on your computer?
○ Another place where we can store data

15

Memory (RAM) Disk

Relevant prior information – Disk

● What is the disk on your computer?
○ Another place where we can store data

16

Memory (RAM) Disk

Fast to access, but less space (my laptop
has 16 GB RAM)

Slower to access, but more space (my
laptop has 995 GB of disk space)

Relevant prior information – Disk

● What is the disk on your computer?
○ Another place where we can store data

17

Memory (RAM) Disk

Fast to access, but less space (my laptop
has 16 GB RAM)

Slower to access, but more space (my
laptop has 995 GB of disk space)

“Volatile memory” – lose access to
whatever’s stored here upon power off

“Non-volatile memory” – data persists even
upon power off

Relevant prior information – Disk

● What is the disk on your computer?
○ Another place where we can store data

18

Memory (RAM) Disk

Fast to access, but less space (my laptop
has 16 GB RAM)

Slower to access, but more space (my
laptop has 995 GB of disk space)

“Volatile memory” – lose access to
whatever’s stored here upon power off

“Non-volatile memory” – data persists even
upon power off

More expensive Less expensive

How can multiple processes share RAM?

● When you run your program, it’s not the only process running on

your computer
○ Web browser, Slack, QT Creator, Etc.

● What would happen if all processes had access to the same chunk

of memory?

19

How can multiple processes share RAM?

● When you run your program, it’s not the only process running on

your computer
○ Web browser, Slack, QT Creator, Etc.

● What would happen if all processes had access to the same chunk

of memory?
○ Can overwrite any memory

○ Can’t isolate processes

20

Goals of OS Memory Management

● Multitasking
○ Allow multiple processes to be memory-resident at once

21

Goals of OS Memory Management

● Multitasking
○ Allow multiple processes to be memory-resident at once

● Transparency
○ No process should need to know memory is shared. Each must run

regardless of the number and/or locations of processes in memory

22

Goals of OS Memory Management

● Multitasking
○ Allow multiple processes to be memory-resident at once

● Transparency
○ No process should need to know memory is shared. Each must run

regardless of the number and/or locations of processes in memory

● Isolation
○ Processes must not be able to corrupt each other

23

Goals of OS Memory Management

● Multitasking
○ Allow multiple processes to be memory-resident at once

● Transparency
○ No process should need to know memory is shared. Each must run

regardless of the number and/or locations of processes in memory

● Isolation
○ Processes must not be able to corrupt each other

● Efficiency
○ Shouldn’t be degraded badly by sharing

24

Load-Time Relocation

25

Load-Time Relocation

● Idea: When it’s time for a process to run, give it a set chunk of

space in memory
○ ALL MEMORY belonging to that process goes there – stack, heap, etc.

26

Load-Time Relocation

● Idea: When it’s time for a process to run, give it a set chunk of

space in memory
○ ALL MEMORY belonging to that process goes there – stack, heap, etc.

● Interesting fact – when a program is compiled, it is compiled

assuming its memory starts at address 0
○ Must update the process’ addresses when we load it to match its real

starting address (i.e. shift addresses by some constant factor)

27

Load-Time Relocation

● Idea: When it’s time for a process to run, give it a set chunk of

space in memory
○ ALL MEMORY belonging to that process goes there – stack, heap, etc.

● Interesting fact – when a program is compiled, it is compiled

assuming its memory starts at address 0
○ Must update the process’ addresses when we load it to match its real

starting address (i.e. shift addresses by some constant factor)

● Use first-fit or best-fit allocation to manage available memory

28

Load-Time Relocation

29

Load-Time Relocation

30

Physical: 0x500
Virtual: 0x0

Physical: 0x703
Virtual: 0x203

Load-Time Relocation

31

Physical: 0x500
Virtual: 0x0

Physical: 0x703
Virtual: 0x203+ 0x203

Load-Time Relocation

32

Physical: 0x500
Virtual: 0x0

Physical: 0x703
Virtual: 0x203

+ 0x203
+ 0x203

Issues with Load-Time Relocation

33

Issues with Load-Time Relocation

● No isolation: one process could invade another

process’ space (or the OS’s – this is very bad!)

34

Issues with Load-Time Relocation

● No isolation: one process could invade another

process’ space (or the OS’s – this is very bad!)

● Need to decide how much memory space a

process deserves ahead of time (predict the

future!)

35

Issues with Load-Time Relocation

● No isolation: one process could invade another

process’ space (or the OS’s – this is very bad!)

● Need to decide how much memory space a

process deserves ahead of time (predict the

future!)

● Potential fragmentation

36

Issues with Load-Time Relocation

● No isolation: one process could invade another

process’ space (or the OS’s – this is very bad!)

● Need to decide how much memory space a

process deserves ahead of time (predict the

future!)

● Potential fragmentation

● Can’t grow regions if adjacent chunk of space

is in use

● And many more…

37

Aside: Fragmentation

● A problem that can occur with chunks

of memory

38
200 M

B
300 M

B
70 M

B
350 M

B

100 MB

40 MB

Aside: Fragmentation

● A problem that can occur with chunks

of memory

● Example: what if we wanted to

introduce process 7, and give it 130 MB

of space?

39
200 M

B
300 M

B
70 M

B
350 M

B

100 MB

40 MB

Aside: Fragmentation

● A problem that can occur with chunks

of memory

● Example: what if we wanted to

introduce process 7, and give it 130 MB

of space?
○ There isn’t one contiguous chunk of

space with enough room! :(

40
200 M

B
300 M

B
70 M

B
350 M

B

100 MB

40 MB

Virtual Memory: a crazy idea!

● What if the operating system intercepted every memory reference

and mapped it to a different place?
○ Spoiler: this is what actually happens

41

Virtual Memory: a crazy idea!

● What if the operating system intercepted every memory reference

and mapped it to a different place?
○ Spoiler: this is what actually happens

● Wouldn’t that be really expensive?

42

Virtual Memory: a crazy idea!

● What if the operating system intercepted every memory reference

and mapped it to a different place?
○ Spoiler: this is what actually happens

● Wouldn’t that be really expensive?
○ Yes, and that’s why computers have a dedicated piece of hardware called

the Memory Management Unit (MMU) to do memory address

translation

43

So all of our memory address are fake?

Yeah…

44

How can we make every process think it has
access to all of memory?
Idea 1: Base & Bound

● Each process has a base memory address and a maximum memory

address

45

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What happens when QT creator accesses memory address 0x0?

46

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What happens when QT creator accesses memory address 0x0?

● Translate to physical address 0x100

47

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What happens when QT creator accesses memory address 0x0?

● Translate to physical address 0x100

What happens when Chrome accesses memory address 0x400?

48

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What happens when QT creator accesses memory address 0x0?

● Translate to physical address 0x100

What happens when Chrome accesses memory address 0x400?

● Translate to physical address 0x700

● Error because it’s out of bounds!

49

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What happens when QT creator accesses memory address 0x0?

● Translate to physical address 0x100

What happens when Chrome accesses memory address 0x400?

● Translate to physical address 0x700

● Error because it’s out of bounds!

What happens when Spotify wants more space?

50

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What happens when QT creator accesses memory address 0x0?

● Translate to physical address 0x100

What happens when Chrome accesses memory address 0x400?

● Translate to physical address 0x700

● Error because it’s out of bounds!

What happens when Spotify wants more space?

● Increase the bound!

51

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What are the benefits of this approach?

52

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What are the benefits of this approach?

● Inexpensive translation – just doing addition

● Doesn’t require much additional space – just base + bound

● The separation between virtual and physical addresses means we

can move the physical memory location and simply update the

base, or we could even swap memory to disk and copy it back later

when it’s actually needed

53

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What are the drawbacks of this approach?

54

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

What are the drawbacks of this approach?

● One contiguous region per program

● Fragmentation

● Growing can only happen upwards with the bound

55

Base: 0x100
Bound: 0x200

Base: 0x300
Bound: 0x600

Base: 0x700
Bound: 0x900

Can we do better?

56

Yes!! Although you probably
guessed that…

57

Paging

● Key idea: Each process’s virtual (and physical) memory is divided

into fixed-size chunks called pages (common size is 4KB pages)

58

Paging

● Key idea: Each process’s virtual (and physical) memory is divided

into fixed-size chunks called pages (common size is 4KB pages)

● A “page” of virtual memory maps to a “page” of physical memory

59

Paging

● Key idea: Each process’s virtual (and physical) memory is divided

into fixed-size chunks called pages (common size is 4KB pages)

● A “page” of virtual memory maps to a “page” of physical memory

● The page number is an ID # for a page. We have virtual page

numbers and physical page numbers

60

Paging

● Key idea: Each process’s virtual (and physical) memory is divided

into fixed-size chunks called pages (common size is 4KB pages)

● A “page” of virtual memory maps to a “page” of physical memory

● The page number is an ID # for a page. We have virtual page

numbers and physical page numbers
○ Virtual page number 45 does not correspond necessarily to physical page

45 → page map to keep track of v-page to p-page mappings!!

61

Paging

● Key idea: Each process’s virtual (and physical) memory is divided

into fixed-size chunks called pages (common size is 4KB pages)

● A “page” of virtual memory maps to a “page” of physical memory

● The page number is an ID # for a page. We have virtual page

numbers and physical page numbers
○ Virtual page number 45 does not correspond necessarily to physical page

45 → page map to keep track of v-page to p-page mappings!!

● OS keeps track of which pages are in use by a process, and which

are available to give out

62

63

The page map
keeps track of

all these
mappings!

(Blue arrows)

64

The page map
keeps track of

all these
mappings!

(Blue arrows)

Page Map

● The page map maps virtual pages to physical pages

65

Page Map

● The page map maps virtual pages to physical pages
○ Can use this to translate virtual addresses to physical ones – you’ll see in

a sec!

66

Page Map

● The page map maps virtual pages to physical pages
○ Can use this to translate virtual addresses to physical ones – you’ll see in

a sec!

● You can think of this map the same way you think of the Stanford

Library Map you’ve used all quarter long!

67

68

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

69

Virtual Page # Offset

Virtual Address

12 bits

Physical Page # Offset

Physical Address

12 bits

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

70

Virtual Page # Offset

Virtual Address

12 bits

Physical Page # Offset

Physical Address

12 bits

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

Our pages are 4KB (4096 bytes). Offsets will therefore be 0 to
4095 byte offsets. We don’t need to get into the nitty-gritty of
hexadecimal, but just know that the offset only needs to be 12

bits to store numbers in that range.

71

Virtual Page # Offset

Virtual Address

12 bits

Physical Page # Offset

Physical Address

12 bits

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

72

0x2 0x238

Virtual Address

12 bits

??? ???

Physical Address

12 bitsVirtual Page # Physical Page #

0x2238

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

73

0x2 0x238

Virtual Address

12 bits

??? ???

Physical Address

12 bitsVirtual Page # Physical Page #

0x2238

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

74

0x2 0x238

Virtual Address

12 bits

0x905 ???

Physical Address

12 bitsVirtual Page # Physical Page #

0x2238

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

75

0x2 0x238

Virtual Address

12 bits

0x905 0x238

Physical Address

12 bitsVirtual Page # Physical Page #

0x2238

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

76

0x2 0x238

Virtual Address

12 bits

0x905 0x238

Physical Address

12 bitsVirtual Page # Physical Page #

0x2238 0x905238

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

You try it!

77

0x3 0x123

Virtual Address

12 bits

??? ???

Physical Address

12 bitsVirtual Page # Physical Page #

0x3123 0x???????

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

You try it!

78

0x3 0x123

Virtual Address

12 bits

??? ???

Physical Address

12 bitsVirtual Page # Physical Page #

0x3123 0x???????

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

You try it!

79

0x3 0x123

Virtual Address

12 bits

1231 ???

Physical Address

12 bitsVirtual Page # Physical Page #

0x3123 0x???????

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

You try it!

80

0x3 0x123

Virtual Address

12 bits

1231 123

Physical Address

12 bitsVirtual Page # Physical Page #

0x3123 0x1231123

Virtual Page Number Physical Page Number

… …

0x3 0x1231

0x2 0x905

0x1 0x1212

0x0 0x703

What if there’s no physical memory left?

81

0

What if there’s no physical memory left?

• Choose a page to swap out
• How do we choose this page? Ask us after

class/take CS111!

82

0

Bye!

What if there’s no physical memory left?

• Choose a page to swap out
• How do we choose this page? Ask us after

class/take CS111!

• Write this page to disk (to store it for the

time being)

83

0

What if there’s no physical memory left?

• Choose a page to swap out
• How do we choose this page? Ask us after

class/take CS111!

• Write this page to disk (to store it for the

time being)

• Mark that old page map entry as not

present

84

0

Aside: the “other info” in the page map

85

Virtual Page Number Physical Page Number Present in RAM?

… … …

0x3 0x1231 True

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

This column holds
the information as
to whether or not

that page
information is

currently in
memory–true if it

is, false if it’s
currently on disk.

Aside: the “other info” in the page map

86

Virtual Page Number Physical Page Number Present in RAM?

… … …

0x3 0x1231 True

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

This column holds
the information as
to whether or not

that page
information is

currently in
memory–true if it

is, false if it’s
currently on disk.

When we swap a page to disk, say
that blue one we just kicked off,

we’d change the Present in RAM?
bool for that entry to be false.

Aside: the “other info” in the page map

87

Virtual Page Number Physical Page Number Present in RAM?

… … …

0x3 0x1231 True

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

This column holds
the information as
to whether or not

that page
information is

currently in
memory–true if it

is, false if it’s
currently on disk.

When we swap a page to disk, say
that blue one we just kicked off,

we’d change the Present in RAM?
bool for that entry to be false.

Aside: the “other info” in the page map

88

Virtual Page Number Physical Page Number Present in RAM?

… … …

0x3 0x1231 False

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

This column holds
the information as
to whether or not

that page
information is

currently in
memory–true if it

is, false if it’s
currently on disk.

When we swap a page to disk, say
that blue one we just kicked off,

we’d change the Present in RAM?
bool for that entry to be false.

What if there’s no physical memory left?

• Choose a page to swap out
• How do we choose this page? Ask us after

class/take CS111!

• Write this page to disk (to store it for the

time being)

• Mark that old page map entry as not

present

89

0

What if there’s no physical memory left?

• Choose a page to swap out
• How do we choose this page? Ask us after

class/take CS111!

• Write this page to disk (to store it for the

time being)

• Mark that old page map entry as not

present

• Update the new page map entry to map

to this physical page, and to be present!

90

0

Update page map for new page!

91

Virtual Page Number Physical Page Number Present in RAM?

0x4 0x1231 True

0x3 0x1231 False

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

This is the page we
just kicked off.

This is the new
orange page!

Update page map for new page!

92

Virtual Page Number Physical Page Number Present in RAM?

0x4 0x1231 True

0x3 0x1231 False

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

This is the page we
just kicked off.

This is the new
orange page!

Note: the physical page number is the same!
This makes sense–only one of them is

present at a time, so it’s okay that that they
share the same physical address.

What if there’s no physical memory left?

• Choose a page to swap out
• How do we choose this page? Ask us after

class/take CS111!

• Write this page to disk (to store it for the

time being)

• Mark that old page map entry as not

present

• Update the new page map entry to map

to this physical page, and to be present!

93

0 ✅

What happens when we access a page that
has been kicked out?

94

Virtual
Page

Number

Physical
Page

Number

Present
in RAM?

… … …

0x3 0x1231 True

0x2 0x905 False

0x1 0x1212 True

0x0 0x703 True

Let’s saw we want to access virtual page 0x2

● See that the page map entry is not present

● Check “disk swap” region for the page
○ If it’s not there, throw an error

● Once we find it, swap this page back into

memory and kick out something else

Swap Demo

95

Recap

● Introduction to the Operating System

● Why do we need virtual memory?
○ Need to isolate processes!

● How can we implement virtual memory?
○ Base & Bound

○ Paging

● What happens when we run out of space in memory?
○ Swap to disk!

96

Final Review Session tomorrow!
Remember to fill out this form to let us know which topics to focus on

97

https://forms.gle/pBwBdioERF7jZEWy9

