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Announcements

Assignment 6 (last assignment!) has been released

* No late days beyond the grace period (next Thursday 11:59pm)
* YEAH hours on Canvas

Assignment Retroactive Citation Form will be released tomorrow
* Due by Friday, August 18th at 11:59pm
No attendance tickets next week
Slightly personal note: My last lecture for the quarter and last lecture
at Stanford (ever?), so let’s have fun!
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Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

Building Abstractions

Memory
Management

Linked
Data
Structures

Recursion
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Graphs
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A Social Network

facebook
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Molecules
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Interstate Highway System
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Flowcharts

Start

l

Look for
lost item

l Yes
|

Did you
find it?

Yes No
¢ |

Stop looking

Do you

—No— need it?
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The Internet (1971)
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The Internet (2023)
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What is a graph?

/

o

graph

a structured way to represent
relationships between different entities

/
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Graph Terminology graph

a structured way to represent
relationships between different
entities

A graph consists of
a set of nodes

connected by edges.
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Graph Terminology
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graph
a structured way to represent
relationships between different
entities

@

Nodes

A graph consists of
a set of nodes
connected by edges.
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Graph Terminology graph

a structured way to represent
relationships between
different entities

\\ A graph consists of
\ grap

- Edges |— a set of nodes

\/ l connected by edges.
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Types of Graphs

* Directed: unidirectional relationships between nodes

* Represented by a pointed arrow
* An action/verb that implies only one direction
 Ex: | follow Dwayne "The Rock" Johnson on Instagram, but he doesn't

follow me back

4>

/
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Types of Graphs

* Directed: unidirectional relationships between nodes

* Represented by a pointed arrow
* An action/verb that implies only one direction
 Ex: | follow Dwayne "The Rock" Johnson on Instagram, but he doesn't

follow me back

NS
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Types of Graphs

* Undirected: bidirectional relationships between nodes

* Represented with an arrow-less line
* An action/verb that inherently applies to both entities
 Ex: | am related to my sister and she is related to me

AN
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Types of Graphs

* Weighted: not all relationships between entities are equal
e Each edge is assigned a numerical "weight" representing its relative
significance/strength.
* Ex: Different airports are different distances from each other

Stanford University
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Types of Graphs

* Unweighted: all relationships between entities are equal

* Each edge has equal significance and no label
* Ex: All connected words in a word ladder are one letter apart

Stanford University




Social Network

Nodes: ?
Edges: ?
Directed or undirected?

Weighted or unweighted?

facebook

20
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Social Network

Nodes: People
Edges: Friendships/Following

Directed (Instagram) or
undirected (Facebook)

Unweighted

facebook

21
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Molecules

Nodes: ?
Edges: ?
Directed or undirected?

Weighted or unweighted?

22
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Molecules

Nodes: Atoms
Edges: Bonds
Undirected

Weighted
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Interstate Highway System

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?
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Interstate Highway System

Nodes: Cities

Edges: Roads

Undirected

Weighted
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Internet

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

26
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Internet

Nodes: Devices (phones,
computers, etc)

Edges: Connection Pathways
(Bluetooth, Wifi, Ethernet, cables)

Undirected

Unweighted

27
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Linked Data Structures

 We've already seen nodes connected by edges before when

discussing linked lists and trees
 What differentiates these linked data structures?
* Linked lists: Linear structure, each node connected to at most one other

node
* Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.
* Graphs: No restrictions. It's the wild, wild west of the node-based world!

Stanford University
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Wild World of Graphs

* (Can have cycles

Stanford University
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Wild World of Graphs

* (Can have cycles
* No notion of a parent-child

relationship between nodes

Stanford University




Wild World of Graphs

* (Can have cycles

* No notion of a parent-child
relationship between nodes

* No root node

31
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Wild World of Graphs

* (Can have cycles
* No notion of a parent-child

relationship between nodes
* No root node
* Most powerful, flexible, and

expressive abstraction that we can
use to model relationships between
different distributed entities

Stanford University
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Representing Graphs
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Map< , Setk >>

Approach 1: Adjacency List

Set« >>

Node |Adjacent to

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Stanford University




Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.
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Map< s, Setk >>
Set« >>
Node |Adjacent to

O

o0
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Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

36

Map< , Setk >>
Set« >>
Node |Adjacent to

@
O

0@

277
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Map< , Setk >>

Approach 1: Adjacency List

Set« >>

Node |Adjacent to

* We can represent a graph as a map

from nodes to the collection of Q Q Q

nodes that each node is adjacent to.
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Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

38

Map< , Setk >>
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Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Node>>
e Map<Node, Vector<Node>>
e Vector<Vector<Node>>

Stanford University
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Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Node>>
e Map<Node, Vector<Node>>
e Vector<Vector<Node>>

 The core idea is that we have some kind of mapping associating
each node with its outgoing edges (or neighboring nodes)

Stanford University
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Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Node>>
e Map<Node, Vector<Node>>
e Vector<Vector<Node>>

 The core idea is that we have some kind of mapping associating
each node with its outgoing edges (or neighboring nodes)
* How might you incorporate weights?

Stanford University
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Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Edge>>
e Map<Node, Vector<Edge>>
e Vector<Vector<Edge>>

 The core idea is that we have some kind of mapping associating
each node with its outgoing edges (or neighboring nodes)

* How might you incorporate weights?
* Create an Edge struct that holds both a Node and a weight!

Stanford University
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

00000
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

o

00000

00000
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

o

00000

1

00000
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

1

00000
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

1

00000
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

90000

00000

1 1
1 1 1
1 1
- 1 1 -
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

90000

00000

1 1
1 1

1
1

49
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Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

00000

1 1
1 1 1
%) 1 1

- 1 1 -
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Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of Os
* Otherwise, storing a mostly-Os matrix is not space efficient

Stanford University
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Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.
there aren’t a lot of Os

* Otherwise, storing a mostly-Os matrix is not space efficient
e Other benefits:

e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis

Stanford University
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Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.
there aren’t a lot of Os
* Otherwise, storing a mostly-Os matrix is not space efficient
e Other benefits:

e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis

* How might you incorporate weights?
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Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.
there aren’t a lot of Os
* Otherwise, storing a mostly-0Os matrix is not space efficient
e Other benefits:

e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis
* How might you incorporate weights?
e Store other numbers besides 1 in the matrix

Stanford University
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Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of Os
* Otherwise, storing a mostly-0Os matrix is not space efficient

* Other benefits:
e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis
* Storing weights is more straightforward than in the adjacency list
* How might you incorporate weights?
* Store other numbers besides 1 in the matrix

Stanford University
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Graph Algorithms
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Motivation

0 San Jose, California

Drag to reorder
v >an rrancisco, California

@ Add destination

Leave now ~

OPTIONS

A Public transport services may be impacted due

to COVID-19.
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—B Send directions to your phone

(=] viaUS-101 N 54 min
Fastest route, the usual traffic 48.4 miles
DETAILS
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Depth-First Search
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Depth-First Search

Use DFS to find a path
between Fand G

Stanford Universit
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Depth-First Search

TO START:
1. Mark all nodes as unvisited

Stanford Universit
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Depth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited

Stanford Universit
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Depth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited
2. Make an empty stack

Stanford Universit
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Depth-First Search

TO START:
1. Mark all nodes as unvisited
O Q Q 2. Make an empty stack

OG0 ©
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Depth-First Search

W @
® o W
O ©

OG0 ©

64

TO START:
1. Mark all nodes as unvisited
2. Make an empty stack
3. Push the desired start node

and mark it as visited
r “

®.
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Depth-First Search

W O @

65

LOOP PROCEDURE:

O © '

OG0 ©

\

1. Pop anode
@ Q Q 2. For each adjacent node, if
that node has never been
pushed, then push
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search

OOE
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Depth-First Search
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Depth-First Search
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Depth-First Search

OOE
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Depth-First Search

OOE

Stanford Universit



Depth-First Search

OOE

Stanford Universit



Depth-First Search
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DFS Algorithm

dfs-from(node v) {
make a stack of nodes, initially seeded with v.

while the stack isn't empty:
pop a node curr.
process the node curr.

for each node adjacent to curr:
if that node has never been pushed:
push that node.

Stanford University
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Breadth-First Search

Stanford University




Breadth-First Search

Use BFS to find the
shortest path between
Fand G

Stanford Universit
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Breadth-First Search

TO START:
1. Mark all nodes as unvisited

Stanford Universit
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Breadth-First Search
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OG0 ©
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TO START:
1. Mark all nodes as unvisited
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Breadth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited
2. Make an empty queue

Stanford Universit
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Breadth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited
2. Make an empty queue

Stanford Universit
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Breadth-First Search

TO START:
1. Mark all nodes as unvisited
@ Q O 2. Make an empty queue

3. Enqueue the desired start
node and mark it as visited

O © @® \

Stanford University
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Breadth-First Search

LOOP PROCEDURE:
1. Dequeue a node
@ Q Q 2. For each adjacent node, if

that node has never been
enqueued, then enqueue

O © { \

OG0 ©
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Breadth-First Search

® O
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search

O {0006

S e
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Breadth-First Search




Breadth-First Search

BEROR0CIO

5 e

0
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Breadth-First Search

O {000

5 e

0
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Breadth-First Search

BIRORGI00

5 e

0
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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BFS Algorithm

bfs-from(node v) {
make a queue of nodes, initially seeded with v.

while the queue isn't empty:
dequeue a node curr.
process the node curr.

for each node adjacent to curr:
if that node has never been enqueued:
enqueue that node.

Stanford University
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BFS vs DFS

* Running BFS or DFS from a node in a graph will visit the same set of
nodes, but probably in a different order

e BFS will visit nodes in increasing order of distance
* Will give you the shortest path
* DFS does visit nodes in some interesting order, but not order of

distance
e Take CS161 for more info

Stanford University
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Shortest Path

What is the shortest path from A to B?

>

©
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Shortest Path

What is the shortest path from A to B?
* Use BFS!

Stanford University
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Shortest Weighted Path

What is the shortest weighted path

from A to B? C\ 12949
A

10 2

A\

©
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Shortest Weighted Path

What is the shortest weighted path

from A to B? 12949
e BFS doesn’t work here

C“

Stanford University
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Dijkstra's Algorithm

Stanford University




Dijkstra's Algorithm

* Finds the shortest weighted path from one node to another

Stanford University




Dijkstra's Algorithm

* Finds the shortest weighted path from one node to another
* Greedy algorithm

Prioritizes finding a solution by what is "best right now"

Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation

Ex: Change We Can Believe In (Section 4, Problem 2)

112
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Dijkstra's Algorithm

* Finds the shortest weighted path from one node to another

* Greedy algorithm
* Prioritizes finding a solution by what is "best right now"
* Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation
* Ex: Change We Can Believe In (Section 4, Problem 2)
* Many different ways to model this
e Can use a priority queue, where weights become priorities
* (Can use a table of nodes

Stanford University




Dijkstra's Algorithm

Finds the shortest weighted path from one node to another

Greedy algorithm
* Prioritizes finding a solution by what is "best right now"
* Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation
* Ex: Change We Can Believe In (Section 4, Problem 2)
Many different ways to model this
e Can use a priority queue, where weights become priorities
* (Can use a table of nodes
Real world uses: shortest paths on maps (Ethiopia), tracks of

electricity lines and oil pipelines, network routing protocols

114
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Dijkstra's Algorithm

Algorithm:

1.

B

Of the unseen nodes, find the node that
currently has the shortest distance from the
start

Look at this node's neighbors, and update the
total distance to the neighbors based on their

distance and the distance already to this node.

If the node visited is the destination, stop
Repeat from step 1

115
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Dijkstra's Algorithm

S) A B C D E F G SF

Distance
from start

Previous

Seen?
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Dijkstra's Algorithm

SJ A B C D E F G SF
Distance
from start o o 0 o * 0 o °°
Previous
Seen?

Stanford University




118

Dijkstra's Algorithm

SJ A B C D E F G SF
Distance
from start o o 0 o * 0 o °°
Previous -
Seen?
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Dijkstra's Algorithm

S) A B C D E F G SF

Distance
from start

Previous

Seen? N N N N N N N N N
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous

Seen? N N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

Stanford University
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous

Seen? N N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the
distance already to this node

Stanford University
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the
distance already to this node

Stanford University




124

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 0 5

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 °0 ) 00 0 0
Previous _ S SJ

Seen? N N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

125
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 °0 ) 00 0 0
Previous _ S SJ

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

126

Stanford University



Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 °0 0 0 00 0 0
Previous _ SJ S}

Seen? Y N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

127
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Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 °0 0 0 00 0 0
Previous _ SJ S}

Seen? Y N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

128
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 0 0 0 0 0
Previous _ S) S)

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

129
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 0 0 0 0 0
Previous _ S) S)

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

130
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

131
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ A A

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

132
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

133
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Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 205 00 45 0 00 00
Previous _ SJ S} A A

Seen? Y Y N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

134
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Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 205 00 45 0 00 00
Previous _ SJ S} A A

Seen? Y Y N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

135
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 205 °0 45 0 0
Previous _ SJ S} A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

136
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 0 5 10 205 00 45 0 00 00

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Which nodes’ distances will be updated next in the table and
what will those distances become?

Stanford University




Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

138
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 0 45 °0 30
Previous - SJ SJ A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 0 45 °0 30
Previous - SJ SJ B A B

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 0 45 °0 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B
Distance
fromstart | O 5 10 18 0 45 o0 30 0
Previous - SJ SJ B A B

Seen? Y Y Y N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B
Distance
fromstart | O 5 10 18 0 45 o0 30 0
Previous - SJ SJ B A B

Seen? Y Y Y N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 o0 45 Y 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 o0 45 Y 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B C A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 5 10 18 31 45 0 30 o0
Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Try to find the shortest weighted path from SJ

Stanford University




Dijkstra's Algorithm

SJ A B
Distance
from start O 5 10 18 31 45 0 30 o0
Previous - SJ SJ B C A B

Seen? Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B
Distance
from start O 5 10 18 31 45 0 30 o0
Previous - SJ SJ B C A B

Seen? Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

151

Stanford University



Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N

SF

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous _ SJ SJ B C A B

Seen? Y Y Y Y N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 45 32 30 48
Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 45 32 30 48
Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y Y Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33
Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

Stanford University




Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 33
Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

173

Stanford University



174

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
0 5 10 18 31 32 32 30 33

from start
Previous - SJ SJ B C D G B F
Seen? Y Y Y Y Y Y Y Y N

We're done! Shortest weighted path is of length 33

with a path of ??
Stanford University
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Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 5 10 18 31 32 32 30 33
Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

We're done! Shortest weighted path is of length 33
with a path of S)-=B—G—F—SF

Stanford University
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Demo

https://bit.ly/graph_demo
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https://qiao.github.io/PathFinding.js/visual/
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from Start o0 o0 o0 o0 o0 o0 o0 o0 o0
Previous -

Seen? NI N N N NN N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from Start o0 o0 o0 o0 o0 o0 o0 o0 o0
Previous -

Seen? NI N N N NN N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from Start o0 o0 o0 o0 o0 o0 o0 o0 o0
Previous -

Seen? NI N N N NN N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N N N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
fromstart | O |12 8 | = 2 7 6 0 00 0
Previous - A A A A A

Seen? Y N N N N N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N N N N N N N

Stanford University
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N N N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 9 00 0
Previous - A A A A A G

Seen? Y N N N Y N Y N N N
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Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 9 00 0
Previous - A A A A A G

Seen? Y N N N Y N Y N N N

Stanford University




Dijkstra's Algorithm

Distance
from start

Previous

Seen?

Y N | N | N Y | N | Y

Doesn’t seem very efficient
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A* Algorithm

Stanford University




A* Algorithm

* Finds the shortest weighted path from one node to another
e Uses external information about the graph

* Heuristic: estimates the cost of the cheapest path to the goal
* Should always underestimate the distance to the goal, because if it
overestimates, it could find a non-optimal solution

* If the distance to the destination is closer, weight the nodes in that

direction to be preferable
e priority(u) = weight(s, u) + heuristic(u, d)

Stanford University
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A* Algorithm

What is the shortest weighted path from A—J?

A B | C D E F G H | J
Distance
from Start (o0] o0 o0 [o0] (o 0] [o0] (0] (o0] o 0]
Distance
+ future
Previous -

Seen? N N/ N N| N N N N N | N

Stanford University




195
What is the shortest weighted path from A—J?

Node Distance to J Dist/Smallest Dist
A 301 2.6
B 232 2

C 180 1.6
D 116 1
E 400 3.4
F 441 3.8
G 425 3.7
H 386 3.3
| 154 1.3
J 0 0

Stanford University
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A* Algorithm

What is the shortest weighted path from A—J?

A B | C D E F G H | J
Distance
from Start (o0] o0 o0 [o0] (o 0] [o0] (0] (o0] o 0]
Distance
+ future
Previous -

Seen? N N/ N N| N N N N N | N

Stanford University
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A* Algorithm

Distance
from start 0

Distance

+ future 2.6

Previous -

Seen? N N/ N N| N N N N N | N

Stanford University
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A* Algorithm

Distance
from start 0

Distance

+ future 2.6

Previous -

Seen? N N/ N N| N N N N N | N

Stanford University
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A* Algorithm

A B C D E F G H 1
Distance
fromstart | O | 12| 8 | = 2 7 6 0 00 0
Distance
+ future 2.6
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University
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A* Algorithm

A B C D E F G H 1

Distance
fromstart | 0 |12 8 | = 2 7 6 0 00 0

Distance
+ future 26 | 14
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University
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A* Algorithm

A B C D E F G H | J
Distance
fromstart | 0 |12 8 | = 2 7 6 0 00 0
Distance
+ future 26 | 14 | 9.6
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University
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A* Algorithm

A B C D E F G H | J
Distance
fromstart | 0 |12 8 | = 2 7 6 0 00 0
Distance 11.
+ future 26 | 14 | 9.6 5.4 3 9.7
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University




A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N
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A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N
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A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N
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A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N
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A* Algorithm

Distance
fromstart | O |12 8 | = 2 7 6 0 00 0

Distance 11.
+ future 26 | 14 | 9.6 5.4 3 9.7
Previous _ A A A A A

Seen? Y N N/ N Y NI N N N N

Stanford University
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A* Algorithm

Distance
fromstart | 0 |12 8 | 9 2 7 6 0 00 0

Distance 11.
+ future 26 | 14 | 9.6 5.4 3 9.7
Previous _ A A A A A

Seen? Y N N/ N Y NI N N N N
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A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous  _ | A A C A Al A
Seen? Y N Y | N Y N N
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A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous  _ | A A C A Al A
Seen? Y N Y | N Y N N
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A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous  _ | A A C A Al A
Seen? Y N Y | N Y N N
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A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous  _ | A A C A Al A
Seen? Y N Y | N Y N N
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A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous  _ | A A C A Al A
Seen? Y N Y | N Y N N
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A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::S:: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous  _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N
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A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::::: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous  _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N
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A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::::: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous  _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N
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A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::::: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous  _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N
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A* Algorithm

A/ B C D E F | G H I
frD;snt,as:;(:t 0 12 8 9 2 |7 6 9 | 12
2':::3:: 26 | 14 | 96| 10 | 5.4 lé' 9.7 132'
Previous | - | A | A C A A A G
Seen? Y N Y N Y N Y N N
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A* Algorithm

A/ B C D E F | G H I
frD;snt,as:;(:t 0 12 8 9 2 |7 6 9 | 12
2':::3:: 26|14 |96 | 10 | 54 lé' 9.7 132' 4
Previous | - | A | A C A A A G D
Seen? Y N Y N Y N Y N N
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A* Algorithm

A/ B C D E F | G H I J
frD;snt,as:;(:t 0 12 8 9 2 |7 6 9 | 12 11
2':::3:: 26 | 14 | 96| 10 | 5.4 lé' 9.7 132' 4 | 11

Previous | - | A | A C A A A G D D
Seen? Y N Y Y Y N Y N N N
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A* Algorithm

A B C D E F G H | J
Distance
from start 121 8 ' 9 2 7 6 9 12 | 11
Distance 11. 12.
+ future 26 | 14 | 96| 10 | 54 3 9.7 3 4 11
Previous - Al A C A A A G D D

Seen? Y N/ Y Y Y NJY N N | N

We're done! Shortest weighted path is of length 11 from A—C—D—)J

Stanford University




222

Extensions

e There are many, many different graph algorithms out there

* Other famous graph algorithms:
* Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
* Topological Sort: "Sort" the nodes in a dependency graph in such a way
that traversing the nodes in order results in all dependencies being
fulfilled at each point in time.
* Traveling salesman: Given a map of cities and the distances between
them, find the shortest path that traverses all cities in the map.
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https://en.wikipedia.org/wiki/Category:Graph_algorithms
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Recap

* Graphs are a linked data structure with almost no rules
* Represent in code with either an adjacency list or matrix

* Depth-First Search: does not always return the shortest path, though it
may be faster in some cases

* Breadth-First Search: returns the shortest path, but it only works on
unweighted graphs

e Dijkstra’s Algorithm: returns the shortest weighted path, but not
necessarily the most efficient

 A* Algorithm: returns the shortest weighted path using heuristics, and
is often thought of as gold standard
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Have a great weekend!
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