Graph Algorithms

Amrita Kaur
August 10, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

Assignment 6 (last assignment!) has been released

* No late days beyond the grace period (next Thursday 11:59pm)
* YEAH hours on Canvas

Assignment Retroactive Citation Form will be released tomorrow
* Due by Friday, August 18th at 11:59pm
No attendance tickets next week
Slightly personal note: My last lecture for the quarter and last lecture
at Stanford (ever?), so let’s have fun!

Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

Building Abstractions

Memory
Management

Linked
Data
Structures

Recursion

Stanford University

Graphs

Stanford University

A Social Network

facebook

Stanford University

Molecules

Stanford University

Interstate Highway System

Wt

I] iy
wnt)O 0] _—
Sweet Gass [)
- obns Hoen(3
" s den B -
ey e st e st PP—— P
E¥Tsol0 o ot e i) @ i
o P 0.0 9o
oumn | e, J oo ioe
i [oo anger
[e vy o
neoues st noeay e :
e o - - Nt
? —\ .. e o R oS
Saom o Swtepym o o
- e e §
0y O-® o)
- - Q) =
o —) Vot R oeese A i ¥ <
ager Sencay Ve 2 bt R b e
(e \
J—c| Ye) e 53551 1 o1t o o
. Tioron 0 e
ogtee (3 x o)
| e (-
o | — 1\ - -
= O O OO
3 3 w
.
Q
By
ranawo (T
(i) oD@ .
Cd
po—
g
i) o - M
- v “- i i) Wiingion T3
s e
(T EY o Xt e —0: i
o e wourn g o o) Q) e 1
. T ‘
ST et e S d
o o R A e
o) Y lais e 7 & R
) i Nentgomery o o Yosewsm
(an St e St @
o
abie ety Iodcarite
N\ w0 O Q) deyoms tess)
) e

Haie

Man(H)

Stanford University

Flowcharts

Start

l

Look for
lost item

l Yes
|

Did you
find it?

Yes No
¢ |

Stop looking

Do you

—No— need it?

Stanford University

The Internet (1971)

Stanford University

10

The Internet (2023)

Stanford University

What is a graph?

/

o

graph

a structured way to represent
relationships between different entities

/

11

Stanford University

12

Graph Terminology graph

a structured way to represent
relationships between different
entities

A graph consists of
a set of nodes

connected by edges.

Stanford University

Graph Terminology

13

graph
a structured way to represent
relationships between different
entities

@

Nodes

A graph consists of
a set of nodes
connected by edges.

Stanford University

14

Graph Terminology graph

a structured way to represent
relationships between
different entities

\\ A graph consists of
\ grap

- Edges |— a set of nodes

\/ l connected by edges.

Stanford University

15

Types of Graphs

* Directed: unidirectional relationships between nodes

* Represented by a pointed arrow
* An action/verb that implies only one direction
 Ex: | follow Dwayne "The Rock" Johnson on Instagram, but he doesn't

follow me back

4>

/

Stanford University

16

Types of Graphs

* Directed: unidirectional relationships between nodes

* Represented by a pointed arrow
* An action/verb that implies only one direction
 Ex: | follow Dwayne "The Rock" Johnson on Instagram, but he doesn't

follow me back

NS

Stanford University

17

Types of Graphs

* Undirected: bidirectional relationships between nodes

* Represented with an arrow-less line
* An action/verb that inherently applies to both entities
 Ex: | am related to my sister and she is related to me

AN

Stanford University

18

Types of Graphs

* Weighted: not all relationships between entities are equal
e Each edge is assigned a numerical "weight" representing its relative
significance/strength.
* Ex: Different airports are different distances from each other

Stanford University

19

Types of Graphs

* Unweighted: all relationships between entities are equal

* Each edge has equal significance and no label
* Ex: All connected words in a word ladder are one letter apart

Stanford University

Social Network

Nodes: ?
Edges: ?
Directed or undirected?

Weighted or unweighted?

facebook

20

Stanford University

Social Network

Nodes: People
Edges: Friendships/Following

Directed (Instagram) or
undirected (Facebook)

Unweighted

facebook

21

Stanford University

Molecules

Nodes: ?
Edges: ?
Directed or undirected?

Weighted or unweighted?

22

Stanford University

Molecules

Nodes: Atoms
Edges: Bonds
Undirected

Weighted

23

Stanford University

24

Interstate Highway System

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

Stanford University

25

Interstate Highway System

Nodes: Cities

Edges: Roads

Undirected

Weighted

Stanford University

Internet

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

26

Stanford University

Internet

Nodes: Devices (phones,
computers, etc)

Edges: Connection Pathways
(Bluetooth, Wifi, Ethernet, cables)

Undirected

Unweighted

27

Stanford University

28

Linked Data Structures

 We've already seen nodes connected by edges before when

discussing linked lists and trees
 What differentiates these linked data structures?
* Linked lists: Linear structure, each node connected to at most one other

node
* Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.
* Graphs: No restrictions. It's the wild, wild west of the node-based world!

Stanford University

29

Wild World of Graphs

* (Can have cycles

Stanford University

30

Wild World of Graphs

* (Can have cycles
* No notion of a parent-child

relationship between nodes

Stanford University

Wild World of Graphs

* (Can have cycles

* No notion of a parent-child
relationship between nodes

* No root node

31

Stanford University

32

Wild World of Graphs

* (Can have cycles
* No notion of a parent-child

relationship between nodes
* No root node
* Most powerful, flexible, and

expressive abstraction that we can
use to model relationships between
different distributed entities

Stanford University

33

Representing Graphs

Stanford University

34

Map< , Setk >>

Approach 1: Adjacency List

Set« >>

Node |Adjacent to

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Stanford University

Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

35

Map< s, Setk >>
Set« >>
Node |Adjacent to

O

o0

Stanford University

Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

36

Map< , Setk >>
Set« >>
Node |Adjacent to

@
O

0@

277

Stanford University

37

Map< , Setk >>

Approach 1: Adjacency List

Set« >>

Node |Adjacent to

* We can represent a graph as a map

from nodes to the collection of Q Q Q

nodes that each node is adjacent to.

Stanford University

Approach 1: Adjacency List

 We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

38

Map< , Setk >>

Stanford University

39

Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Node>>
e Map<Node, Vector<Node>>
e Vector<Vector<Node>>

Stanford University

40

Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Node>>
e Map<Node, Vector<Node>>
e Vector<Vector<Node>>

 The core idea is that we have some kind of mapping associating
each node with its outgoing edges (or neighboring nodes)

Stanford University

41

Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Node>>
e Map<Node, Vector<Node>>
e Vector<Vector<Node>>

 The core idea is that we have some kind of mapping associating
each node with its outgoing edges (or neighboring nodes)
* How might you incorporate weights?

Stanford University

42

Approach 1: Adjacency List

* An adjacency list can come in a number of different forms:
e Map<Node, Set<Edge>>
e Map<Node, Vector<Edge>>
e Vector<Vector<Edge>>

 The core idea is that we have some kind of mapping associating
each node with its outgoing edges (or neighboring nodes)

* How might you incorporate weights?
* Create an Edge struct that holds both a Node and a weight!

Stanford University

43

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

00000

Stanford University

44

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

o

00000

00000

Stanford University

45

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

o

00000

1

00000

Stanford University

46

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

1

00000

Stanford University

47

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

1

00000

Stanford University

48

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

90000

00000

1 1
1 1 1
1 1
- 1 1 -

Stanford University

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

90000

00000

1 1
1 1

1
1

49

Stanford University

50

Approach 2: Adjacency Matrix

* We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

00000

1 1
1 1 1
%) 1 1

- 1 1 -

Stanford University

51

Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of Os
* Otherwise, storing a mostly-Os matrix is not space efficient

Stanford University

52

Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.
there aren’t a lot of Os

* Otherwise, storing a mostly-Os matrix is not space efficient
e Other benefits:

e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis

Stanford University

53

Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.
there aren’t a lot of Os
* Otherwise, storing a mostly-Os matrix is not space efficient
e Other benefits:

e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis

* How might you incorporate weights?

Stanford University

54

Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.
there aren’t a lot of Os
* Otherwise, storing a mostly-0Os matrix is not space efficient
e Other benefits:

e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis
* How might you incorporate weights?
e Store other numbers besides 1 in the matrix

Stanford University

55

Approach 2: Adjacency Matrix

* Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of Os
* Otherwise, storing a mostly-0Os matrix is not space efficient

* Other benefits:
e Grid lookup is super fast!
 Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis
* Storing weights is more straightforward than in the adjacency list
* How might you incorporate weights?
* Store other numbers besides 1 in the matrix

Stanford University

56

Graph Algorithms

Stanford University

Motivation

0 San Jose, California

Drag to reorder
v >an rrancisco, California

@ Add destination

Leave now ~

OPTIONS

A Public transport services may be impacted due

to COVID-19.

57

—B Send directions to your phone

(=] viaUS-101 N 54 min
Fastest route, the usual traffic 48.4 miles
DETAILS

= via I-280 N and US-101 N 57 min

52.8 miles

@ 10:13 AM—11:48 AM 1 h 35min

Area L50) ® Danville
Oakland ol
y assajara
San Francisco Alameda
San Ramon
QPSS
4280/ San Lf?ndro ST
880, =80}
Daly City b < Liv
SouthfSan Hayward Pleasanton
o FranGisco
. San Bguno
Pacifica (33) (62)
©) \ Union City Sunol
e N 238
" San Mateo
; . Fremont
: : 4 Don Edwards
El Granada 250 San Francisco
Redwood'Gity, Bay National
Half (€D) Wildlife...
Moon Bay s
; = 54 min
% 1h35min N 48.4 miles b
A\ - ‘Mountain D
Lobitos V|ev'v\\
© D \o San Jose
San Gregorio PaHonda R
@& 57 min |
52.8 miles |
o Pescadero e (5)
Satellite O) D) Go %]e 2

Stanford University

58

Depth-First Search

Stanford University

Depth-First Search

Use DFS to find a path
between Fand G

Stanford Universit

59

Depth-First Search

TO START:
1. Mark all nodes as unvisited

Stanford Universit

60

Depth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited

Stanford Universit

61

Depth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited
2. Make an empty stack

Stanford Universit

62

63

Depth-First Search

TO START:
1. Mark all nodes as unvisited
O Q Q 2. Make an empty stack

OG0 ©

Stanford University

Depth-First Search

W @
® o W
O ©

OG0 ©

64

TO START:
1. Mark all nodes as unvisited
2. Make an empty stack
3. Push the desired start node

and mark it as visited
r “

®.

Stanford University

Depth-First Search

W O @

65

LOOP PROCEDURE:

O © '

OG0 ©

\

1. Pop anode
@ Q Q 2. For each adjacent node, if
that node has never been
pushed, then push

Stanford University

Depth-First Search

©
0
0

® O

Stanford Universit

66

Depth-First Search

A ® o
SECC
0

OOEEE

Depth-First Search

& ©® (o (O
SECC
0

OO

68

Depth-First Search

- (o (o
SECC
0

OO

69

Depth-First Search

ar--® (o (o
SECC
0

OOE

Depth-First Search

OOE

Stanford Universit

Depth-First Search

&-O—© @
@ @
SR |
©

OOEEE

Depth-First Search

ay--e—0©
@ @
SR |
©

OOEE

Depth-First Search

@ @
SR |
©

OOEE

Depth-First Search

OOE

Stanford Universit

Depth-First Search

OOE

Stanford Universit

Depth-First Search

OOE

Stanford Universit

Depth-First Search

OOE

79

DFS Algorithm

dfs-from(node v) {
make a stack of nodes, initially seeded with v.

while the stack isn't empty:
pop a node curr.
process the node curr.

for each node adjacent to curr:
if that node has never been pushed:
push that node.

Stanford University

80

Breadth-First Search

Stanford University

Breadth-First Search

Use BFS to find the
shortest path between
Fand G

Stanford Universit

81

Breadth-First Search

TO START:
1. Mark all nodes as unvisited

Stanford Universit

82

Breadth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited

Stanford Universit

83

Breadth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited
2. Make an empty queue

Stanford Universit

84

Breadth-First Search

()

OG0 ©

& O ©
GEEORS0
O ©

TO START:
1. Mark all nodes as unvisited
2. Make an empty queue

Stanford Universit

85

86

Breadth-First Search

TO START:
1. Mark all nodes as unvisited
@ Q O 2. Make an empty queue

3. Enqueue the desired start
node and mark it as visited

O © @® \

Stanford University

OG0 ©

87

Breadth-First Search

LOOP PROCEDURE:
1. Dequeue a node
@ Q Q 2. For each adjacent node, if

that node has never been
enqueued, then enqueue

O © { \

OG0 ©

Stanford University

Breadth-First Search

® O

O @
O
o

Stanford Universit

88

Breadth-First Search

L o 0 {0000 |

BC

@@

90

Breadth-First Search

& ©® G
M{%@@ |
SECIRC

0

Breadth-First Search

&-©® - G
M ©000
SECIRC

0

Breadth-First Search

Q-® @
M ©00)
SECIRC

0

Breadth-First Search

93

Breadth-First Search

&--EO—0O &
OIROR0CCCION:

S e

0

Breadth-First Search

®&---O—0 @
O {0006

S e

0

Breadth-First Search

O {0006

S e

0

96

Breadth-First Search

Breadth-First Search

BEROR0CIO

5 e

0

98

Breadth-First Search

O {000

5 e

0

99

Breadth-First Search

BIRORGI00

5 e

0

100

Breadth-First Search

© W {©®O®

O Q\Q’

0

Breadth-First Search

ORNS
0

% ™ {60

}

103

Breadth-First Search

Stanford University

104

BFS Algorithm

bfs-from(node v) {
make a queue of nodes, initially seeded with v.

while the queue isn't empty:
dequeue a node curr.
process the node curr.

for each node adjacent to curr:
if that node has never been enqueued:
enqueue that node.

Stanford University

105

BFS vs DFS

* Running BFS or DFS from a node in a graph will visit the same set of
nodes, but probably in a different order

e BFS will visit nodes in increasing order of distance
* Will give you the shortest path
* DFS does visit nodes in some interesting order, but not order of

distance
e Take CS161 for more info

Stanford University

106

Shortest Path

What is the shortest path from A to B?

>

©

Stanford University

107

Shortest Path

What is the shortest path from A to B?
* Use BFS!

Stanford University

108

Shortest Weighted Path

What is the shortest weighted path

from A to B? C\ 12949
A

10 2

A\

©

Stanford University

109

Shortest Weighted Path

What is the shortest weighted path

from A to B? 12949
e BFS doesn’t work here

C“

Stanford University

110

Dijkstra's Algorithm

Stanford University

Dijkstra's Algorithm

* Finds the shortest weighted path from one node to another

Stanford University

Dijkstra's Algorithm

* Finds the shortest weighted path from one node to another
* Greedy algorithm

Prioritizes finding a solution by what is "best right now"

Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation

Ex: Change We Can Believe In (Section 4, Problem 2)

112

Stanford University

Dijkstra's Algorithm

* Finds the shortest weighted path from one node to another

* Greedy algorithm
* Prioritizes finding a solution by what is "best right now"
* Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation
* Ex: Change We Can Believe In (Section 4, Problem 2)
* Many different ways to model this
e Can use a priority queue, where weights become priorities
* (Can use a table of nodes

Stanford University

Dijkstra's Algorithm

Finds the shortest weighted path from one node to another

Greedy algorithm
* Prioritizes finding a solution by what is "best right now"
* Looks at its options and always chooses whatever gets it closer to a
solution in the best possible way given the current situation
* Ex: Change We Can Believe In (Section 4, Problem 2)
Many different ways to model this
e Can use a priority queue, where weights become priorities
* (Can use a table of nodes
Real world uses: shortest paths on maps (Ethiopia), tracks of

electricity lines and oil pipelines, network routing protocols

114

Stanford University

Dijkstra's Algorithm

Algorithm:

1.

B

Of the unseen nodes, find the node that
currently has the shortest distance from the
start

Look at this node's neighbors, and update the
total distance to the neighbors based on their

distance and the distance already to this node.

If the node visited is the destination, stop
Repeat from step 1

115

Stanford University

116

Dijkstra's Algorithm

S) A B C D E F G SF

Distance
from start

Previous

Seen?

Stanford University

117

Dijkstra's Algorithm

SJ A B C D E F G SF
Distance
from start o o 0 o * 0 o °°
Previous
Seen?

Stanford University

118

Dijkstra's Algorithm

SJ A B C D E F G SF
Distance
from start o o 0 o * 0 o °°
Previous -
Seen?

Stanford University

119

Dijkstra's Algorithm

S) A B C D E F G SF

Distance
from start

Previous

Seen? N N N N N N N N N

Stanford University

120

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous

Seen? N N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

Stanford University

121

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous

Seen? N N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

Stanford University

122

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the
distance already to this node

Stanford University

123

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the
distance already to this node

Stanford University

124

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 0 5

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the
distance already to this node

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 °0) 00 0 0
Previous _ S SJ

Seen? N N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

125

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 °0) 00 0 0
Previous _ S SJ

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

126

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 °0 0 0 00 0 0
Previous _ SJ S}

Seen? Y N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

127

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 °0 0 0 00 0 0
Previous _ SJ S}

Seen? Y N N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

128

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 0 0 0 0 0
Previous _ S) S)

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

129

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 0 0 0 0 0
Previous _ S) S)

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

130

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

131

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ A A

Seen? Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

132

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

133

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 205 00 45 0 00 00
Previous _ SJ S} A A

Seen? Y Y N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

134

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
from start 0 5 10 205 00 45 0 00 00
Previous _ SJ S} A A

Seen? Y Y N N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

135

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 205 °0 45 0 0
Previous _ SJ S} A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

136

Stanford University

137

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 0 5 10 205 00 45 0 00 00

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Which nodes’ distances will be updated next in the table and
what will those distances become?

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start

Previous - SJ SJ A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

138

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 0 45 °0 30
Previous - SJ SJ A A

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

139

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 0 45 °0 30
Previous - SJ SJ B A B

Seen? Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

140

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 0 45 °0 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

141

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
fromstart | O 5 10 18 0 45 o0 30 0
Previous - SJ SJ B A B

Seen? Y Y Y N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

142

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
fromstart | O 5 10 18 0 45 o0 30 0
Previous - SJ SJ B A B

Seen? Y Y Y N N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

143

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 o0 45 Y 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

144

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 o0 45 Y 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

145

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

146

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B C A B

Seen? Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

147

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

148

Stanford University

149

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 5 10 18 31 45 0 30 o0
Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Try to find the shortest weighted path from SJ

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
from start O 5 10 18 31 45 0 30 o0
Previous - SJ SJ B C A B

Seen? Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

150

Stanford University

Dijkstra's Algorithm

SJ A B
Distance
from start O 5 10 18 31 45 0 30 o0
Previous - SJ SJ B C A B

Seen? Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

151

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 45 0 30
Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N

SF

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

152

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous _ SJ SJ B C A B

Seen? Y Y Y Y N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

153

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N N

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

154

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

155

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 45 32 30 48
Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

156

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 45 32 30 48
Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

157

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 45 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

158

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C A G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

159

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y N N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

160

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G

Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

161

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

162

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

163

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y N N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

164

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

165

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

166

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 48
Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

167

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

168

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

169

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y N Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

170

Stanford University

Dijkstra's Algorithm

SJ A B C D E F G
Distance
from start 5 10 18 31 32 32 30
Previous - SJ SJ B C D G B

Seen? Y Y Y Y Y Y Y Y

Step 2: Look at this node's neighbors, and update the total
distance to the neighbors based on their distance and the
distance already to this node

171

Stanford University

172

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33
Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

Stanford University

Dijkstra's Algorithm

Distance
from start 0 5 10 18 31 32 32 30 33
Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has
the shortest distance from the start

173

Stanford University

174

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
0 5 10 18 31 32 32 30 33

from start
Previous - SJ SJ B C D G B F
Seen? Y Y Y Y Y Y Y Y N

We're done! Shortest weighted path is of length 33

with a path of ??
Stanford University

175

Dijkstra's Algorithm

SJ A B C D E F G SF

Distance
from start 5 10 18 31 32 32 30 33
Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

We're done! Shortest weighted path is of length 33
with a path of S)-=B—G—F—SF

Stanford University

176

Demo

https://bit.ly/graph_demo

Stanford University

https://qiao.github.io/PathFinding.js/visual/

177

Stanford University

178

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from Start o0 o0 o0 o0 o0 o0 o0 o0 o0
Previous -

Seen? NI N N N NN N N N N

Stanford University

179

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from Start o0 o0 o0 o0 o0 o0 o0 o0 o0
Previous -

Seen? NI N N N NN N N N N

Stanford University

180

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from Start o0 o0 o0 o0 o0 o0 o0 o0 o0
Previous -

Seen? NI N N N NN N N N N

Stanford University

181

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N N N N N N N

Stanford University

182

Dijkstra's Algorithm

A B C D E F G H | J
Distance
fromstart | O |12 8 | = 2 7 6 0 00 0
Previous - A A A A A

Seen? Y N N N N N N N N N

Stanford University

183

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N N N N N N N

Stanford University

184

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N N N N N N N

Stanford University

185

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N

Stanford University

186

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N

Stanford University

187

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N

Stanford University

188

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 0 0 0
Previous - A A A A A

Seen? Y N N N Y N N N N N

Stanford University

189

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 9 00 0
Previous - A A A A A G

Seen? Y N N N Y N Y N N N

Stanford University

190

Dijkstra's Algorithm

A B C D E F G H | J
Distance
from start 12 8 | = 2 7 6 9 00 0
Previous - A A A A A G

Seen? Y N N N Y N Y N N N

Stanford University

Dijkstra's Algorithm

Distance
from start

Previous

Seen?

Y N | N | N Y | N | Y

Doesn’t seem very efficient

191

Stanford University

192

A* Algorithm

Stanford University

A* Algorithm

* Finds the shortest weighted path from one node to another
e Uses external information about the graph

* Heuristic: estimates the cost of the cheapest path to the goal
* Should always underestimate the distance to the goal, because if it
overestimates, it could find a non-optimal solution

* If the distance to the destination is closer, weight the nodes in that

direction to be preferable
e priority(u) = weight(s, u) + heuristic(u, d)

Stanford University

194

A* Algorithm

What is the shortest weighted path from A—J?

A B | C D E F G H | J
Distance
from Start (o0] o0 o0 [o0] (o 0] [o0] (0] (o0] o 0]
Distance
+ future
Previous -

Seen? N N/ N N| N N N N N | N

Stanford University

195
What is the shortest weighted path from A—J?

Node Distance to J Dist/Smallest Dist
A 301 2.6
B 232 2

C 180 1.6
D 116 1
E 400 3.4
F 441 3.8
G 425 3.7
H 386 3.3
| 154 1.3
J 0 0

Stanford University

196

A* Algorithm

What is the shortest weighted path from A—J?

A B | C D E F G H | J
Distance
from Start (o0] o0 o0 [o0] (o 0] [o0] (0] (o0] o 0]
Distance
+ future
Previous -

Seen? N N/ N N| N N N N N | N

Stanford University

197

A* Algorithm

Distance
from start 0

Distance

+ future 2.6

Previous -

Seen? N N/ N N| N N N N N | N

Stanford University

198

A* Algorithm

Distance
from start 0

Distance

+ future 2.6

Previous -

Seen? N N/ N N| N N N N N | N

Stanford University

199

A* Algorithm

A B C D E F G H 1
Distance
fromstart | O | 12| 8 | = 2 7 6 0 00 0
Distance
+ future 2.6
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University

200

A* Algorithm

A B C D E F G H 1

Distance
fromstart | 0 |12 8 | = 2 7 6 0 00 0

Distance
+ future 26 | 14
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University

201

A* Algorithm

A B C D E F G H | J
Distance
fromstart | 0 |12 8 | = 2 7 6 0 00 0
Distance
+ future 26 | 14 | 9.6
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University

202

A* Algorithm

A B C D E F G H | J
Distance
fromstart | 0 |12 8 | = 2 7 6 0 00 0
Distance 11.
+ future 26 | 14 | 9.6 5.4 3 9.7
Previous _ A A A A A

Seen? N N N N/ N N N N N N

Stanford University

A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N

203

Stanford University

A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N

204

Stanford University

A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N

205

Stanford University

A* Algorithm

A B | C D

Distance
from start 0 12 8 0

Distance
+future 26| 14 96
Previous | _ | A | A

Seen? Y N | N N

206

Stanford University

207

A* Algorithm

Distance
fromstart | O |12 8 | = 2 7 6 0 00 0

Distance 11.
+ future 26 | 14 | 9.6 5.4 3 9.7
Previous _ A A A A A

Seen? Y N N/ N Y NI N N N N

Stanford University

208

A* Algorithm

Distance
fromstart | 0 |12 8 | 9 2 7 6 0 00 0

Distance 11.
+ future 26 | 14 | 9.6 5.4 3 9.7
Previous _ A A A A A

Seen? Y N N/ N Y NI N N N N

Stanford University

A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous _ | A A C A Al A
Seen? Y N Y | N Y N N

209

Stanford University

A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous _ | A A C A Al A
Seen? Y N Y | N Y N N

210

Stanford University

A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous _ | A A C A Al A
Seen? Y N Y | N Y N N

211

Stanford University

A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous _ | A A C A Al A
Seen? Y N Y | N Y N N

212

Stanford University

A* Algorithm

A B C D E F G
Distance
from start 0 12 8 9 2 7 6
Distance 11.
+ future 26 14 | 96 10 5.4 3 9.7
Previous _ | A A C A Al A
Seen? Y N Y | N Y N N

213

Stanford University

A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::S:: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N

214

Stanford University

A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::::: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N

215

Stanford University

A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::::: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N

216

Stanford University

A* Algorithm

A B €C D E F G H

SN 012 8 9 2 7 6 9
SI:::::: 26 | 14 | 96| 10 | 54 181. 9.7 132.
Previous _ | A A C A Al A G
Seen? Y N Y | N Y | N Y N

217

Stanford University

A* Algorithm

A/ B C D E F | G H I
frD;snt,as:;(:t 0 12 8 9 2 |7 6 9 | 12
2':::3:: 26 | 14 | 96| 10 | 5.4 lé' 9.7 132'
Previous | - | A | A C A A A G
Seen? Y N Y N Y N Y N N

218

Stanford University

A* Algorithm

A/ B C D E F | G H I
frD;snt,as:;(:t 0 12 8 9 2 |7 6 9 | 12
2':::3:: 26|14 |96 | 10 | 54 lé' 9.7 132' 4
Previous | - | A | A C A A A G D
Seen? Y N Y N Y N Y N N

219

Stanford University

A* Algorithm

A/ B C D E F | G H I J
frD;snt,as:;(:t 0 12 8 9 2 |7 6 9 | 12 11
2':::3:: 26 | 14 | 96| 10 | 5.4 lé' 9.7 132' 4 | 11

Previous | - | A | A C A A A G D D
Seen? Y N Y Y Y N Y N N N

220

Stanford University

221

A* Algorithm

A B C D E F G H | J
Distance
from start 121 8 ' 9 2 7 6 9 12 | 11
Distance 11. 12.
+ future 26 | 14 | 96| 10 | 54 3 9.7 3 4 11
Previous - Al A C A A A G D D

Seen? Y N/ Y Y Y NJY N N | N

We're done! Shortest weighted path is of length 11 from A—C—D—)J

Stanford University

222

Extensions

e There are many, many different graph algorithms out there

* Other famous graph algorithms:
* Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
* Topological Sort: "Sort" the nodes in a dependency graph in such a way
that traversing the nodes in order results in all dependencies being
fulfilled at each point in time.
* Traveling salesman: Given a map of cities and the distances between
them, find the shortest path that traverses all cities in the map.

Stanford University

https://en.wikipedia.org/wiki/Category:Graph_algorithms

223

Recap

* Graphs are a linked data structure with almost no rules
* Represent in code with either an adjacency list or matrix

* Depth-First Search: does not always return the shortest path, though it
may be faster in some cases

* Breadth-First Search: returns the shortest path, but it only works on
unweighted graphs

e Dijkstra’s Algorithm: returns the shortest weighted path, but not
necessarily the most efficient

 A* Algorithm: returns the shortest weighted path using heuristics, and
is often thought of as gold standard

Stanford University

224

Have a great weekend!

Stanford University

