
Graph Algorithms
Amrita Kaur

August 10, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 6 (last assignment!) has been released
• No late days beyond the grace period (next Thursday 11:59pm)

• YEAH hours on Canvas

• Assignment Retroactive Citation Form will be released tomorrow
• Due by Friday, August 18th at 11:59pm

• No attendance tickets next week

• Slightly personal note: My last lecture for the quarter and last lecture

at Stanford (ever?), so let’s have fun!

2

Roadmap

Core
Tools

C++

Using Abstractions

Abstract Data
Structures

3

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Advanced
Algorithms

Building Abstractions

Graphs

4

A Social Network

5

Molecules

6

Interstate Highway System

7

Flowcharts

8

The Internet (1971)

9

The Internet (2023)

10

What is a graph?

11

graph
a structured way to represent

relationships between different entities

Graph Terminology

A graph consists of

a set of nodes

connected by edges.

12

graph
a structured way to represent

relationships between different
entities

Graph Terminology

A graph consists of

a set of nodes

connected by edges.

13

graph
a structured way to represent

relationships between different
entities

Graph Terminology

A graph consists of

a set of nodes

connected by edges.

14

graph
a structured way to represent

relationships between
different entities

Types of Graphs

• Directed: unidirectional relationships between nodes
• Represented by a pointed arrow

• An action/verb that implies only one direction

• Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't

follow me back

15

��
����

Types of Graphs

• Directed: unidirectional relationships between nodes
• Represented by a pointed arrow

• An action/verb that implies only one direction

• Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't

follow me back

16

��
����

Types of Graphs

• Undirected: bidirectional relationships between nodes
• Represented with an arrow-less line

• An action/verb that inherently applies to both entities

• Ex: I am related to my sister and she is related to me

17

��
����

��

Types of Graphs

• Weighted: not all relationships between entities are equal
• Each edge is assigned a numerical "weight" representing its relative

significance/strength.

• Ex: Different airports are different distances from each other

18

Types of Graphs

• Unweighted: all relationships between entities are equal
• Each edge has equal significance and no label

• Ex: All connected words in a word ladder are one letter apart

19

Social Network

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

20

Social Network

Nodes: People

Edges: Friendships/Following

Directed (Instagram) or

undirected (Facebook)

Unweighted

21

Molecules

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

22

Molecules

Nodes: Atoms

Edges: Bonds

Undirected

Weighted

23

Interstate Highway System

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

24

Interstate Highway System

Nodes: Cities

Edges: Roads

Undirected

Weighted

25

Internet

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

26

Internet

Nodes: Devices (phones,
computers, etc)

Edges: Connection Pathways
(Bluetooth, Wifi, Ethernet, cables)

Undirected

Unweighted

27

Linked Data Structures

• We've already seen nodes connected by edges before when

discussing linked lists and trees

• What differentiates these linked data structures?
• Linked lists: Linear structure, each node connected to at most one other

node

• Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.

• Graphs: No restrictions. It's the wild, wild west of the node-based world!

28

Wild World of Graphs

• Can have cycles

• No notion of a parent-child

relationship between nodes

• No root node

• Most powerful, flexible, and

expressive abstraction that we can

use to model relationships between

different distributed entities

29

Wild World of Graphs

• Can have cycles

• No notion of a parent-child

relationship between nodes

• No root node

• Most powerful, flexible, and

expressive abstraction that we can

use to model relationships between

different distributed entities

30

Wild World of Graphs

• Can have cycles

• No notion of a parent-child

relationship between nodes

• No root node

• Most powerful, flexible, and

expressive abstraction that we can

use to model relationships between

different distributed entities

31

Wild World of Graphs

• Can have cycles

• No notion of a parent-child

relationship between nodes

• No root node

• Most powerful, flexible, and

expressive abstraction that we can

use to model relationships between

different distributed entities

32

Representing Graphs

33

Approach 1: Adjacency List

• We can represent a graph as a map

from nodes to the collection of

nodes that each node is adjacent to.

34

Approach 1: Adjacency List

• We can represent a graph as a map

from nodes to the collection of

nodes that each node is adjacent to.

35

Approach 1: Adjacency List

• We can represent a graph as a map

from nodes to the collection of

nodes that each node is adjacent to.

36

???

Approach 1: Adjacency List

• We can represent a graph as a map

from nodes to the collection of

nodes that each node is adjacent to.

37

Approach 1: Adjacency List

• We can represent a graph as a map

from nodes to the collection of

nodes that each node is adjacent to.

38

Approach 1: Adjacency List

• An adjacency list can come in a number of different forms:
• Map<Node, Set<Node>>
• Map<Node, Vector<Node>>
• Vector<Vector<Node>>

• The core idea is that we have some kind of mapping associating

each node with its outgoing edges (or neighboring nodes)

• How might you incorporate weights?

39

Approach 1: Adjacency List

• An adjacency list can come in a number of different forms:
• Map<Node, Set<Node>>
• Map<Node, Vector<Node>>
• Vector<Vector<Node>>

• The core idea is that we have some kind of mapping associating

each node with its outgoing edges (or neighboring nodes)

• How might you incorporate weights?

40

Approach 1: Adjacency List

• An adjacency list can come in a number of different forms:
• Map<Node, Set<Node>>
• Map<Node, Vector<Node>>
• Vector<Vector<Node>>

• The core idea is that we have some kind of mapping associating

each node with its outgoing edges (or neighboring nodes)

• How might you incorporate weights?

41

Approach 1: Adjacency List

• An adjacency list can come in a number of different forms:
• Map<Node, Set<Edge>>
• Map<Node, Vector<Edge>>
• Vector<Vector<Edge>>

• The core idea is that we have some kind of mapping associating

each node with its outgoing edges (or neighboring nodes)

• How might you incorporate weights?
• Create an Edge struct that holds both a Node and a weight!

42

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

43

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

44

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

45

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

46

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

47

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

48

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

49

Approach 2: Adjacency Matrix

• We can also use a two-dimensional

matrix to represent the relationships

in a graph.

50

Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Storing weights is more straightforward than in the adjacency list

• Computer hardware has been optimized for matrix math - so using a grid

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?

51

Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?

52

Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?

53

Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?
• Store other numbers besides 1 in the matrix

54

Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e.

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid

can help us perform complex matrix operations for data analysis

• Storing weights is more straightforward than in the adjacency list

• How might you incorporate weights?
• Store other numbers besides 1 in the matrix

55

Graph Algorithms

56

Motivation

57

Depth-First Search

58

Depth-First Search

59

A

E

I

L

B C D

F G H

J K

Use DFS to find a path
between F and G

Depth-First Search

60

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

Depth-First Search

61

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

Depth-First Search

62

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty stack
3. Enqueue the desired start

node and mark it as visited

Depth-First Search

63

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty stack
3. Enqueue the desired start

node and mark it as visited

Depth-First Search

64

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty stack
3. Push the desired start node

and mark it as visited

F

Depth-First Search

65

A

E

I

L

B C D

F G H

J K

LOOP PROCEDURE:
1. Pop a node

2. For each adjacent node, if
that node has never been

pushed, then push

Depth-First Search

66

A

E

I

L

B C D

G H

J K

F

Depth-First Search

67

A

E

I

L

B C D

G H

J K

F

K

E

D

B

A

Depth-First Search

68

A

E

I

L

B C D

G H

J K

F

K

E

D

B

Depth-First Search

69

A

E

I

L

B C D

G H

J K

F

K

E

D

B

Depth-First Search

70

A

E

I

L

B C D

G H

J K

F

K

E

D

Depth-First Search

71

A

E

I

L

B C D

G H

J K

F

K

E

D

Depth-First Search

72

A

E

I

L

B C D

G H

J K

F

K

E

D

H

C

Depth-First Search

73

A

E

I

L

B C D

G H

J K

F

K

E

D

H

Depth-First Search

74

A

E

I

L

B C D

G H

J K

F

K

E

D

H

Depth-First Search

75

A

E

I

L

B C D

G H

J K

F

K

E

D

Depth-First Search

76

A

E

I

L

B C D

G H

J K

F

K

E

D

Depth-First Search

77

A

E

I

L

B C D

G H

J K

F

K

E

D

Depth-First Search

78

A

E

I

L

B C D

G H

J K

F

K

E

D

DFS Algorithm

79

Breadth-First Search

80

Breadth-First Search

81

A

E

I

L

B C D

F G H

J K

Use BFS to find the
shortest path between

F and G

Breadth-First Search

82

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

Breadth-First Search

83

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

Breadth-First Search

84

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

Breadth-First Search

85

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

Breadth-First Search

86

A

E

I

L

B C D

F G H

J K

TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start

node and mark it as visited

F

Breadth-First Search

87

A

E

I

L

B C D

F G H

J K

LOOP PROCEDURE:
1. Dequeue a node

2. For each adjacent node, if
that node has never been
enqueued, then enqueue

Breadth-First Search

88

A

E

I

L

B C D

G H

J K

F

Breadth-First Search

89

A

E

I

L

B C D

G H

J K

F A B D E K

Breadth-First Search

90

A

E

I

L

B C D

G H

J K

F B D E K

Breadth-First Search

91

A

E

I

L

B C D

G H

J K

F B D E K

Breadth-First Search

92

A

E

I

L

B C D

G H

J K

F D E K

Breadth-First Search

93

A

E

I

L

B C D

G H

J K

F D E K

Breadth-First Search

94

A

E

I

L

B C D

G H

J K

F D E K C H

Breadth-First Search

95

A

E

I

L

B C D

G H

J K

F E K C H

Breadth-First Search

96

A

E

I

L

B C D

G H

J K

F E K C H

Breadth-First Search

97

A

E

I

L

B C D

G H

J K

F K C H

Breadth-First Search

98

A

E

I

L

B C D

G H

J K

F K C H

Breadth-First Search

99

A

E

I

L

B C D

G H

J K

F K C H I

Breadth-First Search

100

A

E

I

L

B C D

G H

J K

F C H I

Breadth-First Search

101

A

E

I

L

B C D

G H

J K

F C H I

Breadth-First Search

102

A

E

I

L

B C D

G H

J K

F C H I

Breadth-First Search

103

A

E

I

L

B C D

G H

J K

F

BFS Algorithm

104

BFS vs DFS

• Running BFS or DFS from a node in a graph will visit the same set of

nodes, but probably in a different order

• BFS will visit nodes in increasing order of distance
• Will give you the shortest path

• DFS does visit nodes in some interesting order, but not order of

distance
• Take CS161 for more info

105

Shortest Path

What is the shortest path from A to B?

106

D C

A B

Shortest Path

What is the shortest path from A to B?

• Use BFS!

107

A

D

B

C

Shortest Weighted Path

108

D C

12949

10

5

2

A B

What is the shortest weighted path

from A to B?

Shortest Weighted Path

What is the shortest weighted path

from A to B?

• BFS doesn’t work here

109

D C

12949

10

5

2

A B

Dijkstra's Algorithm

110

Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of
electricity lines and oil pipelines, network routing protocols

111

Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of
electricity lines and oil pipelines, network routing protocols

112

Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of
electricity lines and oil pipelines, network routing protocols

113

Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of
electricity lines and oil pipelines, network routing protocols

114

Dijkstra's Algorithm

115

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

Algorithm:

1. Of the unseen nodes, find the node that
currently has the shortest distance from the
start

2. Look at this node's neighbors, and update the
total distance to the neighbors based on their
distance and the distance already to this node.

3. If the node visited is the destination, stop
4. Repeat from step 1

Dijkstra's Algorithm

116

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start

Previous

Seen?

SF

SJ

Dijkstra's Algorithm

117

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous

Seen?

SF

SJ

Dijkstra's Algorithm

118

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen?

SF

SJ

Dijkstra's Algorithm

119

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N

SF

SJ

Dijkstra's Algorithm

120

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

121

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

122

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

SJ

Dijkstra's Algorithm

123

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

SJ

Dijkstra's Algorithm

124

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

SJ

Dijkstra's Algorithm

125

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous - SJ SJ

Seen? N N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

SJ

Dijkstra's Algorithm

126

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

SJ

Dijkstra's Algorithm

127

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

128

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

129

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

130

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 ∞ ∞ ∞ ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

131

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

132

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

133

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

134

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

135

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

136

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

137

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Which nodes’ distances will be updated next in the table and

what will those distances become?

��

Dijkstra's Algorithm

138

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

139

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

140

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

141

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

142

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

143

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

144

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

145

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

146

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

147

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B C A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

148

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

149

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Try to find the shortest weighted path from SJ

Dijkstra's Algorithm

150

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

151

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

152

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 ∞ 30 ∞

Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

153

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 32 30 48

Previous - SJ SJ B C A B

Seen? Y Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

154

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 32 30 48

Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

155

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 32 30 48

Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

156

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 32 30 48

Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

157

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

13
1

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 32 30 48

Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

158

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 45 32 30 48

Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

159

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C A G B G

Seen? Y Y Y Y N N N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

160

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y N N N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

161

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

162

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

163

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

164

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y N N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

165

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

166

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

167

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

168

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

169

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

170

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y N Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

171

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

Step 2: Look at this node's neighbors, and update the total

distance to the neighbors based on their distance and the

distance already to this node

Dijkstra's Algorithm

172

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

173

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

Step 1: Of the unseen nodes, find the node that currently has

the shortest distance from the start

Dijkstra's Algorithm

174

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

We’re done! Shortest weighted path is of length 33

with a path of ??

Dijkstra's Algorithm

175

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance
from start 0 5 10 18 31 32 32 30 33

Previous - SJ SJ B C D G B F

Seen? Y Y Y Y Y Y Y Y N

We’re done! Shortest weighted path is of length 33

with a path of SJ→B→G→F→SF

Demo
https://bit.ly/graph_demo

176

https://qiao.github.io/PathFinding.js/visual/

177

A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

178

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

179

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

180

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Previous -

Seen? N N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

181

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

182

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

183

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Dijkstra's Algorithm

184

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N N N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

185

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N Y N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

186

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N Y N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

187

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N Y N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

188

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Previous - A A A A A

Seen? Y N N N Y N N N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

189

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 9 ∞ ∞

Previous - A A A A A G

Seen? Y N N N Y N Y N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

190

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 9 ∞ ∞

Previous - A A A A A G

Seen? Y N N N Y N Y N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Dijkstra's Algorithm

191

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 9 ∞ ∞

Previous - A A A A A G

Seen? Y N N N Y N Y N N N
A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

Doesn’t seem very efficient

A* Algorithm

192

A* Algorithm

• Finds the shortest weighted path from one node to another

• Uses external information about the graph

• Heuristic: estimates the cost of the cheapest path to the goal
• Should always underestimate the distance to the goal, because if it

overestimates, it could find a non-optimal solution

• If the distance to the destination is closer, weight the nodes in that

direction to be preferable
• priority(u) = weight(s, u) + heuristic(u, d)

193

A* Algorithm

194

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Distance
+ future

Previous -

Seen? N N N N N N N N N N

A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

What is the shortest weighted path from A→J?

195

A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

Node Distance to J Dist/Smallest Dist

A 301 2.6

B 232 2

C 180 1.6

D 116 1

E 400 3.4

F 441 3.8

G 425 3.7

H 386 3.3

I 154 1.3

J 0 0

What is the shortest weighted path from A→J?

A* Algorithm

196

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Distance
+ future

Previous -

Seen? N N N N N N N N N N

A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

What is the shortest weighted path from A→J?

197

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Distance
+ future 2.6

Previous -

Seen? N N N N N N N N N N

A

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

198

A B C D E F G H I J

Distance
from start 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Distance
+ future 2.6

Previous -

Seen? N N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

199

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6

Previous - A A A A A

Seen? N N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

200

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14

Previous - A A A A A

Seen? N N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

201

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6

Previous - A A A A A

Seen? N N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

202

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? N N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

203

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? Y N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7

6

A

A* Algorithm

204

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? Y N N N N N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

205

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? Y N N N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

206

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? Y N N N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

207

A B C D E F G H I J

Distance
from start 0 12 8 ∞ 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? Y N N N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

208

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 5.4

11.
8

9.7

Previous - A A A A A

Seen? Y N N N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

209

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7

Previous - A A C A A A

Seen? Y N Y N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

210

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7

Previous - A A C A A A

Seen? Y N Y N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

211

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7

Previous - A A C A A A

Seen? Y N Y N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

212

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 ∞ ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7

Previous - A A C A A A

Seen? Y N Y N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

213

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7

Previous - A A C A A A

Seen? Y N Y N Y N N N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

214

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

Previous - A A C A A A G

Seen? Y N Y N Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

215

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

Previous - A A C A A A G

Seen? Y N Y N Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

216

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

Previous - A A C A A A G

Seen? Y N Y N Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

217

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 ∞ ∞

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

Previous - A A C A A A G

Seen? Y N Y N Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

218

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 12

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

Previous - A A C A A A G

Seen? Y N Y N Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

219

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 12

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

4

Previous - A A C A A A G D

Seen? Y N Y N Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

220

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 12 11

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

4 11

Previous - A A C A A A G D D

Seen? Y N Y Y Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

A* Algorithm

221

A B C D E F G H I J

Distance
from start 0 12 8 9 2 7 6 9 12 11

Distance
+ future 2.6 14 9.6 10 5.4

11.
8

9.7
12.
3

4 11

Previous - A A C A A A G D D

Seen? Y N Y Y Y N Y N N N

F G

E
H

B

C

D

JI
4

13

7 1

812

6

3

2

7
6

A

We’re done! Shortest weighted path is of length 11 from A→C→D→J

A* Algorithm

Extensions

• There are many, many different graph algorithms out there

• Other famous graph algorithms:
• Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

• Topological Sort: "Sort" the nodes in a dependency graph in such a way

that traversing the nodes in order results in all dependencies being

fulfilled at each point in time.

• Traveling salesman: Given a map of cities and the distances between

them, find the shortest path that traverses all cities in the map.

222

https://en.wikipedia.org/wiki/Category:Graph_algorithms

Recap

• Graphs are a linked data structure with almost no rules
• Represent in code with either an adjacency list or matrix

• Depth-First Search: does not always return the shortest path, though it
may be faster in some cases

• Breadth-First Search: returns the shortest path, but it only works on
unweighted graphs

• Dijkstra’s Algorithm: returns the shortest weighted path, but not
necessarily the most efficient

• A* Algorithm: returns the shortest weighted path using heuristics, and
is often thought of as gold standard

223

Have a great weekend! 🌻

224

