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Announcements

• Assignment 6 (last assignment!) has been released
• No late days beyond the grace period (next Thursday 11:59pm)

• YEAH hours on Canvas

• Assignment Retroactive Citation Form will be released tomorrow
• Due by Friday, August 18th at 11:59pm

• No attendance tickets next week

• Slightly personal note: My last lecture for the quarter and last lecture 

at Stanford (ever?), so let’s have fun!
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Roadmap

Core 
Tools

C++

Using Abstractions

Abstract Data 
Structures
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Algorithmic 
Analysis

Recursion

Memory 
Management

Object-Oriented 
Programming

Linked 
Data 

Structures

Advanced 
Algorithms

Building Abstractions



Graphs
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A Social Network
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Molecules
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Interstate Highway System
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Flowcharts
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The Internet (1971)
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The Internet (2023)
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What is a graph?

11

graph
a structured way to represent

relationships between different entities



Graph Terminology

A graph consists of      

a set of nodes 

connected by edges.
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Types of Graphs

• Directed: unidirectional relationships between nodes
• Represented by a pointed arrow

• An action/verb that implies only one direction

• Ex:  I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't 

follow me back
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Types of Graphs

• Undirected: bidirectional relationships between nodes
• Represented with an arrow-less line

• An action/verb that inherently applies to both entities

• Ex:  I am related to my sister and she is related to me
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Types of Graphs

• Weighted: not all relationships between entities are equal
• Each edge is assigned a numerical "weight" representing its relative 

significance/strength.

• Ex:  Different airports are different distances from each other
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Types of Graphs

• Unweighted: all relationships between entities are equal
• Each edge has equal significance and no label

• Ex: All connected words in a word ladder are one letter apart
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Social Network

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?
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Social Network

Nodes: People

Edges: Friendships/Following

Directed (Instagram) or 

undirected (Facebook)

Unweighted
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Molecules

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?
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Molecules

Nodes: Atoms

Edges: Bonds

Undirected

Weighted
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Interstate Highway System

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?
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Interstate Highway System

Nodes: Cities

Edges: Roads

Undirected

Weighted
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Internet

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?
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Internet

Nodes: Devices (phones, 
computers, etc)

Edges: Connection Pathways 
(Bluetooth, Wifi, Ethernet, cables)

Undirected

Unweighted
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Linked Data Structures

• We've already seen nodes connected by edges before when 

discussing linked lists and trees

• What differentiates these linked data structures?
• Linked lists: Linear structure, each node connected to at most one other 

node

• Trees: Nodes can connect to multiple other nodes, no cycles, parent/child 

relationship and a single, special root node.

• Graphs: No restrictions. It's the wild, wild west of the node-based world!
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Wild World of Graphs

• Can have cycles

• No notion of a parent-child 

relationship between nodes

• No root node

• Most powerful, flexible, and 

expressive abstraction that we can 

use to model relationships between 

different distributed entities
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Representing Graphs
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Approach 1: Adjacency List

• We can represent a graph as a map 

from nodes to the collection of 

nodes that each node is adjacent to.
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Approach 1: Adjacency List

• We can represent a graph as a map 

from nodes to the collection of 
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Approach 1: Adjacency List

• An adjacency list can come in a number of different forms:
• Map<Node, Set<Node>>
• Map<Node, Vector<Node>>
• Vector<Vector<Node>>

• The core idea is that we have some kind of mapping associating 

each node with its outgoing edges (or neighboring nodes)

• How might you incorporate weights?
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Approach 1: Adjacency List

• An adjacency list can come in a number of different forms:
• Map<Node, Set<Edge>>
• Map<Node, Vector<Edge>>
• Vector<Vector<Edge>>

• The core idea is that we have some kind of mapping associating 

each node with its outgoing edges (or neighboring nodes)

• How might you incorporate weights?
• Create an Edge struct that holds both a Node and a weight!
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Approach 2: Adjacency Matrix

• We can also use a two-dimensional 

matrix to represent the relationships 

in a graph.
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Approach 2: Adjacency Matrix

• We can also use a two-dimensional 

matrix to represent the relationships 

in a graph.
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Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e. 

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Storing weights is more straightforward than in the adjacency list

• Computer hardware has been optimized for matrix math - so using a grid 

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?

51



Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e. 

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid 

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?

52



Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e. 

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid 

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?

53



Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e. 

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid 

can help us perform complex matrix operations for data analysis

• How might you incorporate weights?
• Store other numbers besides 1 in the matrix

54



Approach 2: Adjacency Matrix

• Adjacency matrices are beneficial when our graph isn’t sparse, i.e. 

there aren’t a lot of 0s
• Otherwise, storing a mostly-0s matrix is not space efficient

• Other benefits:
• Grid lookup is super fast!

• Computer hardware has been optimized for matrix math - so using a grid 

can help us perform complex matrix operations for data analysis

• Storing weights is more straightforward than in the adjacency list

• How might you incorporate weights?
• Store other numbers besides 1 in the matrix

55



Graph Algorithms
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Motivation
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Depth-First Search
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Depth-First Search
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Use DFS to find a path 
between F and G



Depth-First Search
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TO START:
1. Mark all nodes as unvisited

2. Make an empty queue
3. Enqueue the desired start 

node and mark it as visited



Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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E
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L

B C D

F G H
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TO START:
1. Mark all nodes as unvisited

2. Make an empty stack
3. Push the desired start node 

and mark it as visited

F



Depth-First Search
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LOOP PROCEDURE:
1. Pop a node

2. For each adjacent node, if 
that node has never been 

pushed, then push
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Depth-First Search
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Depth-First Search
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Depth-First Search

69

A

E

I

L

B C D

G H

J K

F

K

E

D

B



Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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DFS Algorithm
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Breadth-First Search
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Breadth-First Search
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Use BFS to find the 
shortest path between 

F and G



Breadth-First Search
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Breadth-First Search
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LOOP PROCEDURE:
1. Dequeue a node

2. For each adjacent node, if 
that node has never been 
enqueued, then enqueue
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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BFS vs DFS

• Running BFS or DFS from a node in a graph will visit the same set of 

nodes, but probably in a different order

• BFS will visit nodes in increasing order of distance
• Will give you the shortest path

• DFS does visit nodes in some interesting order, but not order of 

distance
• Take CS161 for more info
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Shortest Path

What is the shortest path from A to B?

106
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Shortest Path

What is the shortest path from A to B?

• Use BFS!
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Shortest Weighted Path
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What is the shortest weighted path         

from A to B?



Shortest Weighted Path

What is the shortest weighted path         

from A to B?

• BFS doesn’t work here
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Dijkstra's Algorithm
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Dijkstra's Algorithm

• Finds the shortest weighted path from one node to another
• Greedy algorithm

• Prioritizes finding a solution by what is "best right now"
• Looks at its options and always chooses whatever gets it closer to a 

solution in the best possible way given the current situation
• Ex: Change We Can Believe In (Section 4, Problem 2)

• Many different ways to model this
• Can use a priority queue, where weights become priorities
• Can use a table of nodes

• Real world uses: shortest paths on maps (Ethiopia), tracks of 
electricity lines and oil pipelines, network routing protocols
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Dijkstra's Algorithm
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Algorithm:

1. Of the unseen nodes, find the node that 
currently has the shortest distance from the 
start

2. Look at this node's neighbors, and update the 
total distance to the neighbors based on their 
distance and the distance already to this node.

3. If the node visited is the destination, stop
4. Repeat from step 1
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the shortest distance from the start
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Previous - SJ SJ A A

Seen? Y N N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Distance 
from start 0 5 10 205 ∞ 45 ∞ ∞ ∞

Previous - SJ SJ A A

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Seen? Y Y N N N N N N N

Which nodes’ distances will be updated next in the table and 

what will those distances become?

�� 
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Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
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Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y N N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Distance 
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Distance 
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
from start 0 5 10 18 ∞ 45 ∞ 30 ∞

Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Distance 
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Previous - SJ SJ B A B

Seen? Y Y Y N N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Seen? Y Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Try to find the shortest weighted path from SJ
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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SJ A B C D E F G SF

Distance 
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Seen? Y Y Y Y N N N N N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Seen? Y Y Y Y N N N Y N

Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start



Dijkstra's Algorithm

167

SF

SJ

A B

C

D

E

F G

1

2

5 6

18

15
20

131

9

40

200 8

5 10

SJ A B C D E F G SF

Distance 
from start 0 5 10 18 31 32 32 30 48

Previous - SJ SJ B C D G B G

Seen? Y Y Y Y Y Y N Y N

Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 2: Look at this node's neighbors, and update the total 

distance to the neighbors based on their distance and the 

distance already to this node
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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Step 1: Of the unseen nodes, find the node that currently has 

the shortest distance from the start
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We’re done! Shortest weighted path is of length 33 

with a path of ??
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We’re done! Shortest weighted path is of length 33

with a path of SJ→B→G→F→SF



Demo
https://bit.ly/graph_demo
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https://qiao.github.io/PathFinding.js/visual/
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A B C D E F G H I J
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Doesn’t seem very efficient
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A* Algorithm

• Finds the shortest weighted path from one node to another

• Uses external information about the graph

• Heuristic: estimates the cost of the cheapest path to the goal
• Should always underestimate the distance to the goal, because if it 

overestimates, it could find a non-optimal solution

• If the distance to the destination is closer, weight the nodes in that 

direction to be preferable
• priority(u) = weight(s, u) + heuristic(u, d)
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What is the shortest weighted path from A→J?
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Node Distance to J Dist/Smallest Dist

A 301 2.6

B 232 2

C 180 1.6

D 116 1

E 400 3.4

F 441 3.8

G 425 3.7

H 386 3.3

I 154 1.3

J 0 0

What is the shortest weighted path from A→J?
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What is the shortest weighted path from A→J?
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We’re done! Shortest weighted path is of length 11 from A→C→D→J 
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Extensions

• There are many, many different graph algorithms out there

• Other famous graph algorithms:
• Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

• Topological Sort: "Sort" the nodes in a dependency graph in such a way 

that traversing the nodes in order results in all dependencies being 

fulfilled at each point in time.

• Traveling salesman: Given a map of cities and the distances between 

them, find the shortest path that traverses all cities in the map.
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https://en.wikipedia.org/wiki/Category:Graph_algorithms


Recap

• Graphs are a linked data structure with almost no rules
• Represent in code with either an adjacency list or matrix

• Depth-First Search: does not always return the shortest path, though it 
may be faster in some cases

• Breadth-First Search: returns the shortest path, but it only works on 
unweighted graphs

• Dijkstra’s Algorithm: returns the shortest weighted path, but not 
necessarily the most efficient

• A* Algorithm: returns the shortest weighted path using heuristics, and 
is often thought of as gold standard
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Have a great weekend! 🌻
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