
Huffman Coding
Amrita Kaur

August 8, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 5 due tomorrow at 11:59pm

• Assignment 6 will be released tomorrow
• YEAH Hours from 4-5pm with Bryant (different time!)

• Final exam materials are available here
• August 18th from 3:30-6:30pm (3 hours)

• Same format and grading criteria as midterm

• Content from the entire quarter, with an emphasis of latter half

2

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/

Feedback

3

Feedback

Things you liked:

“You use a ton of examples in class (really helps me :))”

“I LOVE THE HW STRUCTURE FOR THIS WEEK!!!! I really really like how
there is a requirement box it helped me not real overwhelmed or like I
was missing anything.”

“Friday review sessions turn out to be super useful for topics that take
a little more time & effort to sink in”

“I like the code tracing and diagrams on the slides!”

4

Feedback

Places we can improve:

“I think it would be great if maybe you could do this once or twice

weekly (on Ed or maybe at the end of a lecture) where you show us

correct code but code that is stylistically bad”

“Possibly varying the feedback questions a bit?”

“Can we do more finals review material earlier this time?”

5

Feedback

We hear you…
“Explain more niche cases, such as pointers and references, pointers vs
references, dereferencing pointers, (void) pointer, ect.” Take CS107!

“Perhaps less required testing on the homework? It sometimes takes
about as long as the actual coding :/”

“Maybe having some of the coding we did in lecture uploaded
somewhere.” On the course website!

“[SL] is the best. [They] deserves a raise” We agree!!

6

Feedback

Anything else you would like us to know:

“The "cute" coding comics make me want to throw my computer out the
window.”

“I feel like saying "my code is buggy" is too cute, it should be called waspy
or something. Saying "I have a wasp in my code" feels way more fitting.”

“I think I’m going to pass!”

“I asked a girl out to go watch the barbie movie with me and she said no :(“

7

Recap: Binary Search Trees

8

Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X

9

6

82

41

3

Takeaways

• There can be multiple valid BSTs for the same set of data

• How you construct the tree matters!

10

8

102

12

7

4

8

12

10

4

2 72

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

11

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

The Power of Abstraction

• The client doesn’t need to know we’re using a BST behind the

scenes, they just need to be able to store their data
• After all, you’ve used a Set all quarter without needing to know this!

12

OurSet set;
set.add(8);
set.add(9);
set.add(4);
set.contains(5); // false
set.contains(4); // true
set.remove(8);
set.remove(9);

???

BST Lookups
These data structures are designed for fast lookups!

13

BST Lookups

14

8

124

211072

159 1161 3

Is 11 in this BST?

BST Lookups

15

8

124

211072

159 1161 3

Is 11 in this BST?
We start at the root.

8 is too small, so we look to the
right.

BST Lookups

16

8

124

211072

159 1161 3

Is 11 in this BST?
12 is too big, so we look to

the left.

BST Lookups

17

8

124

211072

159 1161 3

Is 11 in this BST?
10 is too small, so we look to

the right.

BST Lookups

18

8

124

211072

159 1161 3

Is 11 in this BST?

We found 11!

BST Lookups

19

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?

BST Lookups

20

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?8 is too big, so we look

to the left.

BST Lookups

21

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?4 is too small, so we

look to the right.

BST Lookups

22

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?7 is too big, so we look

to the left.

BST Lookups

23

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?6 is too big, so we look

to the left.

BST Lookups

24

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?

And we fall off the tree!

BST Lookups

25

8

124

211072

159 1161 3

A value isn’t in our BST if
we “fall off” the tree

looking for it.

BST Insertion

26

BST Insertion

27

8

124

211072

159 1161 3

How might we insert 5 into
this BST?

BST Insertion

28

8

124

211072

159 1161 3

Search for where the 5
should be…

How might we insert 5 into
this BST?

BST Insertion

29

8

124

211072

159 111 3

How might we insert 5 into
this BST?

… and insert the 5 there

5

6

Takeaways

• To insert/delete nodes, we have to look them up in our BST
• This is why insertions/deletions are O(log n), just like lookups

30

8

124

211072

159 1161

Let’s code it up!
Implement OurSet with a BST

31

Roadmap

Core
Tools

C++

Using Abstractions

Abstract Data
Structures

32

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Advanced
Algorithms

Building Abstractions

Data Storage and Representation

33

How do computers store and represent data?

34

How do computers store and represent data?

35

Just a Little Bit of Magic

• Digital data is stored as sequences of 0s and 1s
• These sequences are encoded in physical devices by magnetic orientation

on small (10 nm) metal particles or by trapping electrons in small gates

• A single 0 or 1 is called a bit

• A group of 8 bits is called a byte

00000000, 00000001, 00000010, 00000011, 00000100, …

• There are 28, so 256, different bytes
• Good recursive backtracking practice: Write a function that lists all

possible byte sequences!

36

Remember: The Hexadecimal Number System

• We typically represent numbers using the decimal (base-10) number system
• Each place value represents a factor of ten (ones, tens, hundreds, etc.)
• 10 possible digits for each place value

• In computer systems,it is often more convenient to express numbers using
the hexadecimal (base-16) number system.
• Each place value represents a factor of 16 (160, 161 , 162, etc.)
• 16 possible "digits" for each place value.

• 10 numerical digits (0-9) and the letters ‘a’ to ‘f’
• 0 1 2 3 4 5 6 7 8 9 a(10) b(11) c(12) d(13) e(14) f(15)

• The prefix 0x is used to communicate that a number is being expressed in
hexadecimal

37

Binary Number System

• The system of using sequences of 0s and 1s to represent data is called binary
• Binary can be used to encode numbers, text, images, etc.

• Binary numbers are expressed using a base-2 number system
• Each place value represents a power of 2 (20, 21 , 22, etc.)

• Representing my age in different numerical systems:
• In base-10, I’m 24 (2 * 101 + 4 * 100 = 20 + 4)
• In base-16, I’m 18 (1 * 161 + 8 * 160 = 16 + 8)
• In base-2, I’m 11000 (1 * 24 + 1 * 23 + 0 * 22 + 0 * 21 + 0 * 20 = 16 + 8 + 0 + 0 + 0)

• The prefix 0b is (sometimes) used to communicate a number is being
expressed in binary

38

39

Representing Text

• We think of strings as being made of characters representing

letters, numbers, emojis, etc

• However, we just said that computers require everything to be

written as zeros and ones

• To bridge the gap, we need to agree on some universal way of

representing characters as sequences of bits

• Idea: ASCII!

40

41

42

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

010011010100000101010000

43

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

01001101|01000001|01010000

44

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

01001101|01000001|01010000

M A P

45

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

01001101|01000001|01010000

M A P

46

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

01001101|01000001|01010000

M A P

47

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

010011010100000101010000

MAP

48

ASCII Observations

• Every characters uses exactly the same number of bits, 8, which

makes it very easy to differentiate between the characters

• Any message with n characters will use exactly 8n bits
• Space for RAMBUNCTIOUS: 8*12 = 96 bits

• Space for CS106BisCool: 8*12 = 96 bits

• Let’s make this more efficient by reducing the number of bits we

need to encode text

49

Main Character Today

KIRK’S DIKDIK

50

ASCII Encoding

• ASCII uses 8 bits to represent each character

51

K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code

ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent KIRK’S DIKDIK in ASCII code

52

K I R K ’ S _ D I K D I K

K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code

ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent KIRK’S DIKDIK in ASCII code

53

0100
1011

0100
1001

0101
0010

0100
1011

0010
0111

0101
0011

0010
0000

0100
0100

0100
1001

0100
1011

0100
0100

0100
1001

0100
1011

K I R K ’ S _ D I K D I K

K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code

A Different Encoding

• If we’re specifically writing the string KIRK’S
DIKDIK, which only has seven different

characters, using full bytes is wasteful

• Let’s use a 3-bit encoding instead

54

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

K I R K ’ S _ D I K D I K

character code

A Different Encoding

• If we’re specifically writing the string KIRK’S
DIKDIK, which only has seven different

characters, using full bytes is wasteful

• Let’s use a 3-bit encoding instead

55

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

000 001 001 000 011 100 101 101 001 000 101 001 000

K I R K ’ S _ D I K D I K

character code

A Different Encoding

What is the mystery word represented by this 3-bit

encoding?

010001110

56

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

A Different Encoding

What is the mystery word represented by this 3-bit
encoding?

010|001|110

57

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

A Different Encoding

What is the mystery word represented by this 3-bit
encoding?

010|001|110
R I D

58

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

A Different Encoding

What is the mystery word represented by this 3-bit
encoding?

010|001|110
R I D

59

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

A Different Encoding

What is the mystery word represented by this 3-bit
encoding?

010|001|110
R I D

60

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

A Different Encoding

What is the mystery word represented by this 3-bit

encoding?

010001110

RID

61

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

A Different Encoding

• If we’re specifically writing the string KIRK’S
DIKDIK, which only has seven different

characters, using full bytes is wasteful

• Let’s use a 3-bit encoding instead

• This uses 37.5% of the space as what ASCII uses!

62

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

000 001 001 000 011 100 101 101 001 000 101 001 000

K I R K ’ S _ D I K D I K

character code

The Journey Ahead

• Storing data using the ASCII encoding is portable across systems,
but is not ideal in terms of space usage

• Building custom codes for specific strings might let us save space
• Idea: Use this approach to build a compression algorithm to

reduce the amount of space needed to store text
• We want to find a way to

give all characters a bit pattern,
that both the sender and receiver know about, and
that can be decoded uniquely

63

Compression Algorithms

• Compression algorithms are a whole class of real-world algorithms that have
widespread prevalence and importance

• We’re interested in algorithms that provide lossless compression on a stream
of characters or other data
• We make the amount of data smaller without losing any of the details, and we can

decompress the data o exactly the same as it was before compression
• Virtually everything you do online involves data compression

• When you visit a website, download a file, or transmit video/audio, the data is
compressed when sending and decompressed when receiving

• A video stream on Zoom has a compression of roughly 2000:1, meaning that a 2MB
image is compressed down to just 1000 bytes

• Compression algorithms identify patterns in data and take advantage of those
to come up with more efficient representations of that data

64

A Different Encoding

• Let’s make this encoding even more efficient!

65

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

000 001 001 000 011 100 101 101 001 000 101 001 000

K I R K ’ S _ D I K D I K

character code

Take Advantage of Redundancy

• Not all letters have the same frequency in

KIRK’S DIKDIK
• We can calculate the frequencies of each letter

66

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

Take Advantage of Redundancy

• Not all letters have the same frequency in

KIRK’S DIKDIK
• We can calculate the frequencies of each letter

• So far, we’ve given each letter a code of the

same length

• Maybe we can give shorter encodings to more

frequent letters to save space?

67

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

Morse Code

• Morse code is an example of a

coding system that makes use of

this insight

• The codes for frequent letters (ex:

e, t, a) are much shorter than the

codes for infrequent letters (ex: q,

y, j)

68

Our New Code

69

K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

0 1 01 0 10 11 100 00 1 0 00 1 0

K I R K ’ S _ D I K D I K

KIRK’S DIKDIK

01010101110000100010

Our New Code

70

K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

What is the mystery word represented by this

encoding?

0110011

Our New Code

71

K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

KIRK’S DIKDIK

01010101110000100010

Our New Code

72

K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

KIRK’S_DIKDIK

01010101110000100010

RRRRI_KK’D’

What went wrong?

• If we use a different number of bits for each letter, we can’t

necessarily uniquely determine the boundaries between letters

• We need an encoding that makes it possible to determine where

one characters ends and the next begins
• Codes for each character need to be unique and unambiguous

• How can we do this?

73

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

• Here’s a sample prefix code for the letters in

KIRK’S_DIKDIK

74

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

Prefix Code

75

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

KIRK’S_DIKDIK

1001001100001101110011101101110110

Prefix Code

76

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001011111101

Prefix Code

77

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001011111101

Prefix Code

78

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001011111101

Prefix Code

79

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001011111101

Prefix Code

80

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|011111101
 R

Prefix Code

81

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|011111101
 R

Prefix Code

82

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|011111101
 R

Prefix Code

83

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|1111101
 R I

Prefix Code

84

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|1111101
 R I

Prefix Code

85

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|1111101
 R I

Prefix Code

86

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|1111101
 R I

Prefix Code

87

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|111|1101
 R I D

Prefix Code

88

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|111|1101
 R I D

Prefix Code

89

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|111|1101
 R I D

Prefix Code

90

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|111|1101
 R I D

Prefix Code

91

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|111|1101
 R I D

Prefix Code

92

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001|01|111|1101
 R I D S

Prefix Code

93

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this

encoding?

001011111101
RIDS

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

• Here’s a sample prefix code for the letters in

KIRK’S_DIKDIK

• This uses just 34 bits, compared to 104 with ASCII

(32.7% of the space)

94

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

Where did this code come from?

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

• Here’s a sample prefix code for the letters in

KIRK’S_DIKDIK

• This uses just 34 bits, compared to 104 with ASCII

(32.7% of the space)

95

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

How can we come up with codes
like this for other strings?

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

• Here’s a sample prefix code for the letters in

KIRK’S_DIKDIK

• This uses just 34 bits, compared to 104 with ASCII

(32.7% of the space)

96

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

What makes a “good” prefix coding
scheme?

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

• Here’s a sample prefix code for the letters in

KIRK’S_DIKDIK

• This uses just 34 bits, compared to 104 with ASCII

(32.7% of the space)

97

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

What does this have to do with
trees?

Coding Tree

• We can represent a prefix coding scheme using a binary tree, which

is called a coding tree

98

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

K I R ’ S _ D

0

0

0 0 0 0

1

0 1

1

1

11

Coding Tree

What is the mystery word represented by this encoding?

110001010

99

K I R ’ S _ D

0

0

0 0 0 0

1

0 1

1

1

11

��

Coding Trees

• Not all binary trees work as coding trees

• Why is this binary tree not a coding tree?

100

B C E F

0

0 0

1

11
A D

Coding Trees

• Not all binary trees work as coding trees

• Why is this binary tree not a coding tree?
• Doesn’t give a prefix code!

• The code for A is a prefix for the codes for

B and C, and the code for D is a prefix for

the codes for E and F

101

B C E F

0

0 0

1

11
A D

Coding Trees

• A coding tree is valid if all the letters are

stored in the leaves, with internal nodes

only used for routing

102

C 0 6

0

0 0

1

11

S 1

0 1

Coding Trees

• A coding tree is valid if all the letters are

stored in the leaves, with internal nodes

only used for routing

103

C 0 6

0

0 0

1

11

S 1

0 1

Where did this code come from? ✅

Coding Trees

• A coding tree is valid if all the letters are

stored in the leaves, with internal nodes

only used for routing

104

C 0 6

0

0 0

1

11

S 1

0 1

How do we make a “good” prefix
coding scheme?

Huffman Coding

105

It’s 1951. You’re at MIT as an electrical
engineering graduate student.

106

It’s 1951. You’re at MIT as an electrical
engineering graduate student.

107

You have a choice for your class: take the final
exam or write a term paper

108

You choose to write the term paper.
The prompt is: “Find the most efficient method of
representing numbers, letters, or symbols using

binary code”

109

David Huffman tries to solve this
problem for months.

110

It’s 1951, so no Google or StackOverflow.

111

Important note:
Neither his professor, Robert M. Fano, nor the

inventor of information theory, Claude Shannon,
had any idea how to solve it

112

So David Huffman gives up, and starts studying
for the final exam instead.

113

But then, epiphany!

114

“It was my luck to be there at the
right time and also not have my

professor discourage me by telling
me that other good people had

struggled with his problem.”

115

Link to full story

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf

The Algorithm

116

Huffman Coding

• Huffman coding is an algorithm for generating a coding tree for a
given piece of data that produces a provably minimal encoding for
a given pattern of letter frequencies

• Different data (different text, different images, etc) will each have
their own personalized Huffman coding tree

• We want an encoding tree that
• Allows for variable length codes (so most frequent characters can get

shorter codes, aka their leaf nodes are closer to the root node)
• Represents a prefix code system (no ambiguity in when characters stop

and start)

117

Goal: Build the optimal encoding tree for
KIRK’S DIKDIK

118

1. Build the frequency table

Input text: KIRK’S DIKDIK

119

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

2. Initialize an empty priority queue

120

higher priority lower priority

3. Add all unique characters as leaf nodes to queue

121

higher priority lower priority

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

’ RS_ KID

1 1 1 1 2 3 4

4. Build the Huffman tree by merging nodes

122

higher priority lower priority

’ RS_ KID

1 1 1 1 2 3 4

123
higher priority lower priority

’ RS_ KID

1 1 1 1 2 3 4

124
higher priority lower priority

’ RS KID

1 1 1 2 3 4

_

1

125
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

126
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

127
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2

128
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2

129
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2

130
higher priority lower priority

R KID

1 2 3 4

_

1

S

1

0 1

2

’

1

131
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

132
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

133
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2

134
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2

135
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2

136
higher priority lower priority

KID

2 3 4

’

1

R

1

0 1

2

_

1

S

1

0 1
2

137
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

138
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

0 1

139
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

0 1

4

140
higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1

’

1

R

1

0 1

2

2

0 1

4

141
higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1
’

1

R

1

0 1

2

2

0 1

4

142
higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

143
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

144
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

145
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

5

146
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

5

147
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
22

0 1

4

I

3

0 1

5

148
higher priority lower priority

K

4

’

1

R

1

0 1
2

I

3

0 1

5

D

2
_

1

S

1

0 1
2

0 1

4

149
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

150
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

151
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8

152
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8

153
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8

154
higher priority lower priority

’

1

R

1

0 1
2

I

3

0 1
5

K

D

2

4

_

1

S

1

0 1
2

0 1
4

0 1

8

155
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

156
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

157
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

13

Huffman Coding Pseudocode

To generate the optimal encoding tree for a given piece of text

1. Build a frequency table that tallies the number of times each character
appears in the text

2. Initialize an empty priority queue that will hold partial trees
3. Create one leaf node per distinct character in the text, and add each leaf

node to the queue where the priority is the frequency of the character
4. While there are two or more trees in the priority queue:

a. Dequeue the two lowest-priority trees
b. Combine them together to form a new tree whose priority is the sum of

the priorities of the two trees
c. Add that tree back to the priority queue

158

Generate Table from Tree

159

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

13

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

160

http://www.youtube.com/watch?v=4lw_UL7p2_g

Decompress

161

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

1001001100001101110011101101110110

Decompress

162

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

1001001100001101110011101101110110

Decompress

163

1001001100001101110011101101110110

Transmitting the Tree

• In order to decompress the text, we have to remember what

encoding scheme we used

• Prefix the compressed data with a header containing information

to rebuild the tree

• Theorem: There is no compression algorithm that can always

compress all inputs
• Proof: Take CS103!

164

Encoded Tree 1001001100001101110011101101110110…

Huffman Coding Recap

• Data compression is a very important real world problem that
relies of patterns in data to find efficient, compact data
representation schemes

• In order to support variable-length encodings for data, we must
use prefix coding schemes, which can be modeled as binary trees

• Huffman coding uses a greedy algorithm to construct encodings by
building a tree from the bottom-up, putting the most frequency
characters higher up in the coding tree

• We must send the encoding table/tree with the compressed
message

165

Assignment 6 - Huffman Coding

• Decode/decompress some data
• Given a flattened tree, turn it back into an encoding tree

• Given a sequence of bits and an encoding tree, decode a message

• Decode a mystery file

166

Assignment 6 - Huffman Coding

• Decode/decompress some data
• Given a flattened tree, turn it back into an encoding tree

• Given a sequence of bits and an encoding tree, decode a message

• Decode a mystery file

• Encode/compress some data
• Build a Huffman Encoding Tree for a particular string of text

• Given an encoding tree, flatten it

• Encode some text to your SL

167

More to Explore

• UTF-8 and Unicode
• A variable length encoding that has replaced ASCII

• Kolmogorov Complexity
• What’s the theoretical limit to compression techniques?

• Adaptive Coding Techniques
• Can you change your encoding system as you go?

• Shannon Entropy
• A mathematical bound on Huffman coding

168

See you tomorrow!

169

