
Huffman Coding
Amrita Kaur

August 8, 2023

Contributions made from previous CS106B Instructors



Announcements

• Assignment 5 due tomorrow at 11:59pm

• Assignment 6 will be released tomorrow
• YEAH Hours from 4-5pm with Bryant (different time!)

• Final exam materials are available here
• August 18th from 3:30-6:30pm (3 hours)

• Same format and grading criteria as midterm

• Content from the entire quarter, with an emphasis of latter half
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https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/


Feedback
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Feedback

Things you liked:

“You use a ton of examples in class (really helps me :))”

“I LOVE THE HW STRUCTURE FOR THIS WEEK!!!! I really really like how 
there is a requirement box it helped me not real overwhelmed or like I 
was missing anything.”

“Friday review sessions turn out to be super useful for topics that take 
a little more time & effort to sink in”

“I like the code tracing and diagrams on the slides!”
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Feedback

Places we can improve:

“I think it would be great if maybe you could do this once or twice 

weekly (on Ed or maybe at the end of a lecture) where you show us 

correct code but code that is stylistically bad”

“Possibly varying the feedback questions a bit?” 

“Can we do more finals review material earlier this time?”
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Feedback

We hear you…
“Explain more niche cases, such as pointers and references, pointers vs 
references, dereferencing pointers, (void) pointer, ect.” Take CS107!

“Perhaps less required testing on the homework? It sometimes takes 
about as long as the actual coding :/”

“Maybe having some of the coding we did in lecture uploaded 
somewhere.” On the course website!

“[SL] is the best. [They] deserves a raise” We agree!!
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Feedback

Anything else you would like us to know:

“The "cute" coding comics make me want to throw my computer out the 
window.”

“I feel like saying "my code is buggy" is too cute, it should be called waspy 
or something. Saying "I have a wasp in my code" feels way more fitting.”

“I think I’m going to pass!”

“I asked a girl out to go watch the barbie movie with me and she said no :(“
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Recap: Binary Search Trees
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Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X

9

6

82

41

3



Takeaways

• There can be multiple valid BSTs for the same set of data

• How you construct the tree matters!
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Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() - 

O(1)
• traversal - O(n2)
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Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)



The Power of Abstraction

• The client doesn’t need to know we’re using a BST behind the 

scenes, they just need to be able to store their data
• After all, you’ve used a Set all quarter without needing to know this!

12

OurSet set;
set.add(8);
set.add(9);
set.add(4);
set.contains(5); // false
set.contains(4); // true
set.remove(8);
set.remove(9);

???



BST Lookups
These data structures are designed for fast lookups!
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BST Lookups
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8

124

211072

159 1161 3

Is 11 in this BST?



BST Lookups

15

8

124

211072

159 1161 3

Is 11 in this BST?
We start at the root.

8 is too small, so we look to the 
right.



BST Lookups

16

8

124

211072

159 1161 3

Is 11 in this BST?
12 is too big, so we look to 

the left.



BST Lookups
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8

124

211072

159 1161 3

Is 11 in this BST?
10 is too small, so we look to 

the right.



BST Lookups
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8

124

211072

159 1161 3

Is 11 in this BST?

We found 11!



BST Lookups
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8

124

211072

159 1161 3

How do we know that 5 
is not in this BST?



BST Lookups
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8

124

211072

159 1161 3

How do we know that 5 
is not in this BST?8 is too big, so we look 

to the left.



BST Lookups
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8

124

211072

159 1161 3

How do we know that 5 
is not in this BST?4 is too small, so we 

look to the right.



BST Lookups
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8

124

211072

159 1161 3

How do we know that 5 
is not in this BST?7 is too big, so we look 

to the left.



BST Lookups
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8

124

211072

159 1161 3

How do we know that 5 
is not in this BST?6 is too big, so we look 

to the left.



BST Lookups
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8

124

211072

159 1161 3

How do we know that 5 
is not in this BST?

And we fall off the tree!



BST Lookups
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8

124

211072

159 1161 3

A value isn’t in our BST if 
we “fall off” the tree 

looking for it.



BST Insertion
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BST Insertion

27

8

124

211072

159 1161 3

How might we insert 5 into 
this BST?



BST Insertion
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8

124

211072

159 1161 3

Search for where the 5 
should be…

How might we insert 5 into 
this BST?



BST Insertion
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8

124

211072

159 111 3

How might we insert 5 into 
this BST?

… and insert the 5 there

5

6



Takeaways

• To insert/delete nodes, we have to look them up in our BST
• This is why insertions/deletions are O(log n), just like lookups
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8

124

211072

159 1161



Let’s code it up!
Implement OurSet with a BST
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Roadmap

Core 
Tools

C++

Using Abstractions

Abstract Data 
Structures
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Algorithmic 
Analysis

Recursion

Memory 
Management

Object-Oriented 
Programming

Linked 
Data 

Structures

Advanced 
Algorithms

Building Abstractions



Data Storage and Representation
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How do computers store and represent data?
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How do computers store and represent data?
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Just a Little Bit of Magic

• Digital data is stored as sequences of 0s and 1s
• These sequences are encoded in physical devices by magnetic orientation 

on small (10 nm) metal  particles or by trapping electrons in small gates

• A single 0 or 1 is called a bit

• A group of 8 bits is called a byte

00000000, 00000001, 00000010, 00000011, 00000100, …

• There are 28, so 256, different bytes
• Good recursive backtracking practice: Write a function that lists all 

possible byte sequences!
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Remember: The Hexadecimal Number System

• We typically represent numbers using the decimal (base-10) number system
• Each place value represents a factor of ten (ones, tens, hundreds, etc.)
• 10 possible digits for each place value

• In computer systems,it is often more convenient to express numbers using 
the hexadecimal (base-16) number system.
• Each place value represents a factor of 16 (160, 161 , 162, etc.)
• 16 possible "digits" for each place value.

• 10 numerical digits (0-9) and the letters ‘a’ to ‘f’
• 0 1 2 3 4 5 6 7 8 9 a(10) b(11) c(12) d(13) e(14) f(15)

• The prefix 0x is used to communicate that a number is being expressed in 
hexadecimal
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Binary Number System

• The system of using sequences of 0s and 1s to represent data is called binary
• Binary can be used to encode numbers, text, images, etc.

• Binary numbers are expressed using a base-2 number system
• Each place value represents a power of 2 (20, 21 , 22, etc.)

• Representing my age in different numerical systems:
• In base-10, I’m 24 (2 * 101 + 4 * 100 = 20 + 4)
• In base-16, I’m 18 (1 * 161 + 8 * 160 = 16 + 8)
• In base-2, I’m 11000 (1 * 24 + 1 * 23 + 0 * 22 + 0 * 21 + 0 * 20 = 16 + 8 + 0 + 0 + 0)

• The prefix 0b is (sometimes) used to communicate a number is being 
expressed in binary
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Representing Text

• We think of strings as being made of characters representing 

letters, numbers, emojis, etc

• However, we just said that computers require everything to be 

written as zeros and ones

• To bridge the gap, we need to agree on some universal way of 

representing characters as sequences of bits

• Idea: ASCII!
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ASCII Decoding

What is the mystery word represented by 

this ASCII encoding?

010011010100000101010000
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ASCII Decoding

What is the mystery word represented by 

this ASCII encoding?

01001101|01000001|01010000
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ASCII Decoding

What is the mystery word represented by 

this ASCII encoding?

01001101|01000001|01010000

M        A       P
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ASCII Decoding

What is the mystery word represented by 

this ASCII encoding?

01001101|01000001|01010000

M        A       P
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ASCII Decoding

What is the mystery word represented by 

this ASCII encoding?

01001101|01000001|01010000

M        A       P
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ASCII Decoding

What is the mystery word represented by 

this ASCII encoding?

010011010100000101010000

MAP
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ASCII Observations

• Every characters uses exactly the same number of bits, 8, which 

makes it very easy to differentiate between the characters

• Any message with n characters will use exactly 8n bits
• Space for RAMBUNCTIOUS: 8*12 = 96 bits

• Space for CS106BisCool: 8*12 = 96 bits

• Let’s make this more efficient by reducing the number of bits we 

need to encode text
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Main Character Today

KIRK’S DIKDIK

50



ASCII Encoding

• ASCII uses 8 bits to represent each character
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K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code



ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent  KIRK’S DIKDIK in ASCII code

52

K I R K ’ S _ D I K D I K

K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code



ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent  KIRK’S DIKDIK in ASCII code
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0100
1011

0100
1001

0101
0010

0100
1011

0010
0111

0101
0011

0010
0000

0100
0100

0100
1001

0100
1011

0100
0100

0100
1001

0100
1011

K I R K ’ S _ D I K D I K

K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code



A Different Encoding

• If we’re specifically writing the string KIRK’S 
DIKDIK, which only has seven different 

characters, using full bytes is wasteful

• Let’s use a 3-bit encoding instead
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

K I R K ’ S _ D I K D I K

character code



A Different Encoding

• If we’re specifically writing the string KIRK’S 
DIKDIK, which only has seven different 

characters, using full bytes is wasteful

• Let’s use a 3-bit encoding instead

55

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

000 001 001 000 011 100 101 101 001 000 101 001 000

K I R K ’ S _ D I K D I K

character code



A Different Encoding

What is the mystery word represented by this 3-bit 

encoding?

010001110
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code



A Different Encoding

What is the mystery word represented by this 3-bit 
encoding?

010|001|110
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code



A Different Encoding

What is the mystery word represented by this 3-bit 
encoding?

010|001|110
R   I   D

58

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code



A Different Encoding

What is the mystery word represented by this 3-bit 
encoding?

010|001|110
R   I   D

59

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code



A Different Encoding

What is the mystery word represented by this 3-bit 
encoding?

010|001|110
R   I   D
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code



A Different Encoding

What is the mystery word represented by this 3-bit 

encoding?

010001110

RID
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code



A Different Encoding

• If we’re specifically writing the string KIRK’S 
DIKDIK, which only has seven different 

characters, using full bytes is wasteful

• Let’s use a 3-bit encoding instead

• This uses 37.5% of the space as what ASCII uses!
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

000 001 001 000 011 100 101 101 001 000 101 001 000

K I R K ’ S _ D I K D I K

character code



The Journey Ahead

• Storing data using the ASCII encoding is portable across systems, 
but is not ideal in terms of space usage

• Building custom codes for specific strings might let us save space
• Idea: Use this approach to build a compression algorithm to 

reduce the amount of space needed to store text
• We want to find a way to 

give all characters a bit pattern, 
that both the sender and receiver know about, and 
that can be decoded uniquely
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Compression Algorithms

• Compression algorithms are a whole class of real-world algorithms that have 
widespread prevalence and importance

• We’re interested in algorithms that provide lossless compression on a stream 
of characters or other data
• We make the amount of data smaller without losing any of the details, and we can 

decompress the data o exactly the same as it was before compression
• Virtually everything you do online involves data compression 

• When you visit a website, download a file, or transmit video/audio, the data is 
compressed when sending and decompressed when receiving

• A video stream on Zoom has a compression of roughly 2000:1, meaning that a 2MB 
image is compressed down to just 1000 bytes

• Compression algorithms identify patterns in data and take advantage of those 
to come up with more efficient representations of that data
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A Different Encoding

• Let’s make this encoding even more efficient!
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K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

000 001 001 000 011 100 101 101 001 000 101 001 000

K I R K ’ S _ D I K D I K

character code



Take Advantage of Redundancy

• Not all letters have the same frequency in 

KIRK’S DIKDIK
• We can calculate the frequencies of each letter

66

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency



Take Advantage of Redundancy

• Not all letters have the same frequency in 

KIRK’S DIKDIK
• We can calculate the frequencies of each letter

• So far, we’ve given each letter a code of the 

same length

• Maybe we can give shorter encodings to more 

frequent letters to save space?
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K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency



Morse Code

• Morse code is an example of a 

coding system that makes use of 

this insight

• The codes for frequent letters (ex: 

e, t, a) are much shorter than the 

codes for infrequent letters (ex: q, 

y, j)
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Our New Code
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K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

0 1 01 0 10 11 100 00 1 0 00 1 0

K I R K ’ S _ D I K D I K

 

KIRK’S DIKDIK 

01010101110000100010



Our New Code

70

K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

What is the mystery word represented by this 

encoding?

0110011



Our New Code
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K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

 

KIRK’S DIKDIK 

01010101110000100010



Our New Code
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K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

 

KIRK’S_DIKDIK 

01010101110000100010

RRRRI_KK’D’



What went wrong?

• If we use a different number of bits for each letter, we can’t 

necessarily uniquely determine the boundaries between letters

• We need an encoding that makes it possible to determine where 

one characters ends and the next begins
• Codes for each character need to be unique and unambiguous

• How can we do this?
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Prefix Code

• A prefix code is an encoding system in which no 

code is a prefix of another code

• Here’s a sample prefix code for the letters in 

KIRK’S_DIKDIK 
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

 

KIRK’S_DIKDIK 

1001001100001101110011101101110110



Prefix Code

76

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001011111101



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001011111101



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001011111101



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001011111101



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|011111101
   R



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|011111101
   R



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|011111101
   R



Prefix Code

83

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|1111101
   R   I



Prefix Code

84

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|1111101
   R   I



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|1111101
   R   I



Prefix Code

86

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|1111101
   R   I



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|111|1101
  R   I    D



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|111|1101
  R   I    D



Prefix Code

89

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|111|1101
  R   I    D



Prefix Code

90

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|111|1101
  R   I    D



Prefix Code

91

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|111|1101
  R   I    D



Prefix Code
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001|01|111|1101
  R   I    D    S



Prefix Code

93

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

What is the mystery word represented by this 

encoding?

001011111101
RIDS



Prefix Code

• A prefix code is an encoding system in which no 

code is a prefix of another code

• Here’s a sample prefix code for the letters in 

KIRK’S_DIKDIK 

• This uses just 34 bits, compared to 104 with ASCII 

(32.7% of the space)

94

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

Where did this code come from?



Prefix Code

• A prefix code is an encoding system in which no 

code is a prefix of another code

• Here’s a sample prefix code for the letters in 

KIRK’S_DIKDIK 

• This uses just 34 bits, compared to 104 with ASCII 

(32.7% of the space)

95

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

How can we come up with codes 
like this for other strings?



Prefix Code

• A prefix code is an encoding system in which no 

code is a prefix of another code

• Here’s a sample prefix code for the letters in 

KIRK’S_DIKDIK 

• This uses just 34 bits, compared to 104 with ASCII 

(32.7% of the space)
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

What makes a “good” prefix coding 
scheme?



Prefix Code

• A prefix code is an encoding system in which no 

code is a prefix of another code

• Here’s a sample prefix code for the letters in 

KIRK’S_DIKDIK 

• This uses just 34 bits, compared to 104 with ASCII 

(32.7% of the space)

97

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

What does this have to do with 
trees?



Coding Tree

• We can represent a prefix coding scheme using a binary tree, which 

is called a coding tree

98

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

K I R ’ S _ D

0

0

0 0 0 0

1

0 1

1

1

11



Coding Tree

What is the mystery word represented by this encoding? 

110001010

99

K I R ’ S _ D

0

0

0 0 0 0

1

0 1

1

1

11

�� 



Coding Trees

• Not all binary trees work as coding trees

• Why is this binary tree not a coding tree?

100

B C E F

0

0 0

1

11
A D



Coding Trees

• Not all binary trees work as coding trees

• Why is this binary tree not a coding tree?
• Doesn’t give a prefix code!

• The code for A is a prefix for the codes for 

B and C, and the code for D is a prefix for 

the codes for E and F

101

B C E F

0

0 0

1

11
A D



Coding Trees

• A coding tree is valid if all the letters are 

stored in the leaves, with internal nodes 

only used for routing 

102

C 0 6

0

0 0

1

11

S 1

0 1



Coding Trees

• A coding tree is valid if all the letters are 

stored in the leaves, with internal nodes 

only used for routing 

103

C 0 6

0

0 0

1

11

S 1

0 1

Where did this code come from? ✅



Coding Trees

• A coding tree is valid if all the letters are 

stored in the leaves, with internal nodes 

only used for routing 

104

C 0 6

0

0 0

1

11

S 1

0 1

How do we make a “good” prefix 
coding scheme?



Huffman Coding
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It’s 1951. You’re at MIT as an electrical 
engineering graduate student. 
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It’s 1951. You’re at MIT as an electrical 
engineering graduate student. 

107



You have a choice for your class: take the final 
exam or write a term paper

108



You choose to write the term paper. 
The prompt is: “Find the most efficient method of 
representing numbers, letters, or symbols using 

binary code”

109



David Huffman tries to solve this 
problem for months. 

110



It’s 1951, so no Google or StackOverflow.
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Important note: 
Neither his professor, Robert M. Fano, nor the 

inventor of information theory, Claude Shannon, 
had any idea how to solve it

112



So David Huffman gives up, and starts studying 
for the final exam instead.  

113



But then, epiphany!

114



“It was my luck to be there at the 
right time and also not have my 

professor discourage me by telling 
me that other good people had 

struggled with his problem.”

115

Link to full story

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf


The Algorithm
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Huffman Coding

• Huffman coding is an algorithm for generating a coding tree for a 
given piece of data that produces a provably minimal encoding for 
a given pattern of letter frequencies

• Different data (different text, different images, etc) will each have 
their own personalized Huffman coding tree

• We want an encoding tree that
• Allows for variable length codes (so most frequent characters can get 

shorter codes, aka their leaf nodes are closer to the root node)
• Represents a prefix code system (no ambiguity in when characters stop 

and start)
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Goal: Build the optimal encoding tree for 
KIRK’S DIKDIK

118



1. Build the frequency table 

Input text:   KIRK’S DIKDIK

119

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency



2. Initialize an empty priority queue

120

higher priority lower priority



3. Add all unique characters as leaf nodes to queue

121

higher priority lower priority

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

’ RS_ KID

1 1 1 1 2 3 4



4. Build the Huffman tree by merging nodes

122

higher priority lower priority

’ RS_ KID

1 1 1 1 2 3 4
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higher priority lower priority

’ RS_ KID

1 1 1 1 2 3 4



124
higher priority lower priority

’ RS KID

1 1 1 2 3 4

_

1



125
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1
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higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1
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higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2
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higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2



129
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2
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higher priority lower priority

R KID

1 2 3 4

_

1

S

1

0 1

2

’

1



131
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1



132
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1



133
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2



134
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2



135
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2



136
higher priority lower priority

KID

2 3 4

’

1

R

1

0 1

2

_

1

S

1

0 1
2
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higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2
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higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

0 1



139
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

0 1

4
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higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1

’

1

R

1

0 1

2

2

0 1

4
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higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1
’

1

R

1

0 1

2

2

0 1

4
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higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4



143
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

5
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

5
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
22

0 1

4

I

3

0 1

5
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higher priority lower priority

K

4

’

1

R

1

0 1
2

I

3

0 1

5

D

2
_

1

S

1

0 1
2

0 1

4



149
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5



150
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8



154
higher priority lower priority

’

1

R

1

0 1
2

I

3

0 1
5

K

D

2

4

_

1

S

1

0 1
2

0 1
4

0 1

8
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1
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higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

13



Huffman Coding Pseudocode

To generate the optimal encoding tree for a given piece of text

1. Build a frequency table that tallies the number of times each character 
appears in the text

2. Initialize an empty priority queue that will hold partial trees
3. Create one leaf node per distinct character in the text, and add each leaf 

node to the queue where the priority is the frequency of the character
4. While there are two or more trees in the priority queue:

a. Dequeue the two lowest-priority trees
b. Combine them together to form a new tree whose priority is the sum of 

the priorities of the two trees
c. Add that tree back to the priority queue 
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Generate Table from Tree

159

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

13

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code
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http://www.youtube.com/watch?v=4lw_UL7p2_g


Decompress
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

 

1001001100001101110011101101110110



Decompress
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

 

1001001100001101110011101101110110



Decompress
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1001001100001101110011101101110110



Transmitting the Tree

• In order to decompress the text, we have to remember what 

encoding scheme we used

• Prefix the compressed data with a header containing information 

to rebuild the tree

• Theorem: There is no compression algorithm that can always 

compress all inputs
• Proof: Take CS103!

164

Encoded Tree 1001001100001101110011101101110110…



Huffman Coding Recap

• Data compression is a very important real world problem that 
relies of patterns in data to find efficient, compact data 
representation schemes

• In order to support variable-length encodings for data, we must 
use prefix coding schemes, which can be modeled as binary trees

• Huffman coding uses a greedy algorithm to construct encodings by 
building a tree from the bottom-up, putting the most frequency 
characters higher up in the coding tree

• We must send the encoding table/tree with the compressed 
message 
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Assignment 6 - Huffman Coding

• Decode/decompress some data
• Given a flattened tree, turn it back into an encoding tree

• Given a sequence of bits and an encoding tree, decode a message

• Decode a mystery file
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Assignment 6 - Huffman Coding

• Decode/decompress some data
• Given a flattened tree, turn it back into an encoding tree

• Given a sequence of bits and an encoding tree, decode a message

• Decode a mystery file

• Encode/compress some data
• Build a Huffman Encoding Tree for a particular string of text

• Given an encoding tree, flatten it

• Encode some text to your SL 
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More to Explore

• UTF-8 and Unicode
• A variable length encoding that has replaced ASCII

• Kolmogorov Complexity
• What’s the theoretical limit to compression techniques?

• Adaptive Coding Techniques
• Can you change your encoding system as you go?

• Shannon Entropy
• A mathematical bound on Huffman coding
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See you tomorrow!
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