Huffman Coding

Amrita Kaur
August 8, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

e Assignment 5 due tomorrow at 11:59pm
e Assignment 6 will be released tomorrow
* YEAH Hours from 4-5pm with Bryant (different time!)

* Final exam materials are available here

e August 18th from 3:30-6:30pm (3 hours)
 Same format and grading criteria as midterm
* Content from the entire quarter, with an emphasis of latter half

Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/2-final/

Feedback

Rate the pace of lecture

54 responses

@® Way too slow
@® Alittle too slow
O Perfect

@ Alittle too fast
@® Way too fast

Stanford University

Feedback

Things you liked:
“You use a ton of examples in class (really helps me :))”

“I LOVE THE HW STRUCTURE FOR THIS WEEK!!!! | really really like how
there is a requirement box it helped me not real overwhelmed or like |
was missing anything.”

“Friday review sessions turn out to be super useful for topics that take
a little more time & effort to sink in”

“I like the code tracing and diagrams on the slides!”

Stanford University

Feedback

Places we can improve:

“I think it would be great if maybe you could do this once or twice
weekly (on Ed or maybe at the end of a lecture) where you show us

correct code but code that is stylistically bad”
“Possibly varying the feedback questions a bit?”

“Can we do more finals review material earlier this time?”

Stanford University

Feedback

We hear you...

“Explain more niche cases, such as pointers and references, pointers vs
references, dereferencing pointers, (void) pointer, ect.” Take C5107!

“Perhaps less required testing on the homework? It sometimes takes
about as long as the actual coding :/”

“Maybe having some of the coding we did in lecture uploaded
somewhere.” On the course website!

“[SL] is the best. [They] deserves a raise” We agree!!

Stanford University

Feedback

Anything else you would like us to know:

“The "cute" coding comics make me want to throw my computer out the
window.”

“I feel like saying "my code is buggy" is too cute, it should be called waspy
or something. Saying "l have a wasp in my code" feels way more fitting.”

“I think I’'m going to pass!”

“I asked a girl out to go watch the barbie movie with me and she said no :(“

Stanford University

Recap: Binary Search Trees

Stanford University

Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)
2. For a node with value X:

a. All nodes in its left subtree must be less than X
b. All nodes in its right subtree must be greater than X

Stanford University

10

Takeaways

* There can be multiple valid BSTs for the same set of data
 How you construct the tree matters!

Stanford University

11

Big-O of ADT Operations

Vectors Queues Sets
. -S;§?§) _O?§§) .size() - 0(1) .size() - 0(1)
.a - _ : -
V5 o) .peek () 0(1) .isEmpty () 0(1)

.add() - 0(log n)
.remove() - 0(log n)
.contains() - 0(log n)
traversal - 0(n)

.enqueue() - 0(1)
.dequeue() - 0(1)
isEmpty () - 0(1)
traversal - 0(n)

.insert() - 0(n)
.remove() - 0(n)
.sublist() - 0(n)
traversal - 0(n)

Grids Stacks Maps

.numRows () - 0(1) .size() - 0(1) .size() - 0(1)
.numCols() - 0(1) .peek() - 0(1) .isEmpty () - 0(1)

grid[i113] - 0(1) .push() - 0(1) m[key] - 0(log n)
.inBounds () - .pop() - 0(1) .contains() - 0(log n)

O(l) X
_ 2 .isEmpty() - 0(1) traversal - 0(n)
traversal 0(n*) traversal - 0(n)

Stanford University

12

The Power of Abstraction

* The client doesn’t need to know we’re using a BST behind the
scenes, they just need to be able to store their data

After all, you’ve used a Set all quarter without needing to know this!

OurSet set;

set

set

set

.add(8);
set.
set.
.contains(5); // false
set.
set.

add(9) ;
add(4);

contains(4); // true
remove(8) ;

.remove(9) ;

Stanford University

13

BST Lookups

These data structures are designed for fast lookups!

Stanford University

14

BST Lookups

Is 11 in this BST?

Stanford University

15

BST Lookups
We start at the root.
8 is too small, so we look to the °
right.

Is 11 in this BST?

Stanford University

16

BST Lookups

Is 11 in this BST?

12 is too big, so we look to
the left.

Stanford University

17

BST Lookups

Is 11 in this BST?

10 is too small, so we look to
the right.

Stanford University

18

BST Lookups

Is 11 in this BST?

We found 11!

Stanford University

19

BST Lookups

How do we know that 5

° is not in this BST?

Stanford University

20

BST Lookups

How do we know that 5

8 is too big, so we look is not in this BST?
to the left.

Stanford University

21

BST Lookups

How do we know that 5

4 is too small, so we is not in this BST?

look to the right.

Stanford University

22

BST Lookups

How do we know that 5

7 is too big, so we look is not in this BST?

to the left.

Stanford University

23

BST Lookups

How do we know that 5
is not in this BST?

6 is too big, so we look
to the left.

Stanford University

24

BST Lookups

How do we know that 5
is not in this BST?

And we fall off the tree!

Stanford University

25

BST Lookups

A value isn’t in our BST if
we “fall off” the tree
looking for it.

Stanford University

26

BST Insertion

Stanford University

27

BST Insertion How might we insert 5 into

° this BST?

Stanford University

28

BST Insertion How might we insert 5 into
this BST?

Search for where the 5
should be...

Stanford University

29

BST Insertion How might we insert 5 into
this BST?

... and insert the 5 there

@ Stanford University

30

Takeaways

* Toinsert/delete nodes, we have to look them up in our BST
* Thisis why insertions/deletions are 0 (Log n), just like lookups

Stanford University

31

Let’s code it up!

Implement OurSet with a BST

Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

32

Building Abstractions

Memory
Management

Linked
Data
Structures

Recursion

Stanford University

33

Data Storage and Representation

Stanford University

34

How do computers store and represent data?

Stanford University

35

How do computers store and represent data?

Stanford University

36

Just a Little Bit of Magic

Digital data is stored as sequences of Os and 1s

* These sequences are encoded in physical devices by magnetic orientation
on small (10 nm) metal particles or by trapping electrons in small gates

A single O or 1 is called a bit

A group of 8 bits is called a byte
00000000, 00000001, 00000010, 00000011, O0OOO00100, ..

There are 28, so 256, different bytes

* Good recursive backtracking practice: Write a function that lists all
possible byte sequences!

Stanford University

Remember: The Hexadecimal Number System

* We typically represent numbers using the decimal (base-10) number system
* Each place value represents a factor of ten (ones, tens, hundreds, etc.)
* 10 possible digits for each place value

* In computer systems,it is often more convenient to express numbers using

the hexadecimal (base-16) number system.
e Each place value represents a factor of 16 (16°, 161, 162, etc.)

* 16 possible "digits" for each place value.
* 10 numerical digits (0-9) and the letters ‘@’ to ‘f’
e 01234567389 a(l0) b(11) c(12) d(13) e(14) f(15)

* The prefix Ox is used to communicate that a number is being expressed in
hexadecimal

Stanford University

38

Binary Number System

The system of using sequences of Os and 1s to represent data is called binary
* Binary can be used to encode numbers, text, images, etc.

* Binary numbers are expressed using a base-2 number system
e Each place value represents a power of 2 (2°, 21, 22, etc.)

* Representing my age in different numerical systems:
* Inbase-10,I'm 24 (2 * 10* +4 * 10° =20 + 4)
* Inbase-16,'m 18 (1 * 16* + 8 * 16° = 16 + 8)
e Inbase-2,’'m 11000 (1 *2*+1*23+0*22+0*2'+0*2°=16+8+0+0+0)

* The prefix Ob is (sometimes) used to communicate a number is being
expressed in binary

Stanford University

39

THERE ARE ONLY
10 TYPES OF PEOPLE
IN THE WORLD:

THOSE WHO
UNDERSTAND BINARY
AND THOSE WHO DON'T.

FIRST & ELM

Stanford University

40

Representing Text

* We think of strings as being made of characters representing
letters, numbers, emojis, etc

 However, we just said that computers require everything to be
written as zeros and ones

* To bridge the gap, we need to agree on some universal way of
representing characters as sequences of bits

* Idea: ASCII!

Stanford University

41

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 >
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A % 74 an) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2c 76 ac L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 aF o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Y 118 76 v
23 17 [END OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79y
26 1A [SUBSTITUTE] 58 30 90 5A z 122 Az
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3¢ < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50] 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

Stanford University

Decimal - Binary - Octal - Hex — ASCII 42

Conversion Chart

Decimal Binary Octal Hex ASCIl Decimal Binary Octal Hex ASCI Decimal Binary Octal Hex ASCIl Decimal Binary Octal Hex ASCI
0 00000000 000 00 NUL 32 00100000 040 20 SP 64 01000000 100 40 @ 96 01100000 140 60
1 00000001 001 01 SOH 33 00100001 041 21 ! 65 01000001 101 41 A 97 01100001 141 61 a
2 00000010 002 02 STX 34 00100010 042 22 -~ 66 01000010 102 42 B 98 01100010 142 62 b
3 00000011 003 03 ETX 35 00100011 043 23 # 67 01000011 103 43 C 99 01100011 143 63 ¢
4 00000100 004 04 EOT 36 00100100 044 24 § 68 01000100 104 44 D 100 01100100 144 64 d
5 00000101 005 05 ENQ 37 00100101 045 25 % 69 01000101 105 45 E 101 01100101 145 65 e
6 00000110 006 06 ACK 38 00100110 046 26 & 70 01000110 106 46 F 102 01100110 146 66 f
i 00000111 007 07 BEL 39 00100111 047 27 ¢ 71 01000111 107 47 G 103 01100111 147 67 g
8 00001000 010 08 BS 40 00101000 050 28 (72 01001000 110 48 H 104 01101000 150 68 h
9 00001001 011 09 HT 41 00101001 051 29) 73 01001001 111 49 | 105 01101001 151 69 i
10 00001010 012 O0A LF 42 00101010 052 2A * 74 01001010 112 4A J 106 01101010 152 6A |
" 00001011 013 0B VT 43 00101011 053 2B + 75 01001011 113 4B K 107 01101011 153 6B Kk
12 00001100 014 0C FF 44 00101100 054 2C 76 01001100 114 4C L 108 01101100 154 6C |
13 00001101 015 0D CR 45 00101101 055 2D - 77 01001101 115 4D M 109 01101101 155 6D m
14 00001110 016 OQOE SO 46 00101110 056 2E . 78 01001110 116 4E N 110 01101110 156 6E n
15 00001111 017 OF Sl 47 00101111 057 2F / 79 01001111 117 4F O 1 01101111 157 6F o
16 00010000 020 10 DLE 48 00110000 060 30 0 80 01010000 120 50 P 112 01110000 160 70 p
17 00010001 021 " DC1 49 00110001 061 31 1 81 01010001 121 51 Q 113 01110001 161 71 q
18 00010010 022 12 DC2 50 00110010 062 32 2 82 01010010 122 52 R 114 01110010 162 72 r
19 00010011 023 13 DC3 51 00110011 063 33 3 83 01010011 123 53 S 115 01110011 163 73 s
20 00010100 024 14 DC4 52 00110100 064 34 4 84 01010100 124 54 T 116 01110100 164 74 t
21 00010101 025 15 NAK 53 00110101 065 35 5 85 01010101 125 55 U 117 01110101 165 75 u
22 00010110 026 16 SYN 54 00110110 066 36 6 86 01010110 126 56 V 118 01110110 166 76 v
23 00010111 027 17 ETB 55 00110111 067 37 7 87 01010111 127 57 W 119 01110111 167 77 w
24 00011000 030 18 CAN 56 00111000 070 38 8 88 01011000 130 58 X 120 01111000 170 78 x
25 00011001 031 19 EM 57 00111001 071 39 9 89 01011001 131 59 Y 121 01111001 171 79 vy
26 00011010 032 1A SUB 58 00111010 072 3A 90 01011010 132 5A Z 122 01111010 172 7A z
27 00011011 033 1B ESC 59 00111011 073 3B | 91 01011011 133 5B | 123 01111011 173 7B {
28 00011100 034 1C FS 60 00111100 074 3C < 92 01011100 134 5C \ 124 01111100 174 7C |
29 00011101 035 1D GS 61 00111101 075 3D = 93 01011101 135 5D] 125 01111101 175 7D }
30 00011110 036 1E RS 62 00111110 076 3E = 94 01011110 136 5 * 126 01111110 176 TE =~
3 00011111 037 1F US 63 00111111 077 3F ? 95 01011111 137 5F _ 127 o111 177 7F

"% 2ford University

43

Decimal Binary Octal Hex ASCII

ASCII Decoding

64 01000000 100 40 @
65 01000001 101 41 A
. 66 01000010 102 42 B
What is the mystery word represented by i amen@ g g
this ASCIl encoding? O IPHEEE BOmg o B
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
010011010100000101010000 B s G N
73 01001001 111 49 |
74 01001010 112 4A J
75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F O

80 01010000 120 50 P

Stanford University

44

Decimal Binary Octal Hex ASCIl

ASCII Decoding

64 01000000 100 40 @
65 01000001 101 41 A
. 66 01000010 102 42 B
What is the mystery word represented by & Sidon G B 4
this ASCIl encoding? 68 01000100 104 44 D
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
72 01001000 110 48 H
01001101|01000001]|01010000 1 sooon 111 g |
74 01001010 112 44 J
75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F o)

80 01010000 120 50 P

Stanford University

45

Decimal Binary Octal Hex ASCIl

ASCII Decoding

64 01000000 100 40 @
65 01000001 101 41 A
. 66 01000010 102 42 B
What is the mystery word represented by & Sidon G B 4
this ASCIl encoding? 68 01000100 104 44 D
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
72 01001000 110 48 H
01001101 01000001 |01010000 1 soo0n 111 g |
74 01001010 112 44 J
M 75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F o)

80 01010000 120 50 P

Stanford University

46

Decimal Binary Octal Hex ASCIl

ASCII Decoding

64 01000000 100 40 @
65 01000001 101 41 A
. 66 01000010 102 42 B
What is the mystery word represented by & Sidon G B 4
this ASCIl encoding? 68 01000100 104 44 D
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
72 01001000 110 48 H
01001101|01000001|01010000 1 4o 111 g |
74 01001010 112 44 J
M A 75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F o)

80 01010000 120 50 P

Stanford University

47

Decimal Binary Octal Hex ASCIl

ASCII Decoding

64 01000000 100 40 @
65 01000001 101 41 A
. 66 01000010 102 42 B
What is the mystery word represented by & Sidon G B 4
this ASCIl encoding? 68 01000100 104 44 D
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
72 01001000 110 48 H
01001101|01000001]|01010000 . om0 111 g |
74 01001010 112 44 J
M A P 75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F o)

80 01010000 120 50 P

Stanford University

48

Decimal Binary Octal Hex ASCIl

ASCII Decoding

64 01000000 100 40 @
65 01000001 101 41 A
. 66 01000010 102 42 B
What is the mystery word represented by i amen@ g g
this ASCII encoding? oF IR T o B
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
72 01001000 110 43 H
0100110101000001010100006 R e e g
74 01001010 112 4A =)
MAP 75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F 0

80 01010000 120 50 P

Stanford University

49

ASCII Observations

* Every characters uses exactly the same number of bits, 8, which
makes it very easy to differentiate between the characters

* Any message with n characters will use exactly 8n bits

* Space for RAMBUNCTIOUS: 8*12 = 96 bits
» Spacefor CS106Bi1sCool: 8%12 = 96 bits

* Let’s make this more efficient by reducing the number of bits we
need to encode text

Stanford University

50

Main Character Today

KIRK’S DIKDIK

Stanford University

51

character ASCII code

ASCII Encoding 5
I
e ASCIl uses 8 bits to represent each character -
3
D

Stanford University

52

character ASCII code

ASCIlI Encoding

e ASCIl uses 8 bits to represent each character

* Let’s represent KIRK?S DIKDIK in ASCIl code

Stanford University

53

character ASCII code

ASCIlI Encoding

e ASCIl uses 8 bits to represent each character

* Let’s represent KIRK?S DIKDIK in ASCIl code

Stanford University

54

character code

A Different Encoding

* |f we're specifically writing the string KIRK? S
DIKDIK, which only has seven different
characters, using full bytes is wasteful

e Let’s use a 3-bit encoding instead

Stanford University

55

character code

A Different Encoding

* |f we're specifically writing the string KIRK? S
DIKDIK, which only has seven different
characters, using full bytes is wasteful

e Let’s use a 3-bit encoding instead

Stanford University

56

character code

A Different Encoding

K
I

What is the mystery word represented by this 3-bit .
encoding? :
3

©O10001110 _

D

Stanford University

57

character code

A Different Encoding

K
I

What is the mystery word represented by this 3-bit .
encoding? :
3

010|001]110)

D

Stanford University

58

character code

A Different Encoding

K

I

What is the mystery word represented by this 3-bit .
encoding?

3

e10|001]110)

R D

Stanford University

59

character code

A Different Encoding ;

I

What is the mystery word represented by this 3-bit .
encoding?

3

010| 001|110)

R I D

Stanford University

60

character code

A Different Encoding ;

I

What is the mystery word represented by this 3-bit .
encoding?

3

010|001]|110)

R 1 D D

Stanford University

61

character code

A Different Encoding ;
I

What is the mystery word represented by this 3-bit .
encoding? :
3

©O10001110 _

RID °

Stanford University

62

character code

A Different Encoding ;

I

* |f we're specifically writing the string KIRK? S .

DIKDIK, which only has seven different :
characters, using full bytes is wasteful

e Let’s use a 3-bit encoding instead >

* This uses 37.5% of the space as what ASCII uses! =

D

Stanford University

63

The Journey Ahead

e Storing data using the ASCIl encoding is portable across systems,
but is not ideal in terms of space usage
* Building custom codes for specific strings might let us save space
* |dea: Use this approach to build a compression algorithm to
reduce the amount of space needed to store text
 We want to find a way to
give all characters a bit pattern,
that both the sender and receiver know about, and
that can be decoded uniquely

Stanford University

Compression Algorithms

 Compression algorithms are a whole class of real-world algorithms that have
widespread prevalence and importance

 We're interested in algorithms that provide lossless compression on a stream
of characters or other data

* We make the amount of data smaller without losing any of the details, and we can
decompress the data o exactly the same as it was before compression
e Virtually everything you do online involves data compression
* When you visit a website, download a file, or transmit video/audio, the data is
compressed when sending and decompressed when receiving
* Avideo stream on Zoom has a compression of roughly 2000:1, meaning that a 2MB
image is compressed down to just 1000 bytes

* Compression algorithms identify patterns in data and take advantage of those
to come up with more efficient representations of that data

Stanford University

65

character code

A Different Encoding

e Let’s make this encoding even more efficient!

Stanford University

66

character frequency

Take Advantage of Redundancy .]
I 3
* Not all letters have the same frequency in .)
KIRK’S DIKDIK
g 1
 We can calculate the frequencies of each letter
3 1
_ 1
D 2

Stanford University

67

character frequency

Take Advantage of Redundancy ; ;
I 3
* Not all letters have the same frequency in .)
KIRK’S DIKDIK :
 We can calculate the frequencies of each letter :
* So far, we've given each letter a code of the > '
same length = .
 Maybe we can give shorter encodings to more P 2

frequent letters to save space?

Stanford University

68

International Morse Code

Morse Code 1 T nan ot dot s o n
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.
* Morse code is an example of a Ae mm Ue o mm
Bumeoeo Veeoomm
coding system that makes use of Comm o mm o We mm mm
Demm oo X mmm o ¢ mmm
HPRE : Ee Y mmm 0o mmm mmm
th|5|n5|ght Foomme 4 B KX
Gom mm o
* The codes for frequent letters (ex: Heeoeoo
)
e, t, a) are much shorter than the] o = ——
K o o mmm 1o num mum s mmm
: . Lommeoe)JAEE N N
codes for infrequent letters (ex: q, 7 el S e .
. N om o 49000 mm
V,J) O nm m 500000
Ponm mme Cmmeoeooeo
Qum mm ¢ = ‘A KKK
Remme Somm mum mmm o @
Seee O nsm mmm mum = ©
T om F N N N N

Stanford University

69

O U I N EW COd e character frequency code

KIRK’S DIKDIK
01010101110000100010

Stanford University

70

O U I N EW COd e character frequency code

What is the mystery word represented by this
encoding?

0110011

Stanford University

71

O U I N EW COd e character frequency code

KIRK’S DIKDIK
01010101110000100010

Stanford University

72

O U I N EW COd e character frequency code

01010101110000100010
RRRRI_KK’D’

Stanford University

73

What went wrong?

* |f we use a different number of bits for each letter, we can’t
necessarily uniguely determine the boundaries between letters
* We need an encoding that makes it possible to determine where

one characters ends and the next begins
* Codes for each character need to be unique and unambiguous

e How can we do this?

Stanford University

74

P ref i X CO d e character code

* A prefix code is an encoding system in which no
code is a prefix of another code

* Here’s a sample prefix code for the letters in
KIRK’S_DIKDIK

Stanford University

75

P ref i X CO d e character code

KIRK’S_DIKDIK
1001001100001101110011101101110110

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001011111101

character

76

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001011111101

character

77

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001011111101

character

78

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001011111101

character

79

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

ee1|011111101
R

character

80

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

e01|e11111101
R

character

81

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

e01|e11111101
R

character

82

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

e01]|e1]|1111101
R 1

character

83

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001011111101
R I

character

84

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001]|01]1111101
R I

character

85

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001]|01]1111101
R I

character

86

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001]|01]|111]1101
R 1 D

character

87

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

e01|01]|111]1101
R 1 D

character

88

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

e01]|01]|111]1101
R 1 D

character

89

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001]|01]|111]1101
R 1 D

character

90

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001]|01]|111]1101
R 1 D

character

91

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001]|01]|111]1101
R I D S

character

92

code

Stanford University

Prefix Code

What is the mystery word represented by this
encoding?

001011111101
RIDS

character

93

code

Stanford University

94

P ref i X CO d e character code

K
* A prefix code jsanancading cuctam inwhich na !
code is a pref ~
e Here’sasamyg Where did this code come from? R
KIRK’S_DI ’
e This uses just 34 bits, compared to 104 with ASCIT s
(32.7% of the space) _

Stanford University

95

P ref i X CO d e character code

K

e A prefix code jsanancading cuctam inwwhich nna I
code is a pref _ D
How can we come up with codes o

* Here'sasamg like this for other strings?
KIRK’S_DI ’

* This uses just 34 bits, compared to 104 with ASCII s
(32.7% of the space)

Stanford University

96

P ref i X CO d e character code

K
e A prefix code jsanancading cuctam inwwhich nna I
code is a pref " ” . : °
What makes a “good” prefix coding o

* Here’s a samg scheme?
KIRK’S_DI ’
e This uses just 34 bits, compared to 104 with ASCIT s
(32.7% of the space)

Stanford University

97

P ref i X CO d e character code

K
e A prefix code jsanancading cuctam inwwhich nna I
code is a pref) , D
Here’ What does this have to do with o
ere’s a samy trees?
KIRK’S_ DI ’
* This uses just 34 bits, compared to 104 with ASCII s
(32.7% of the space) _

Stanford University

98

Coding Tree

 We can represent a prefix coding scheme using a binary tree, which

is called a coding tree
R
0 1 0 1 :
01 91 @1 0 >
© O 06 O :

character code

Stanford University

99

Coding Tree

What is the mystery word represented by this encoding?

110001010
0 ‘ 1
© O 060 OO ...

100

Coding Trees

* Not all binary trees work as coding trees
* Why is this binary tree not a coding tree?

0]

56 &

Stanford University

101

Coding Trees

* Not all binary trees work as coding trees

* Why is this binary tree not a coding tree?
* Doesn’t give a prefix code!
 The code for A is a prefix for the codes for

B and C, and the code for D is a prefix for

the codes for E and F ©

56 &

Stanford University

102

Coding Trees

A coding tree is valid if all the letters are
stored in the , with internal nodes
only used for routing

Stanford University

Coding Trees

A coding tree
stored in the
only used for

ic vvalid if Al tha lattarc ara

Where did this code come from? u

103

Stanford University

Coding Trees

A coding tree
stored in the
only used for

ic vvalid if Al tha lattarc ara

How do we make a “good” prefix
coding scheme?

104

Stanford University

105

Huffman Coding

Stanford University

106

It’s 1951. You're at MIT as an electrical
engineering graduate student.

Stanford University

| - oo
Lot ey ERCHEE

P - |
000c¢ m
2 % m

108

You have a choice for your class: take the final
exam or write a term paper

Stanford University

109

You choose to write the term paper.
The prompt is: “Find the most efficient method of
representing numbers, letters, or symbols using
binary code”

Stanford University

110

David Huffman tries to solve this
problem for months.

Stanford University

111

It’s 1951, so no Google or StackOverflow.

Stanford University

112

Important note:
Neither his professor, Robert M. Fano, nor the
inventor of information theory, Claude Shannon,
had any idea how to solve it

Stanford University

113

So David Huffman gives up, and starts studying
for the final exam instead.

Stanford University

114

But then, epiphany!

Stanford University

115

“It was my luck to be there at the
right time and also not have my
professor discourage me by telling
me that other good people had
struggled with his problem.”

Link to full story

Stanford University

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf

116

The Algorithm

Stanford University

117

Huffman Coding

 Huffman coding is an algorithm for generating a coding tree for a
given piece of data that produces a provably minimal encoding for
a given pattern of letter frequencies

» Different data (different text, different images, etc) will each have
their own personalized Huffman coding tree

 We want an encoding tree that
* Allows for variable length codes (so most frequent characters can get
shorter codes, aka their leaf nodes are closer to the root node)
* Represents a prefix code system (no ambiguity in when characters stop
and start)

Stanford University

118

Goal: Build the optimal encoding tree for
KIRK’S DIKDIK

Stanford University

119

1. Build the frequency table

character frequency

K 4
I 3
Input text: KIRK’S DIKDIK : '
’ 1
S 1
_ 1
D 2

Stanford University

120

2. Initialize an empty priority queue

higher priority lower priority
- >

{ }

Stanford University

121

3. Add all uniqgue characters as leaf nodes to queue

higher priority lower priority

@006 06 e

character 1 frequency

K 4
I 3
R 1
? 1
S 1
- 1
D 2 Stanford University

122

4. Build the Huffman tree by merging nodes

higher priority lower priority

@e0000@

Stanford University

123
higher priority lower priority
- >

XXX EXKXX)

Stanford University

124
higher priority lower priority
- >

‘X EXXX)

Stanford University

125
higher priority lower priority
- >

© 0006

Stanford University

126
higher priority lower priority
- >

© 0006

Stanford University

127
higher priority lower priority
- >

© 0006

Stanford University

128
higher priority lower priority
- >
1 1

©0 0606 0

Stanford University

129
higher priority lower priority
- >

- @@Q@@@@}

Stanford University

. .y . 130
higher priority lower priority
- >

@@Q@@@@}

9

Stanford University

131
higher priority lower priority
- >

@Q@@@@}

©6e

Stanford University

132
higher priority lower priority
- >

@Q@@@@}

O

1
1 1

Stanford University

133

higher priority lower priority
- >
2 2 3 4
0] ; :\< 1 @ @ ®}
1 1
2

Ol
1 1

Stanford University

134

higher priority lower priority
- >
2 2 3 4
0] 1 @ @ @
1 1
2

Stanford University

. .y . 135
higher priority lower priority
- >
2

@@Q@@ @ ®)

Stanford University

. .y . 136
higher priority lower priority
- >

@@ ®}

Stanford University

137
higher priority lower priority
- >

@ ®}

Stanford University

. .y . 138
higher priority lower priority
- >

@ ®}

Stanford University

. .y . 139
higher priority lower priority
- >

@ ®}

Stanford University

140
higher priority lower priority

L0 ®
00

Stanford University

141
higher priority lower priority

Stanford University

142
higher priority lower priority

Stanford University

143
higher priority lower priority

Stanford University

144
higher priority lower priority

Stanford University

145
higher priority lower priority

Stanford University

146
higher priority lower priority

Stanford University

147
higher priority lower priority

Stanford University

148
higher priority lower priority

Stanford University

149
higher priority lower priority

Stanford University

. .y . 150
higher priority lower priority

Stanford University

151
higher priority lower priority

Stanford University

152
higher priority lower priority

Stanford University

. .y . 153
higher priority lower priority

Stanford University

154
higher priority lower priority

Stanford University

. . . 155
higher priority lower priority

Stanford University

. .y . 156
higher priority lower priority

Stanford University

157
higher priority lower priority

Stanford University

158

Huffman Coding Pseudocode

To generate the optimal encoding tree for a given piece of text

1. Build a frequency table that tallies the number of times each character

appears in the text

Initialize an empty priority queue that will hold partial trees

Create one leaf node per distinct character in the text, and add each leaf
node to the queue where the priority is the frequency of the character

4. While there are two or more trees in the priority queue:
a. Dequeue the two lowest-priority trees
b. Combine them together to form a new tree whose priority is the sum of
the priorities of the two trees
Cc. Add that tree back to the priority queue

2.
3.

Stanford University

159

Generate Table from Tree 13

character code

Stanford University

160

= P o
|14473) [17223) \ 22661 |
= ¥ e
- \ y. \ A'_.“_‘ —— o —
e 1532 6066 || 7507 || K167 || 9056 B, o
E] A . 10240, A2421
] :‘r- .‘.’\ ‘ o l A ‘ T '\’ Cr .,." \\, = 1,-‘
"T‘.;" > --'-.. I ‘ ‘.o PR— .)
| ‘b.N (6783) L4253 || 4987 || oue ; 6327 |
1 \ '
! 3-\/ D R l H : S

Stanford University

http://www.youtube.com/watch?v=4lw_UL7p2_g

161

D e C O m p re S S character code

1001001100001101110011101101110110

Stanford University

162

D e C O m p re S S character code

1001001100001101110011101101110110

Stanford University

163

Decompress

1001001100001101110011101101110110

IHAVENO
IDEA WHAT
I'MDOING

"

» 5o
A T
'i.ﬂD

Basr o]

Stanford University

164

Transmitting the Tree

* In order to decompress the text, we have to remember what

encoding scheme we used
* Prefix the compressed data with a header containing information

to rebuild the tree

Encoded Tree 1001001100001101116001116011601110110..

 Theorem: There is no compression algorithm that can always

compress all inputs
* Proof: Take CS103!

Stanford University

165

Huffman Coding Recap

* Data compression is a very important real world problem that
relies of patterns in data to find efficient, compact data
representation schemes

* In order to support variable-length encodings for data, we must
use prefix coding schemes, which can be modeled as binary trees

* Huffman coding uses a greedy algorithm to construct encodings by
building a tree from the bottom-up, putting the most frequency
characters higher up in the coding tree

* We must send the encoding table/tree with the compressed
message

Stanford University

166

Assignment 6 - Huffman Coding

 Decode/decompress some data

* Given a flattened tree, turn it back into an encoding tree
* Given a sequence of bits and an encoding tree, decode a message
* Decode a mystery file

Stanford University

167

Assignment 6 - Huffman Coding

 Decode/decompress some data
* Given a flattened tree, turn it back into an encoding tree
* Given a sequence of bits and an encoding tree, decode a message
* Decode a mystery file
* Encode/compress some data
* Build a Huffman Encoding Tree for a particular string of text
* Given an encoding tree, flatten it
* Encode some text to your SL

Stanford University

168

More to Explore

UTF-8 and Unicode

e Avariable length encoding that has replaced ASCII
Kolmogorov Complexity

* What’s the theoretical limit to compression techniques?
Adaptive Coding Techniques

e Canyou change your encoding system as you go?
Shannon Entropy

* A mathematical bound on Huffman coding

Stanford University

169

See you tomorrow!

Stanford University

