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Announcements

• This week is our final section

• Exam next Friday (8/18) from 3:30-6:30pm
• Final exam info will be published this afternoon

• Final review session next Tuesday in class
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Recap: Trees
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Uses

• Trees are useful in other ways besides visualizing recursion and 

modeling priority
• Describe hierarchies
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Tree Properties

• Any node in a tree can only have one parent
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Not trees!



Tree Terminology

Types of nodes

• The root node defines the "top" of the tree

• Every node has 0 or more children nodes descended from it

• Nodes with no children are called leaf nodes

• Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

• The length of a path between two nodes is the number of edges between them

• The depth of a node is the length of the path from the root to that node

• The height of a tree is the number of nodes in the longest path through the tree 

(i.e. the number of levels in the tree)
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Binary Trees

• Most common trees in CS
• We’ve seen these before, Binary Heaps!

• Every node has either 0, 1, or 2 children

• Children are referred to as left child and right child
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Building Binary Trees

• A binary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the right child
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struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

};



Tree Traversal Recap
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Demo: Freeing a Tree
Traverse a tree and free its nodes

11



👥 Which Method Should We Use?
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(aka delete)
(aka delete)

(aka delete)



Which Method Should We Use?
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If we delete a node before deleting its 
children, we’ll lose access to its children

(aka delete)
(aka delete)

(aka delete)



Let’s code it up!
Traverse a tree and free its nodes
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Solution Code - Freeing a Tree

void freeTree(TreeNode* node) {
if (node == nullptr) {

return;
}
freeTree(node->left);
freeTree(node->right);
delete node;

}

15



Binary Search Trees
Trees optimized for binary search!
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Why Trees?

• The distance from each node in a tree to root is small, even if there 

are many elements

• How can we take advantage of trees to structure and efficiently 

manipulate data?
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Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X
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Spot the Valid BST

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X
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Spot the Valid BST
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YOU’RE VALID 😎There’s a node in the left subtree 
of 6 that is greater than 6



Turning Data into a BST

21

Let’s say we wanted to store 
the following numbers in a BST:
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Turning Data into a BST
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To build a BST, we choose the 
median element
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Turning Data into a BST
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This becomes our root node
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Turning Data into a BST
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We split all other elements into 
less than and greater than 8
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Turning Data into a BST
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Repeat on each side
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Turning Data into a BST
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Choose median element
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Turning Data into a BST
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These become roots for their 
respective sub-trees
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Turning Data into a BST
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Turning Data into a BST
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Turning Data into a BST
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Turning Data into a BST

31

15

8

12

9
11

6

4

1 3

We split all other elements into 
less than, and greater than

211072



Turning Data into a BST
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Turning Data into a BST

33

8

124

These become roots for their 
respective sub-trees

211072

159 1161 3



Turning Data into a BST
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BST Lookups
These data structures are designed for fast lookups!
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BST Lookups
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Is 11 in this BST?



BST Lookups
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Is 11 in this BST?
We start at the root.

8 is too small, so we look to the 
right.



BST Lookups
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Is 11 in this BST?
12 is too big, so we look to 

the left.



BST Lookups
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Is 11 in this BST?
10 is too small, so we look to 

the right.



BST Lookups
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Is 11 in this BST?

We found 11!



BST Lookups
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👥 How do we know 
that 5 is not in this BST?



BST Lookups
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How do we know that 5 
is not in this BST?8 is too big, so we look 

to the left.



BST Lookups
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How do we know that 5 
is not in this BST?4 is too small, so we 

look to the right.



BST Lookups
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How do we know that 5 
is not in this BST?7 is too big, so we look 

to the left.



BST Lookups
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How do we know that 5 
is not in this BST?6 is too big, so we look 

to the left.



BST Lookups
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How do we know that 5 
is not in this BST?

And we fall off the tree!



BST Lookups
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A value isn’t in our BST if 
we “fall off” the tree 

looking for it.



BST Lookups
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🤔 What’s the height of 
a BST with n elements?



BST Lookups
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O(log2n)
We’ve got 13 nodes in this tree, 
but its height is log213 ≈ 4.



BST Lookups
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Worst case, we have to take 4 
steps in the tree to find an 

element. That’s pretty good!



BST Lookups
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BST Lookups

52

Yes! In a suboptimal 
tree, lookups can be as 

slow as O(n).
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Building an Optimal BST
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We saw how to build an optimal 
BST by recursively splitting 

around the median element
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Takeaways

• There can be multiple valid BSTs for the same set of data

• How you construct the tree matters!
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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👥 Is this tree balanced?



Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

58

8

102

12

7

4

8

12

10

4

2 72

BALANCEDHeight 2Height 3



Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1
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Another way to show this: we have 
6 nodes, so the tree shouldn’t have 

height greater than log26 ≈ 3



Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree

• Theorem: If you start with an empty tree and add in random 

values, then with high probability the tree is balanced
• Take CS161 to find out why!
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Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the 

number of nodes in the tree

• Theorem: If you start with an empty tree and add in random 

values, then with high probability the tree is balanced
• Take CS161 to find out why!

• A self-balancing BST reshapes itself on insertions and deletions to 

stay balanced (how to do this is beyond the scope of this class)
• AVL trees

• Red-black trees

64



Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() - 

O(1)
• traversal - O(n2)
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Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Why do Sets and Maps have 
O(log n) lookups? They use BSTs 

behind the scenes to store data!



Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() - 

O(1)
• traversal - O(n2)
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Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Let’s investigate how BSTs can have 
O(log n) insertion and deletion.



BST Insertion
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BST Insertion
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👥 How might we insert 5 
into this BST?



BST Insertion
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Search for where the 5 
should be…

How might we insert 5 into 
this BST?



BST Insertion
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How might we insert 5 into 
this BST?

… and insert the 5 there
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BST Insertion
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We’re using a naïve 
approach: this could lead to 

an unbalanced tree
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BST Deletion
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BST Deletion
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Here’s an easy case:
Remove 3



BST Deletion
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Here’s an easy case:
Remove 3

Search for 3 in our BST



BST Deletion
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Here’s an easy case:
Remove 3

Delete it!



BST Deletion
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👥 Here’s a harder case:
Remove 21



BST Deletion
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Here’s a harder case:
Remove 21

Search for 21 in our BST



BST Deletion
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Here’s a harder case:
Remove 21

Replace with child



BST Deletion
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Here’s a harder case:
Remove 21

Delete child node
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BST Deletion
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🤔 Even trickier:
Remove 12



BST Deletion
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Search for 12 in our BST

Even trickier:
Remove 12



BST Deletion
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But we can’t just swap 
with a child… 

Even trickier:
Remove 12



BST Deletion

83

8

4

211072

159 1161

But we can’t just swap 
with a child… 

Even trickier:
Remove 12



BST Deletion
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But we can’t just swap 
with a child… 

Even trickier:
Remove 12
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BST Deletion
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Or we might get a BST 
violation

Even trickier:
Remove 12
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BST Deletion
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Same with the other 
child… 

Even trickier:
Remove 12



BST Deletion
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Same with the other 
child…  

Even trickier:
Remove 12



BST Deletion
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Same with the other 
child… 

Even trickier:
Remove 12

21



BST Deletion
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Violation!

Even trickier:
Remove 12

21



BST Deletion
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Idea: swap 12 with its inorder 
predecessor or successor

Even trickier:
Remove 12



BST Deletion
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Inorder predecessor: 
largest node in left subtree

Inorder successor: 
smallest node in right subtree

Even trickier:
Remove 12



BST Deletion
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🎟 What is the 
inorder predecessor of 12?

Inorder predecessor: 
largest node in left subtree

Inorder successor: 
smallest node in right subtree

Even trickier:
Remove 12



BST Deletion
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🎟 What is the 
inorder predecessor of 12?

Inorder predecessor: 
largest node in left subtree

Inorder successor: 
smallest node in right subtree

Even trickier:
Remove 12



BST Deletion
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We replace 12 with its 
inorder predecessor

Even trickier:
Remove 12



BST Deletion
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Then delete the
 inorder predecessor

Even trickier:
Remove 12



BST Deletion
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Takeaways

• To insert/delete nodes, we have to look them up in our BST
• This is why insertions/deletions are O(log n), just like lookups
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Demo: OurSet
Let’s implement a Set using a BST
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

100

OurSet set;
set.add(8);
set.add(9);
set.add(4);



Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

101

OurSet set;
set.add(8);
set.add(9);
set.add(4);



Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

102

OurSet set;
set.add(8);
set.add(9);
set.add(4);
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

103

OurSet set;
set.add(8);
set.add(9);
set.add(4);

8
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions
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OurSet set;
set.add(8);
set.add(9);
set.add(4);
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

105

set.contains(5); // false
set.contains(4); // true

8

94



Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions
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set.remove(8);
set.remove(9);

8
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions
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set.remove(8);
set.remove(9);
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions
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set.remove(8);
set.remove(9);

4
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Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions
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set.remove(8);
set.remove(9);

4



The Power of Abstraction

• The client doesn’t need to know we’re using a BST behind the 

scenes, they just need to be able to store their data
• After all, you’ve used a Set all quarter without needing to know this!

110

OurSet set;
set.add(8);
set.add(9);
set.add(4);
set.contains(5); // false
set.contains(4); // true
set.remove(8);
set.remove(9);

???



OurSet Header
class OurSet {
public:

OurSet(); // constructor
 ~OurSet(); // destructor

bool contains(int value);
 void add(int value);
 void remove(int value);
 void clear();
 int size();
 bool isEmpty();
 void printSetContents();
private:

/* To be defined soon! */
};
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Find solutions in starter code 
after class 



Let’s code it up!
Implement OurSet with a BST
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Thank you! 🌳
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