
Binary Search Trees
Elyse Cornwall

August 7, 2023

Contributions made from previous CS106B Instructors

Announcements

• This week is our final section

• Exam next Friday (8/18) from 3:30-6:30pm
• Final exam info will be published this afternoon

• Final review session next Tuesday in class

2

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

3

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Advanced
Algorithms

Recap: Trees

4

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

5

Tree Properties

• Any node in a tree can only have one parent

6

Not trees!

Tree Terminology

Types of nodes

• The root node defines the "top" of the tree

• Every node has 0 or more children nodes descended from it

• Nodes with no children are called leaf nodes

• Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

• The length of a path between two nodes is the number of edges between them

• The depth of a node is the length of the path from the root to that node

• The height of a tree is the number of nodes in the longest path through the tree

(i.e. the number of levels in the tree)

7

Binary Trees

• Most common trees in CS
• We’ve seen these before, Binary Heaps!

• Every node has either 0, 1, or 2 children

• Children are referred to as left child and right child

8

8

7 1

0

10 3

Building Binary Trees

• A binary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the right child

9

6

struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

};

Tree Traversal Recap

10

Demo: Freeing a Tree
Traverse a tree and free its nodes

11

👥 Which Method Should We Use?

12

(aka delete)
(aka delete)

(aka delete)

Which Method Should We Use?

13

If we delete a node before deleting its
children, we’ll lose access to its children

(aka delete)
(aka delete)

(aka delete)

Let’s code it up!
Traverse a tree and free its nodes

14

Solution Code - Freeing a Tree

void freeTree(TreeNode* node) {
if (node == nullptr) {

return;
}
freeTree(node->left);
freeTree(node->right);
delete node;

}

15

Binary Search Trees
Trees optimized for binary search!

16

Why Trees?

• The distance from each node in a tree to root is small, even if there

are many elements

• How can we take advantage of trees to structure and efficiently

manipulate data?

17

Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X

18

6

82

41

3

Spot the Valid BST

1. Binary tree (each node has 0, 1, or 2 children)

2. For a node with value X:
a. All nodes in its left subtree must be less than X

b. All nodes in its right subtree must be greater than X

19

6

92

71

3

6

92

41

3

Spot the Valid BST

20

6

92

71

3

6

92

41

3

YOU’RE VALID 😎There’s a node in the left subtree
of 6 that is greater than 6

Turning Data into a BST

21

Let’s say we wanted to store
the following numbers in a BST:

6

152

78

12

94

211

3

11

10

Turning Data into a BST

22

To build a BST, we choose the
median element

6

152

78

12

94

211

3

11

10

Turning Data into a BST

23

This becomes our root node

6

152

7

8

12

94

211

3

11

10

Turning Data into a BST

24

We split all other elements into
less than and greater than 8

6

15
2

7

8

12

94

211

3

11

10

Turning Data into a BST

25

Repeat on each side

6

15
2

7

8

12

94

211

3

11

10

Turning Data into a BST

26

Choose median element

6

15
2

7

8

12

94

211

3

11

10

Turning Data into a BST

27

These become roots for their
respective sub-trees

6

15
2

7

8

9

211

3

11

10
124

Turning Data into a BST

28

15

8

12

9
21

11

10

6

4

1

7
3

2

We split all other elements into
less than, and greater than

Turning Data into a BST

29

15

8

12

9
21

11

10

6

4

1

7
3

2

Choose median element

Turning Data into a BST

30

15

8

12

9

116

4

1

3

These become roots for their
respective sub-trees

211072

Turning Data into a BST

31

15

8

12

9
11

6

4

1 3

We split all other elements into
less than, and greater than

211072

Turning Data into a BST

32

15

8

12

9
11

6

4

1 3

Choose median element

211072

Turning Data into a BST

33

8

124

These become roots for their
respective sub-trees

211072

159 1161 3

Turning Data into a BST

34

8

124

211072

159 1161 3

BST Lookups
These data structures are designed for fast lookups!

35

BST Lookups

36

8

124

211072

159 1161 3

Is 11 in this BST?

BST Lookups

37

8

124

211072

159 1161 3

Is 11 in this BST?
We start at the root.

8 is too small, so we look to the
right.

BST Lookups

38

8

124

211072

159 1161 3

Is 11 in this BST?
12 is too big, so we look to

the left.

BST Lookups

39

8

124

211072

159 1161 3

Is 11 in this BST?
10 is too small, so we look to

the right.

BST Lookups

40

8

124

211072

159 1161 3

Is 11 in this BST?

We found 11!

BST Lookups

41

8

124

211072

159 1161 3

👥 How do we know
that 5 is not in this BST?

BST Lookups

42

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?8 is too big, so we look

to the left.

BST Lookups

43

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?4 is too small, so we

look to the right.

BST Lookups

44

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?7 is too big, so we look

to the left.

BST Lookups

45

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?6 is too big, so we look

to the left.

BST Lookups

46

8

124

211072

159 1161 3

How do we know that 5
is not in this BST?

And we fall off the tree!

BST Lookups

47

8

124

211072

159 1161 3

A value isn’t in our BST if
we “fall off” the tree

looking for it.

BST Lookups

48

8

124

211072

159 1161 3

🤔 What’s the height of
a BST with n elements?

BST Lookups

49

8

124

211072

159 1161 3

O(log2n)
We’ve got 13 nodes in this tree,
but its height is log213 ≈ 4.

BST Lookups

50

8

124

211072

159 1161 3

Worst case, we have to take 4
steps in the tree to find an

element. That’s pretty good!

BST Lookups

51

8

9

12

11

2

15

10

21

👥 Is this a valid BST?

7

3

4

2

6

1

BST Lookups

52

Yes! In a suboptimal
tree, lookups can be as

slow as O(n).

8

9

12

11

2

15

10

21

7

3

4

2

6

1

Building an Optimal BST

53

We saw how to build an optimal
BST by recursively splitting

around the median element

6

15
2

7

8

12

94

211

3

11

10

Takeaways

• There can be multiple valid BSTs for the same set of data

• How you construct the tree matters!

54

8

102

12

7

4

8

12

10

4

2 72

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

55

8

102

12

7

4

8

12

10

4

2 72

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

56

8

102

12

7

4

8

12

10

4

2 72

BALANCED

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

57

8

102

12

7

4

8

12

10

4

2 72

BALANCED

👥 Is this tree balanced?

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

58

8

102

12

7

4

8

12

10

4

2 72

BALANCEDHeight 2Height 3

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

59

8

102

12

7

4

8

12

10

4

2 72

BALANCED

Height 1Height 0

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

60

8

102

12

7

4

8

12

10

4

2 72

BALANCED

Height 2

Height 0

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

61

8

102

12

7

4

8

12

10

4

2 72

BALANCEDUNBALANCED

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree
• This means left/right subtrees don’t differ in height by more than 1

62

8

102

12

7

4

8

12

10

4

2 72

BALANCEDUNBALANCED

Another way to show this: we have
6 nodes, so the tree shouldn’t have

height greater than log26 ≈ 3

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree

• Theorem: If you start with an empty tree and add in random

values, then with high probability the tree is balanced
• Take CS161 to find out why!

63

Balanced BSTs

• A BST is balanced if its height is O(log n), where n is the

number of nodes in the tree

• Theorem: If you start with an empty tree and add in random

values, then with high probability the tree is balanced
• Take CS161 to find out why!

• A self-balancing BST reshapes itself on insertions and deletions to

stay balanced (how to do this is beyond the scope of this class)
• AVL trees

• Red-black trees

64

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

65

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Why do Sets and Maps have
O(log n) lookups? They use BSTs

behind the scenes to store data!

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

66

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Let’s investigate how BSTs can have
O(log n) insertion and deletion.

BST Insertion

67

BST Insertion

68

8

124

211072

159 1161 3

👥 How might we insert 5
into this BST?

BST Insertion

69

8

124

211072

159 1161 3

Search for where the 5
should be…

How might we insert 5 into
this BST?

BST Insertion

70

8

124

211072

159 111 3

How might we insert 5 into
this BST?

… and insert the 5 there

5

6

BST Insertion

71

8

124

211072

159 111 3

We’re using a naïve
approach: this could lead to

an unbalanced tree

5

6

Height 2

Height 0

BST Deletion

72

BST Deletion

73

8

124

211072

159 1161 3

Here’s an easy case:
Remove 3

BST Deletion

74

8

124

211072

159 1161 3

Here’s an easy case:
Remove 3

Search for 3 in our BST

BST Deletion

75

8

124

211072

159 1161

Here’s an easy case:
Remove 3

Delete it!

BST Deletion

76

8

124

211072

159 1161 3

👥 Here’s a harder case:
Remove 21

BST Deletion

77

8

124

211072

159 1161 3

Here’s a harder case:
Remove 21

Search for 21 in our BST

BST Deletion

78

8

124

151072

9 1161 3

Here’s a harder case:
Remove 21

Replace with child

BST Deletion

79

8

124

1072

9 1161 3

Here’s a harder case:
Remove 21

Delete child node

15

BST Deletion

80

8

124

211072

159 1161

🤔 Even trickier:
Remove 12

BST Deletion

81

8

124

211072

159 1161

Search for 12 in our BST

Even trickier:
Remove 12

BST Deletion

82

8

124

211072

159 1161

But we can’t just swap
with a child…

Even trickier:
Remove 12

BST Deletion

83

8

4

211072

159 1161

But we can’t just swap
with a child…

Even trickier:
Remove 12

BST Deletion

84

8

4

2172

159 1161

But we can’t just swap
with a child…

Even trickier:
Remove 12

10

BST Deletion

85

8

4

2172

159 1161

Or we might get a BST
violation

Even trickier:
Remove 12

10

BST Deletion

86

8

124

211072

159 1161

Same with the other
child…

Even trickier:
Remove 12

BST Deletion

87

8

4

211072

159 1161

Same with the other
child…

Even trickier:
Remove 12

BST Deletion

88

8

4

1072

159 1161

Same with the other
child…

Even trickier:
Remove 12

21

BST Deletion

89

8

4

1072

159 1161

Violation!

Even trickier:
Remove 12

21

BST Deletion

90

8

124

211072

159 1161

Idea: swap 12 with its inorder
predecessor or successor

Even trickier:
Remove 12

BST Deletion

91

8

124

211072

159 1161

Inorder predecessor:
largest node in left subtree

Inorder successor:
smallest node in right subtree

Even trickier:
Remove 12

BST Deletion

92

8

124

211072

159 1161

🎟 What is the
inorder predecessor of 12?

Inorder predecessor:
largest node in left subtree

Inorder successor:
smallest node in right subtree

Even trickier:
Remove 12

BST Deletion

93

8

124

211072

159 1161

🎟 What is the
inorder predecessor of 12?

Inorder predecessor:
largest node in left subtree

Inorder successor:
smallest node in right subtree

Even trickier:
Remove 12

BST Deletion

94

8

116

211072

159 1161

We replace 12 with its
inorder predecessor

Even trickier:
Remove 12

BST Deletion

95

8

116

211072

15961

Then delete the
 inorder predecessor

Even trickier:
Remove 12

BST Deletion

96

8

116

211072

15961

Takeaways

• To insert/delete nodes, we have to look them up in our BST
• This is why insertions/deletions are O(log n), just like lookups

97

8

124

211072

159 1161

Demo: OurSet
Let’s implement a Set using a BST

98

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

99

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

100

OurSet set;
set.add(8);
set.add(9);
set.add(4);

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

101

OurSet set;
set.add(8);
set.add(9);
set.add(4);

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

102

OurSet set;
set.add(8);
set.add(9);
set.add(4);

8

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

103

OurSet set;
set.add(8);
set.add(9);
set.add(4);

8

9

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

104

OurSet set;
set.add(8);
set.add(9);
set.add(4);

8

94

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

105

set.contains(5); // false
set.contains(4); // true

8

94

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

106

set.remove(8);
set.remove(9);

8

94

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

107

set.remove(8);
set.remove(9);

94

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

108

set.remove(8);
set.remove(9);

4

9

Implementing OurSet

• We’re going to use a BST to implement a Set

• We’ll create a header file, then implement a few core functions

109

set.remove(8);
set.remove(9);

4

The Power of Abstraction

• The client doesn’t need to know we’re using a BST behind the

scenes, they just need to be able to store their data
• After all, you’ve used a Set all quarter without needing to know this!

110

OurSet set;
set.add(8);
set.add(9);
set.add(4);
set.contains(5); // false
set.contains(4); // true
set.remove(8);
set.remove(9);

???

OurSet Header
class OurSet {
public:

OurSet(); // constructor
 ~OurSet(); // destructor

bool contains(int value);
 void add(int value);
 void remove(int value);
 void clear();
 int size();
 bool isEmpty();
 void printSetContents();
private:

/* To be defined soon! */
};

111

Find solutions in starter code
after class

Let’s code it up!
Implement OurSet with a BST

112

Thank you! 🌳

113

