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Announcements

* This week is our final section
e Exam next Friday (8/18) from 3:30-6:30pm

* Final exam info will be published this afternoon
* Final review session next Tuesday in class
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Recap: Trees
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Uses

* Trees are useful in other ways besides visualizing recursion and

* Describe hierarchies
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Tree Properties

* Any node in a tree can only have one parent
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Tree Terminology

Types of nodes

* The root node defines the "top" of the tree

* Every node has 0 or more children nodes descended from it
* Nodes with no children are called leaf nodes

* Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

* The length of a path between two nodes is the number of edges between them

* The depth of a node is the length of the path from the root to that node

* The height of a tree is the number of nodes in the longest path through the tree
(i.e. the number of levels in the tree)
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Binary Trees

* Most common trees in CS
* We've seen these before, Binary Heaps!
 Every node has either 0, 1, or 2 children
* Children are referred to as left child and right child . u
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Building Binary Trees

A binary tree is composed of nodes

Each node is a struct that contains:

A piece of data (like an int, or string)
A pointer to the left child
A pointer to the right child

struct TreeNode {
int data;
TreeNode* left;
TreeNodex*x right;

}s
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Tree Traversal Recap

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589
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Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985
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Demo: Freeing a Tree

Traverse a tree and free its nodes
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@ Which Method Should We Use?

Pre-order

do something(aka delete)
traverse left subtree
traverse right subtree

In-order

traverse left subtree
do something (aka delete)
traverse right subtree

Post-order

traverse left subtree
traverse right subtree
do something (aka delete)
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Which Method Should We Use?

If we delete a node before deleting its
children, we’ll lose access to its children

Pre-order In-order Post-order
do something(aka delete) traverse left subtree traverse left subtree
traverse left subtree do something (aka delete) traverse right subtree
traverse right subtree traverse right subtree do something (aka delete)
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Let’s code it up!

Traverse a tree and free its nodes
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Solution Code - Freeing a Tree

void freeTree(TreeNodex node) {
it (node == nullptr) {
return;
}
freeTree(node->1left);
freeTree(node->right);
delete node;
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Binary Search Trees

Trees optimized for binary search!
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Why Trees?

The distance from each node in a tree to root is small, even if there
are many elements

 How can we take advantage of trees to structure and efficiently
manipulate data? °
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Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)
2. For a node with value X:

a. All nodes in its left subtree must be less than X
b. All nodes in its right subtree must be greater than X

18
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Spot the Valid BST

1.
2.

Binary tree (each node has 0, 1, or 2 children)
For a node with value X:

a. All nodes in its left subtree must be less than X
b. All nodes in its right subtree must be greater than X

19
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Spot the Valid BST

There’s a node in the left subtree . - }
of 6 that is greater than 6 [ YOU'RE VALID *=
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Turning Data into a BST

Let’s say we wanted to store
the following numbers in a BST:
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Turning Data into a BST

To build a BST, we choose the
median element
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Turning Data into a BST

This becomes our root node
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Turning Data into a BST

We split all other elements into

less than and greater than 8
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Turning Data into a BST

Repeat on each side
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Turning Data into a BST

Choose median element
|
|

o © I @ ®
> ® | ®0
®© © 1 Ye




27

Turning Data into a BST

These become roots for their
respective sub-trees
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Turning Data into a BST

We split all other elements into
less than, and greater than
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Turning Data into a BST

Choose medi
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Turning Data into a BST

These become roots for their
respective sub-trees
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Turning Data into a BST

We split all other elements into
less than, and greater than
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Turning Data into a BST

Choose median element
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Turning Data into a BST

These become roots for their °
respective sub-trees
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Turning Data into a BST
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BST Lookups

These data structures are designed for fast lookups!
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BST Lookups

Is 11 in this BST?
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BST Lookups
We start at the root.
8 is too small, so we look to the °
right.

Is 11 in this BST?
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BST Lookups

Is 11 in this BST?

12 is too big, so we look to
the left.
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BST Lookups

Is 11 in this BST?

10 is too small, so we look to
the right.

Stanford University




40

BST Lookups

Is 11 in this BST?

We found 11!
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BST Lookups

@ How do we know

° that 5 is not in this BST?
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BST Lookups

How do we know that 5

8 is too big, so we look is not in this BST?
to the left.
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BST Lookups

How do we know that 5

4 is too small, so we is not in this BST?

look to the right.
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BST Lookups

How do we know that 5

7 is too big, so we look is not in this BST?

to the left.
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BST Lookups

How do we know that 5
is not in this BST?

6 is too big, so we look
to the left.
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BST Lookups

How do we know that 5
is not in this BST?

And we fall off the tree!
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BST Lookups

A value isn’t in our BST if
we “fall off” the tree
looking for it.
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BST Lookups

= What’s the height of

° a BST with n elements?
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BST Lookups 0(1og.n)

We’ve got 13 nodes in this tree,
° but its height is log,13 =4.
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BST Lookups

Worst case, we have to take 4
steps in the tree to find an

° element. That’s pretty good!
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BST Lookups

@ Is this a valid BST?
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BST Looku PS Yes! In a suboptimal

tree, lookups can be as
slowasO(n).
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Building an Optimal BST
We saw how to build an optimal
BST by recursively splitting
around the median element
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Takeaways

* There can be multiple valid BSTs for the same set of data
 How you construct the tree matters!
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[ BALANCED]
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Balanced BSTs

57

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree

* This means left/right subtrees don’t differ in height by more than 1

@ Is this tree balanced?

[ BALANCED]
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

Height 3

[ BALANCED]
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[ BALANCED]

Height 0  Height 1
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[ BALANCED]

Height 2

Height O
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[ BALANCED]
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Balanced BSTs

* ABST is balanced if its height is 0 (Log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[ UNBALANCED ] [BALANCED]

Another way to show this: we have
6 nodes, so the tree shouldn’t have
height greater than Log 6 =3

T @
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the
number of nodes in the tree
* Theorem: If you start with an empty tree and add in random

values, then with high probability the tree is balanced
* Take CS161 to find out why!
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Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the
number of nodes in the tree
* Theorem: If you start with an empty tree and add in random

values, then with high probability the tree is balanced
* Take CS161 to find out why!

* A self-balancing BST reshapes itself on insertions and deletions to

stay balanced (how to do this is beyond the scope of this class)
* AVL trees
* Red-black trees
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Big-O of ADT Operations

Vectors Queues Sets

e .size() - 0(1) e .size() - 0(1) e .size() - 0(1)
e .add() - 0(1) e .peek() - 0(1) e .isEmpty() - 0(1)
e v[i] ;+9$lz A7) e .enqueue() - 0(1) ¢ .add() - 0(log n)
: :;gﬁe e« .remove() - 0(log n)
¢ .suff Why do Sets and Maps have * .contains() - 0(log n)
e tra\ e traversal - 0(n)

_ O(log n) lookups? They use BSTs
Grids ) Maps

behind the scenes to store data! ,
e .Nun e .size() - 0(1)
* .NUNMCOTST) oTT) *  .peer() - o(I) e L.isEmpty() - 0(1)
e grid[i1[3] - o(1) . .push() - 0(1) « m[key] - O(log n)
y Ozg?ounds() - e .pop() - 0(1) e .contains() - 0(log n)
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal - 0(n)
e traversal - 0(n)
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Big-O of ADT Operations

Vectors Queues Sets
e .size() - 0(1) e .size() - 0(1) e .size() - 0(1)
e .add() - 0(1) e .peek() - 0(1) e .isEmpty() - 0(1)
: VE;ge;t?§lz o(ny ° -enqueue() - 0(1) o .add() - 0(log n)
. :rengg() _ 0(n) . .qequeue§} - O(l} e .remove() - 0(log n)
e .suH e .contains() - 0(log n)
- tray Let’s investigate how BSTs can have « traversal - 0(n)
Grids O(log n) insertion and deletion. Maps
e .nun ——r———— oy e .size() - 0(1)
e .numCols() - 0(1) . .peek() - 0(1) e .isEmpty() - 0(1)
e grid[i1[3] - o(1) . .push() - 0(1) e m[key] - 0(log n)
y Ozg?ounds() - e .pop() - 0(1) e .contains() - 0(log n)
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal - 0(n)
e traversal - 0(n)
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BST Insertion
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BST Insertion @ How might we insert 5

° into this BST?
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BST Insertion How might we insert 5 into
this BST?

Search for where the 5
should be...
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BST Insertion How might we insert 5 into
this BST?

... and insert the 5 there

@ Stanford University
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BST Insertion We’re using a naive
approach: this could lead to

an unbalanced tree

9

Height 2
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BST Deletion
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BST Deletion Here’s an easy case:

° Remove 3
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BST Deletion Here’s an easy case:

Remove 3

Search for 3 in our BST
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BST Deletion Here’s an easy case:

Remove 3

Delete it!
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BST Deletion @ Here’s a harder case:

° Remove 21
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BST Deletion Here’s a harder case:

Remove 21

Search for 21 in our BST
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BST Deletion Here’s a harder case:

Remove 21

Replace with child
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BST Deletion Here’s a harder case:

Remove 21

Delete child node
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BST Deletion =) Even trickier:

° Remove 12
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BST Deletion Even trickier:

Remove 12

Search for 12 in our BST
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BST Deletion Even trickier:

Remove 12

But we can’t just swap
with a child...
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BST Deletion Even trickier:

Remove 12

But we can’t just swap
with a child...
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BST Deletion Even trickier:

Remove 12

But we can’t just swap
with a child...
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BST Deletion Even trickier:

Remove 12

Or we might get a BST
violation
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BST Deletion Even trickier:

Remove 12

Same with the other
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BST Deletion Even trickier:

Remove 12

Same with the other
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BST Deletion Even trickier:

Remove 12

Same with the other
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BST Deletion Even trickier:

Remove 12

Violation!
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BST Deletion Even trickier:

Remove 12

Idea: swap 12 with its inorder
predecessor or successor
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BST Deletion Even trickier:

Remove 12

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree
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BST Deletion Even trickier:

Remove 12

¥ What is the
inorder predecessor of 127

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree
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BST Deletion Even trickier:

Remove 12

¥ What is the
inorder predecessor of 127

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree
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BST Deletion Even trickier:

We replace 12 with its ° Remove 12
inorder predecessor
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BST Deletion Even trickier:

Then delete the Remove 12
inorder predecessor
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BST Deletion
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Takeaways

* Toinsert/delete nodes, we have to look them up in our BST
* Thisis why insertions/deletions are 0 (Log n), just like lookups

Stanford University




98

Demo: OurSet

Let’s implement a Set using a BST
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

OurSet set;
set.add(8);
set.add(9);
set.add(4);

Stanford University
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

OurSet set;
set.add(8);
set.add(9);
set.add(4);
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

8
OurSet set;

set.add(8);
set.add(9);
set.add(4);
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

8
OurSet set;
set.add(8); //1 \
set.add(9) \

set.add(4);

N/
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

8
OurSet set;
set.add(8); / 1\
set.add(9);
set.add(4); / \
4 9

AN A
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Implementing OurSet

 We’re going to use a BST to implement a Set

105

 WeEe'll create a header file, then implement a few core functions

set.contains(5); // false
set.contains(4); // true

8

/

/

4

A/

A/
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Implementing OurSet

 We’re going to use a BST to implement a Set

106

 WeEe'll create a header file, then implement a few core functions

set.remove(8);
set.remove(9);

8

A/

A/
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Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

set.remove(8);

set.remove(9); / \
AN A4
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Implementing OurSet

 We’re going to use a BST to implement a Set

108

 WeEe'll create a header file, then implement a few core functions

set.remove(8);

4

set.remove(9);

N/
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Implementing OurSet

 We’re going to use a BST to implement a Set

109

 WeEe'll create a header file, then implement a few core functions

set.remove(8);
set.remove(9);

4

v
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The Power of Abstraction

* The client doesn’t need to know we’re using a BST behind the
scenes, they just need to be able to store their data

After all, you’ve used a Set all quarter without needing to know this!

OurSet set;

set

set

set

.add(8);
set.
set.
.contains(5); // false
set.
set.

add(9) ;
add(4);

contains(4); // true
remove(8) ;

.remove(9) ;
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OurSet Header

class OurSet {
public:
OurSet(); // constructor
~QurSet(); // destructor
bool contains(int value);
void add(int value);
void remove(int value);
void clear();
int size();
bool 1isEmpty();
void printSetContents();
private:
/* To be defined soon! %/

I
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Find solutions in starter code

after class
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Let’s code it up!

Implement OurSet with a BST
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Thank youl! @

Stanford University




