

Binary Search Trees

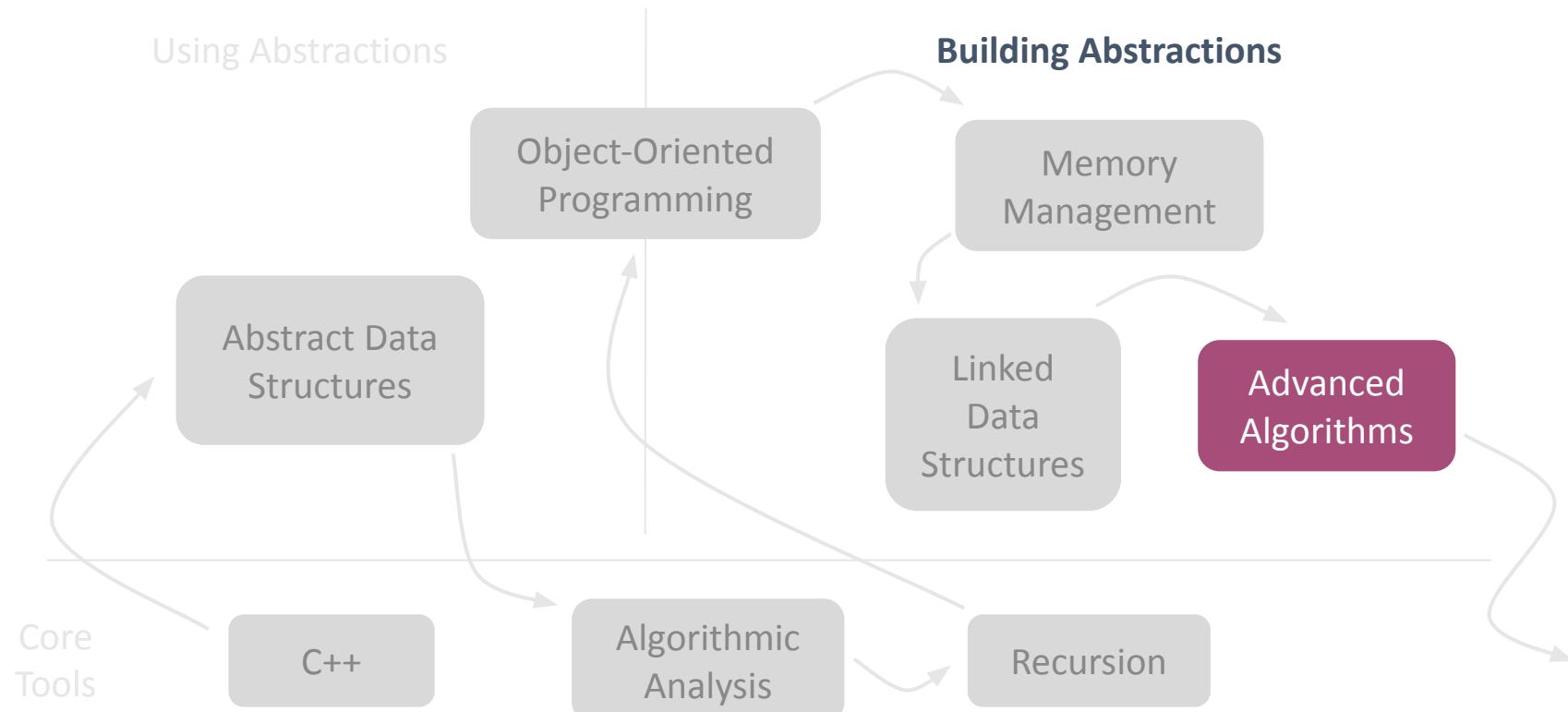
Elyse Cornwall

August 7, 2023

Announcements

- This week is our final section
- Exam next Friday (8/18) from 3:30-6:30pm
 - Final exam info will be published this afternoon
 - Final review session next Tuesday in class

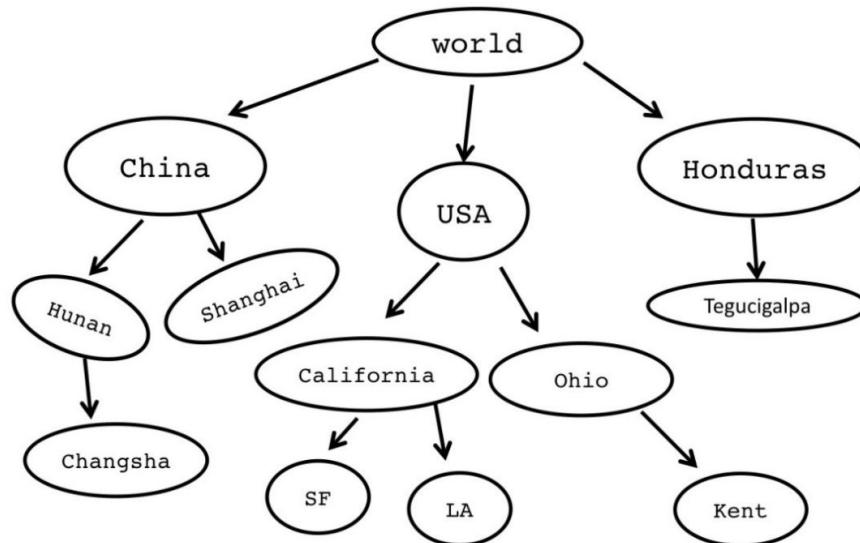
Roadmap



Recap: Trees

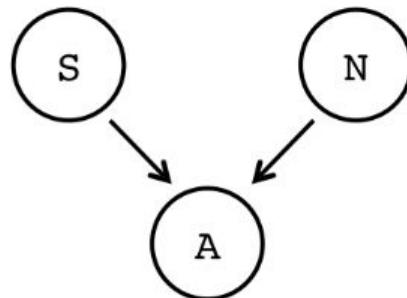
Uses

- Trees are useful in other ways besides visualizing recursion and modeling priority
 - Describe hierarchies

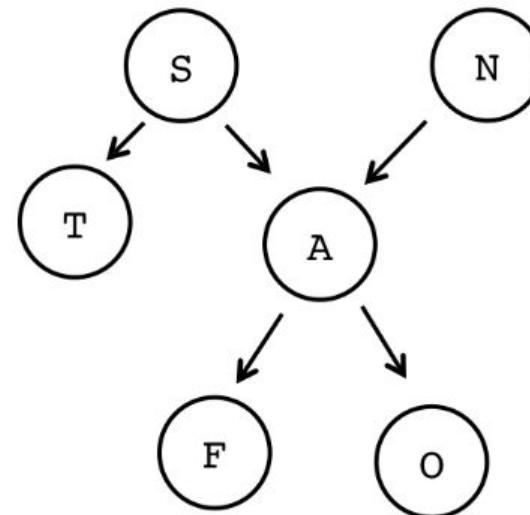


Tree Properties

- Any node in a tree can only have one parent



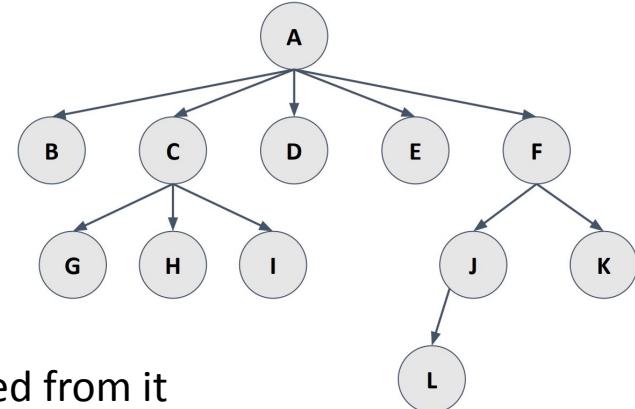
Not trees!



Tree Terminology

Types of nodes

- The **root** node defines the "top" of the tree
- Every node has 0 or more **children** nodes descended from it
- Nodes with no children are called **leaf** nodes
- Every node in a tree has exactly one **parent** node (except for the root node)

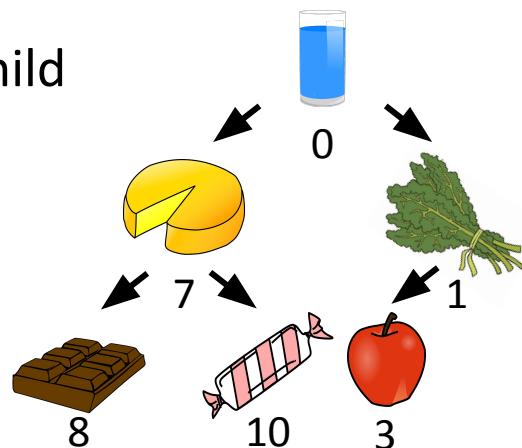


Terminology for quantifying trees

- The **length** of a path between two nodes is the number of edges between them
- The **depth** of a node is the length of the path from the root to that node
- The **height** of a tree is the number of nodes in the longest path through the tree (i.e. the number of levels in the tree)

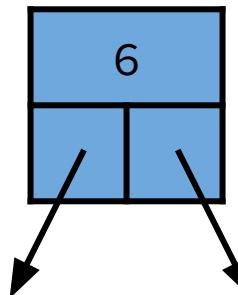
Binary Trees

- Most common trees in CS
 - We've seen these before, Binary Heaps!
- Every node has either 0, 1, or 2 children
- Children are referred to as left child and right child



Building Binary Trees

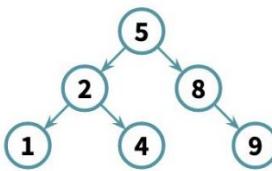
- A binary tree is composed of nodes
- Each node is a struct that contains:
 - A piece of data (like an int, or string)
 - A pointer to the left child
 - A pointer to the right child



```
struct TreeNode {  
    int data;  
    TreeNode* left;  
    TreeNode* right;  
};
```

Tree Traversal Recap

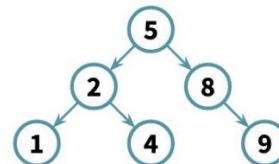
Pre-order



do something (aka cout)
traverse left subtree
traverse right subtree

5 2 1 4 8 9

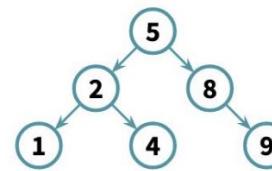
In-order



traverse left subtree
do something (aka cout)
traverse right subtree

1 2 4 5 8 9

Post-order



traverse left subtree
traverse right subtree
do something (aka cout)

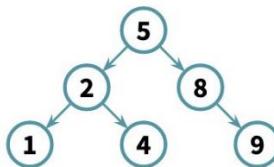
1 4 2 9 8 5

Demo: Freeing a Tree

Traverse a tree and free its nodes

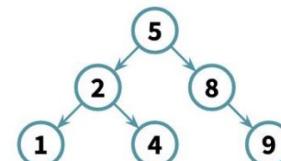
Which Method Should We Use?

Pre-order



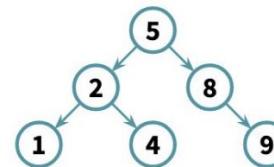
do something (aka delete)
traverse left subtree
traverse right subtree

In-order



traverse left subtree
do something (aka delete)
traverse right subtree

Post-order

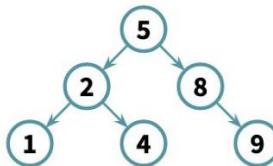


traverse left subtree
traverse right subtree
do something (aka delete)

Which Method Should We Use?

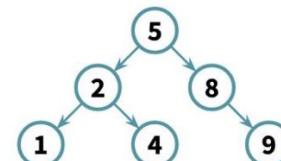
If we delete a node before deleting its children, we'll lose access to its children

Pre-order



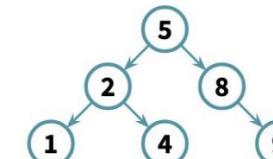
do something (aka delete)
traverse left subtree
traverse right subtree

In-order



traverse left subtree
do something (aka delete)
traverse right subtree

Post-order



traverse left subtree
traverse right subtree
do something (aka delete)

Let's code it up!

Traverse a tree and free its nodes

Solution Code - Freeing a Tree

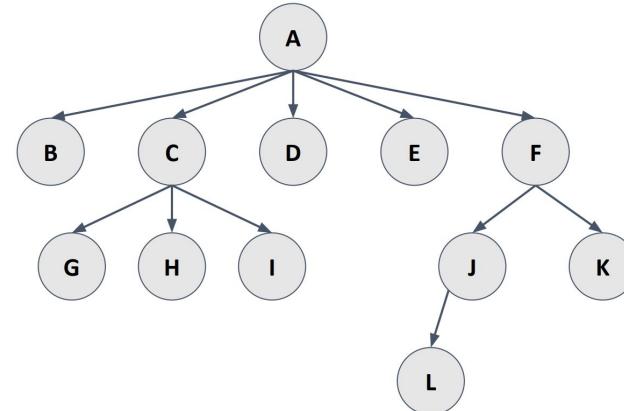
```
void freeTree(TreeNode* node) {  
    if (node == nullptr) {  
        return;  
    }  
    freeTree(node->left);  
    freeTree(node->right);  
    delete node;  
}
```

Binary Search Trees

Trees optimized for binary search!

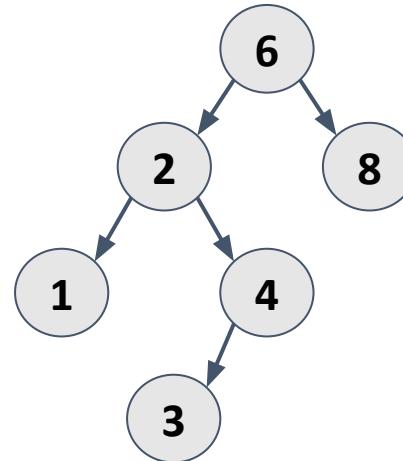
Why Trees?

- The distance from each node in a tree to root is small, even if there are many elements
- How can we take advantage of trees to structure and efficiently manipulate data?



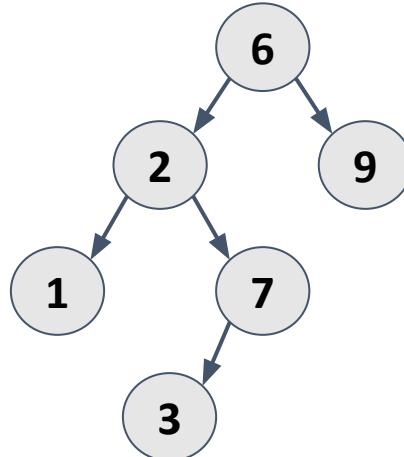
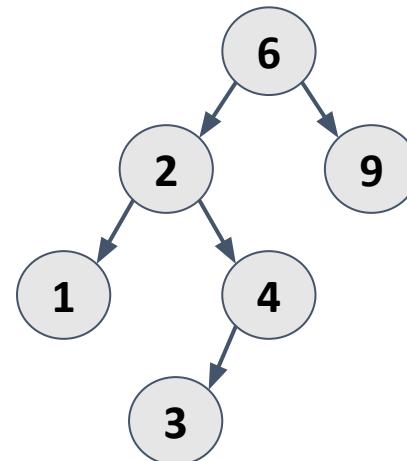
Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)
2. For a node with value X:
 - a. All nodes in its left subtree must be less than X
 - b. All nodes in its right subtree must be greater than X



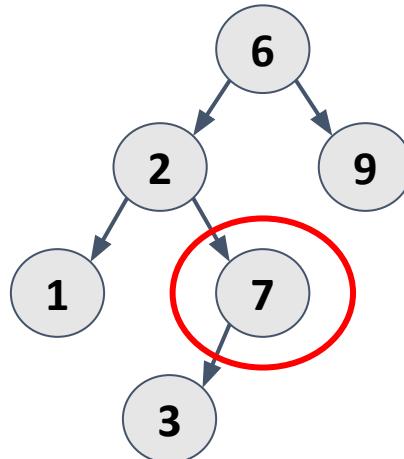
Spot the Valid BST

1. Binary tree (each node has 0, 1, or 2 children)
2. For a node with value X:
 - a. All nodes in its left subtree must be less than X
 - b. All nodes in its right subtree must be greater than X

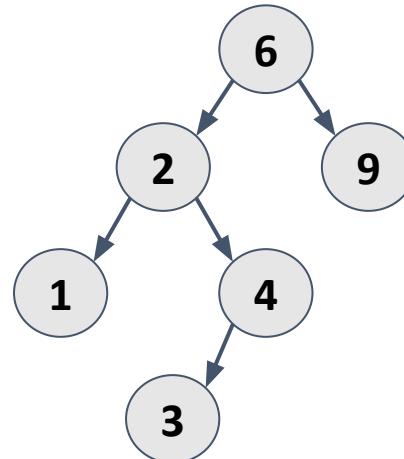


Spot the Valid BST

There's a node in the left subtree of 6 that is greater than 6

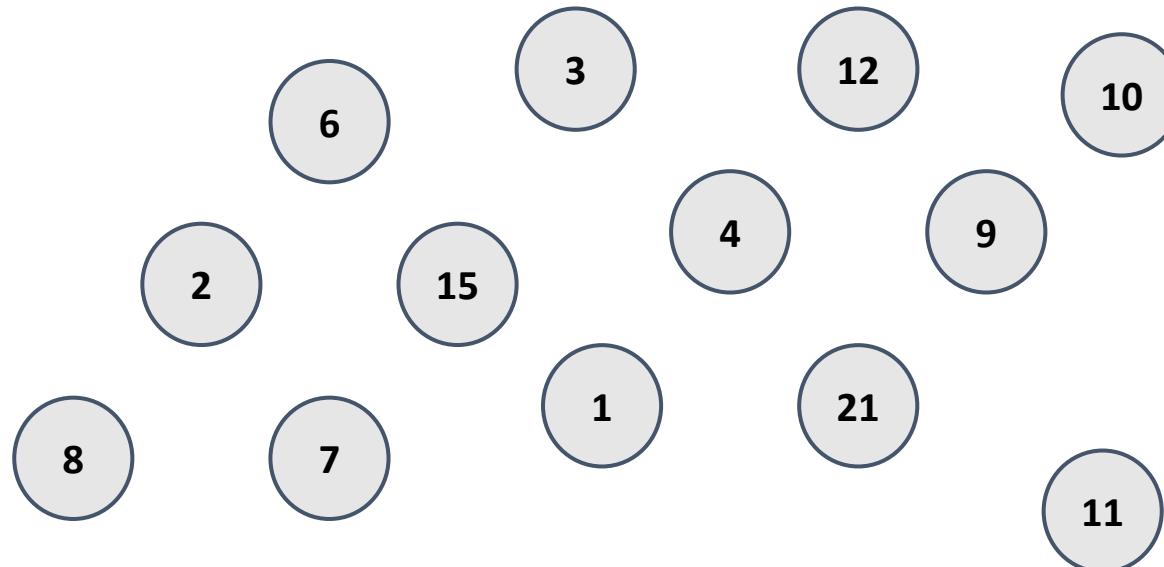


YOU'RE VALID 😎



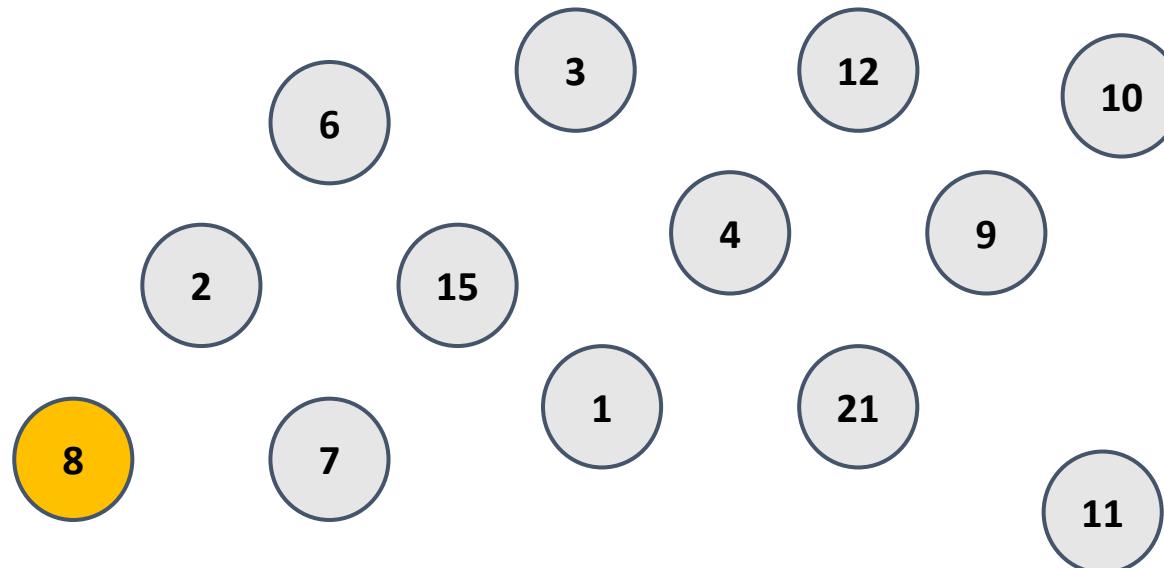
Turning Data into a BST

*Let's say we wanted to store
the following numbers in a BST:*



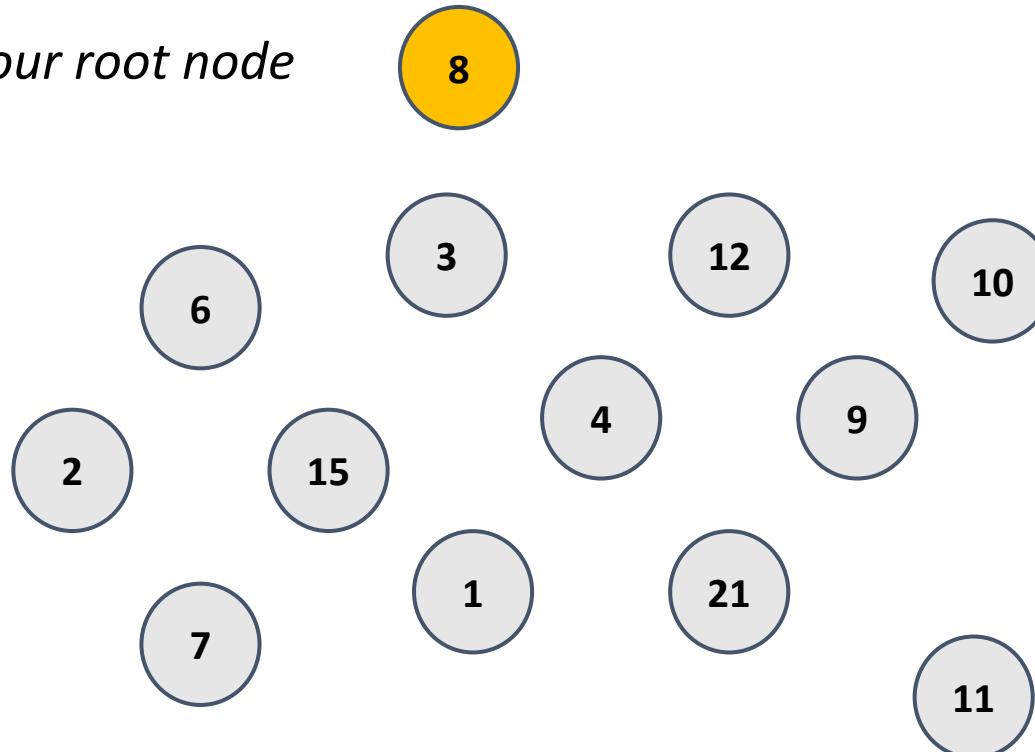
Turning Data into a BST

To build a BST, we choose the median element



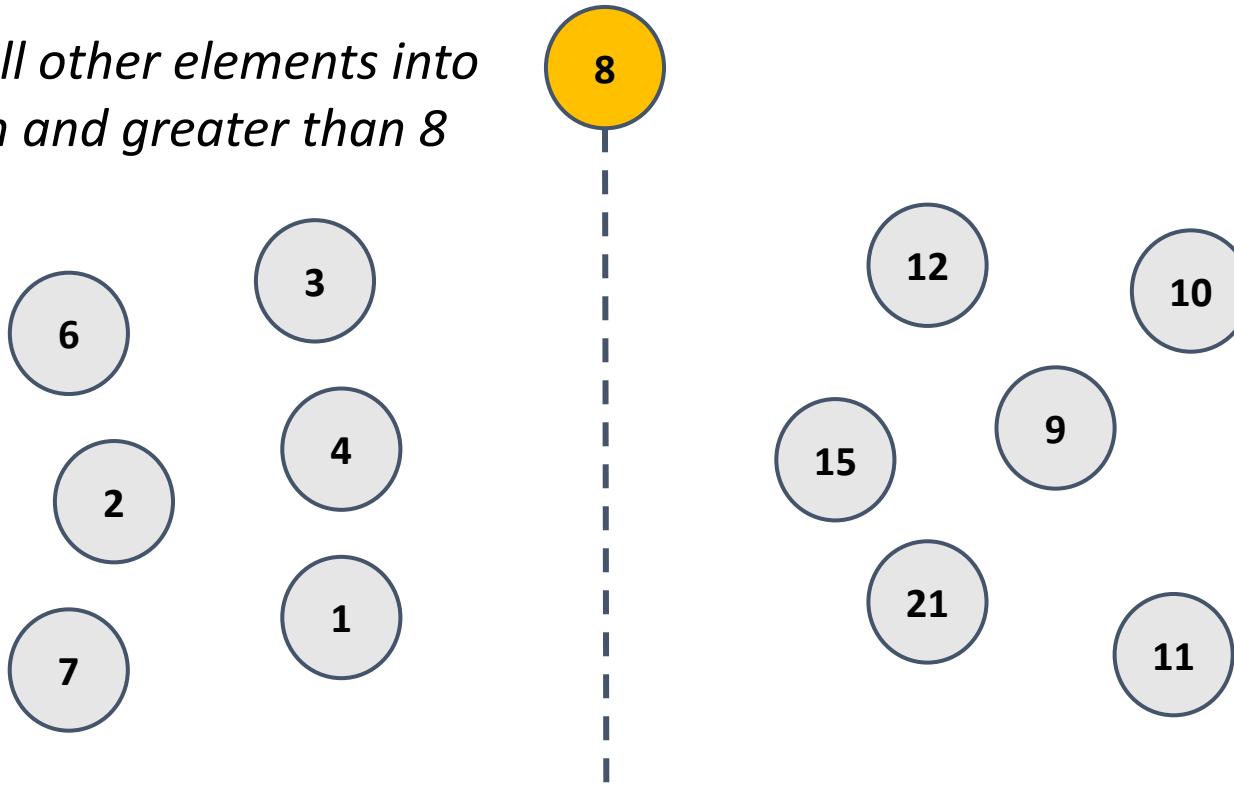
Turning Data into a BST

This becomes our root node



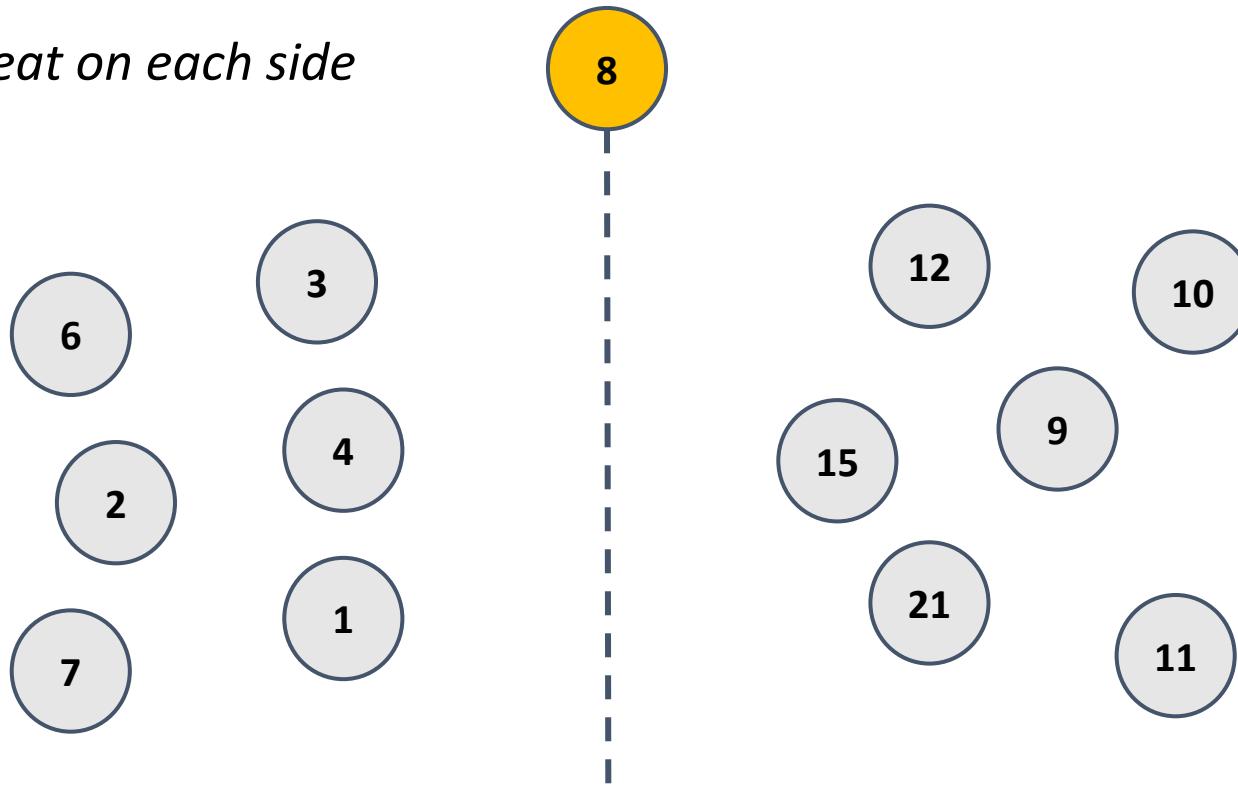
Turning Data into a BST

We split all other elements into less than and greater than 8



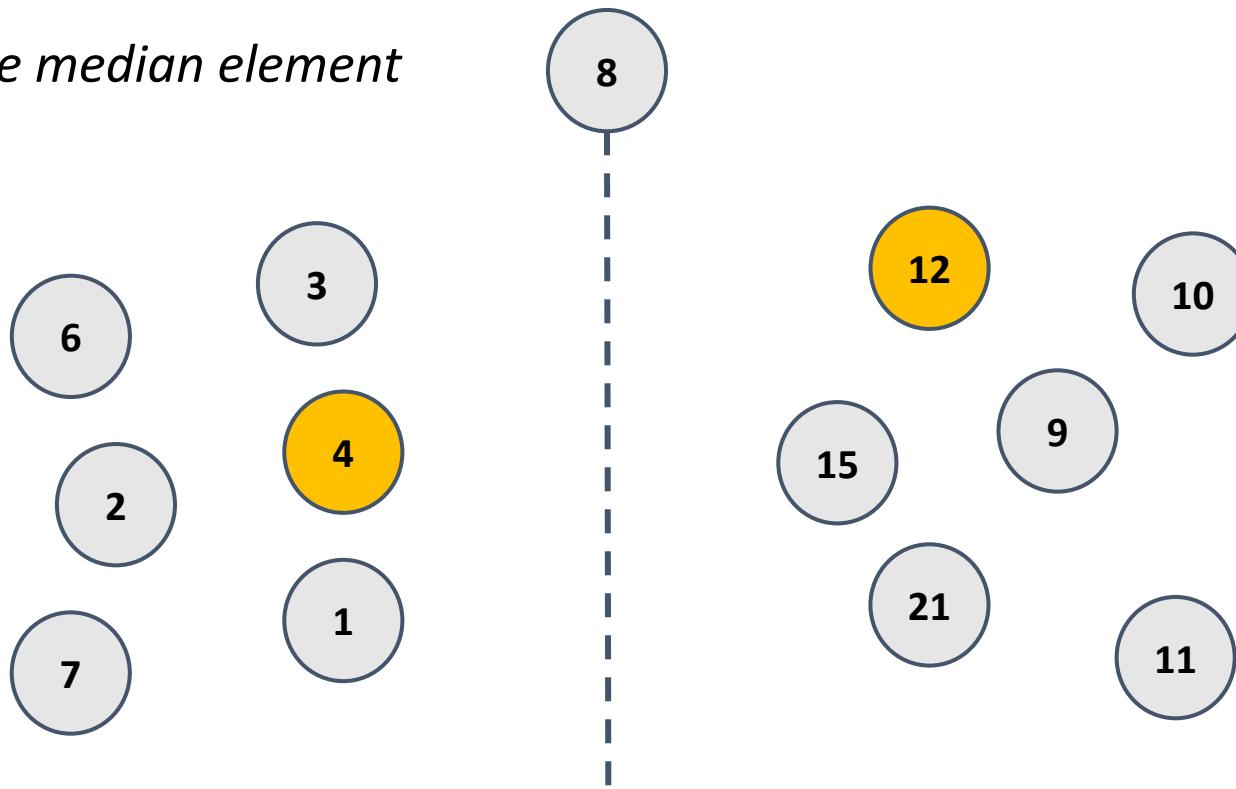
Turning Data into a BST

Repeat on each side



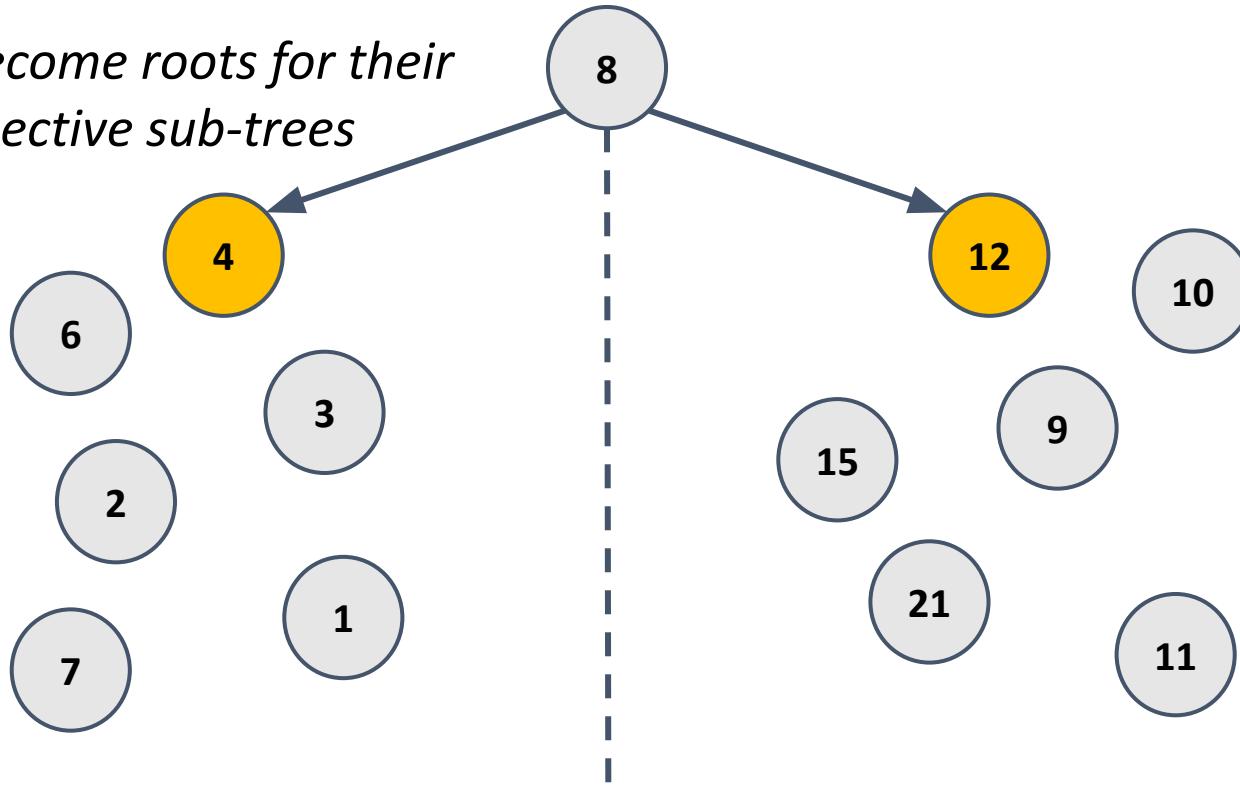
Turning Data into a BST

Choose median element



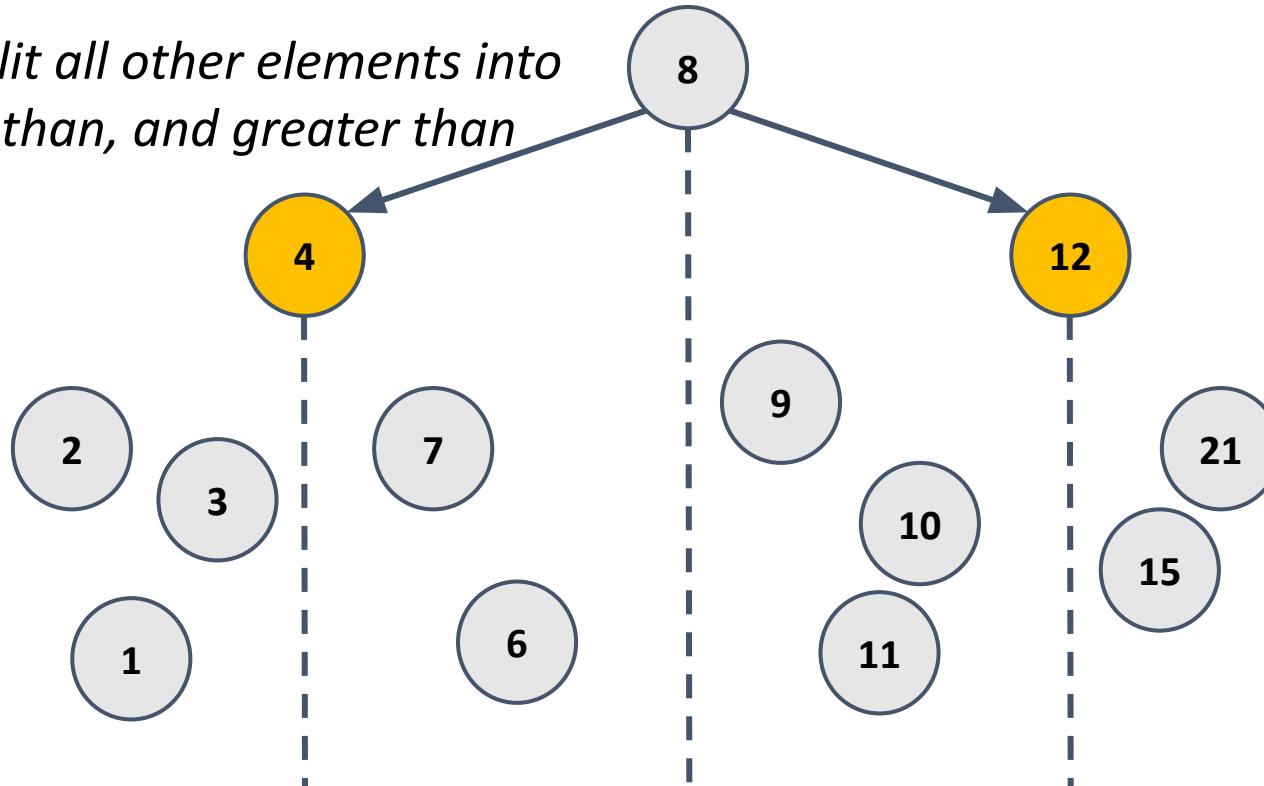
Turning Data into a BST

These become roots for their respective sub-trees

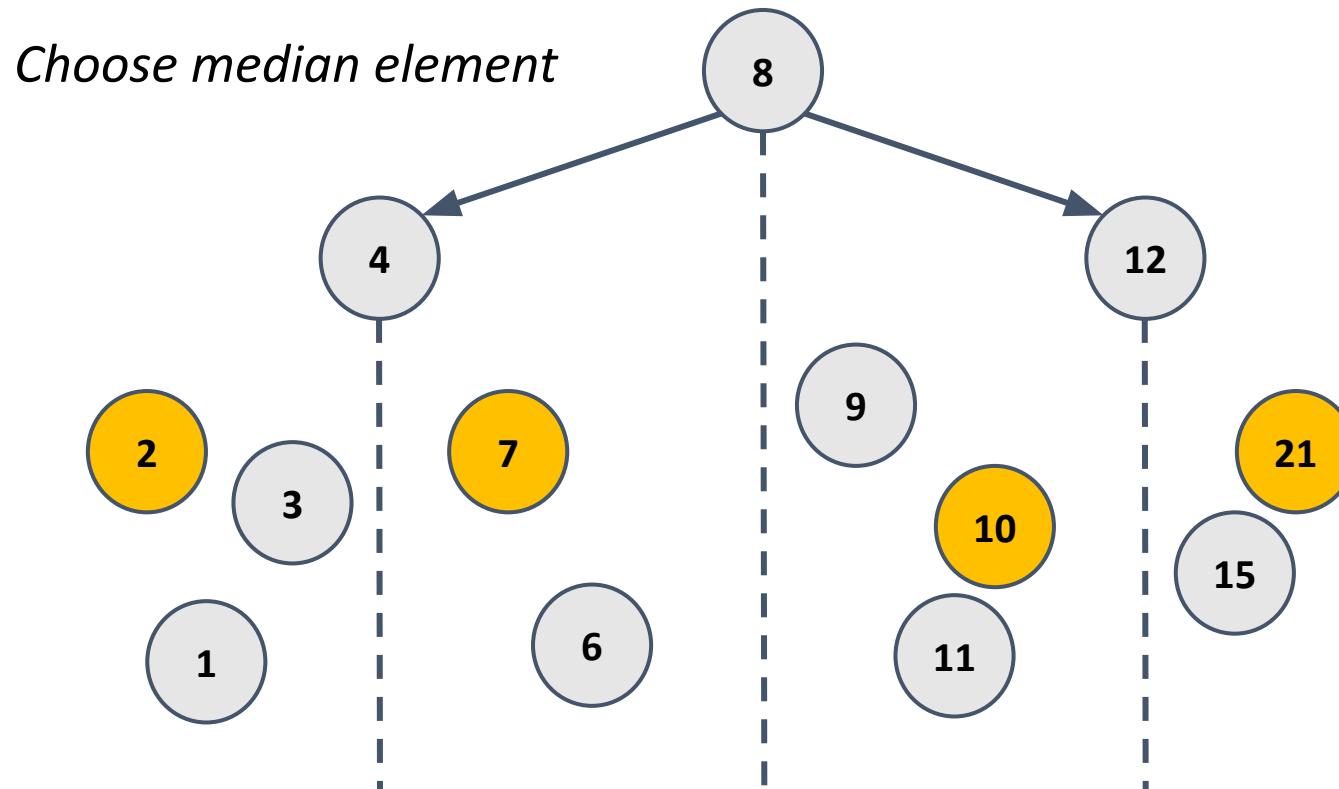


Turning Data into a BST

We split all other elements into less than, and greater than

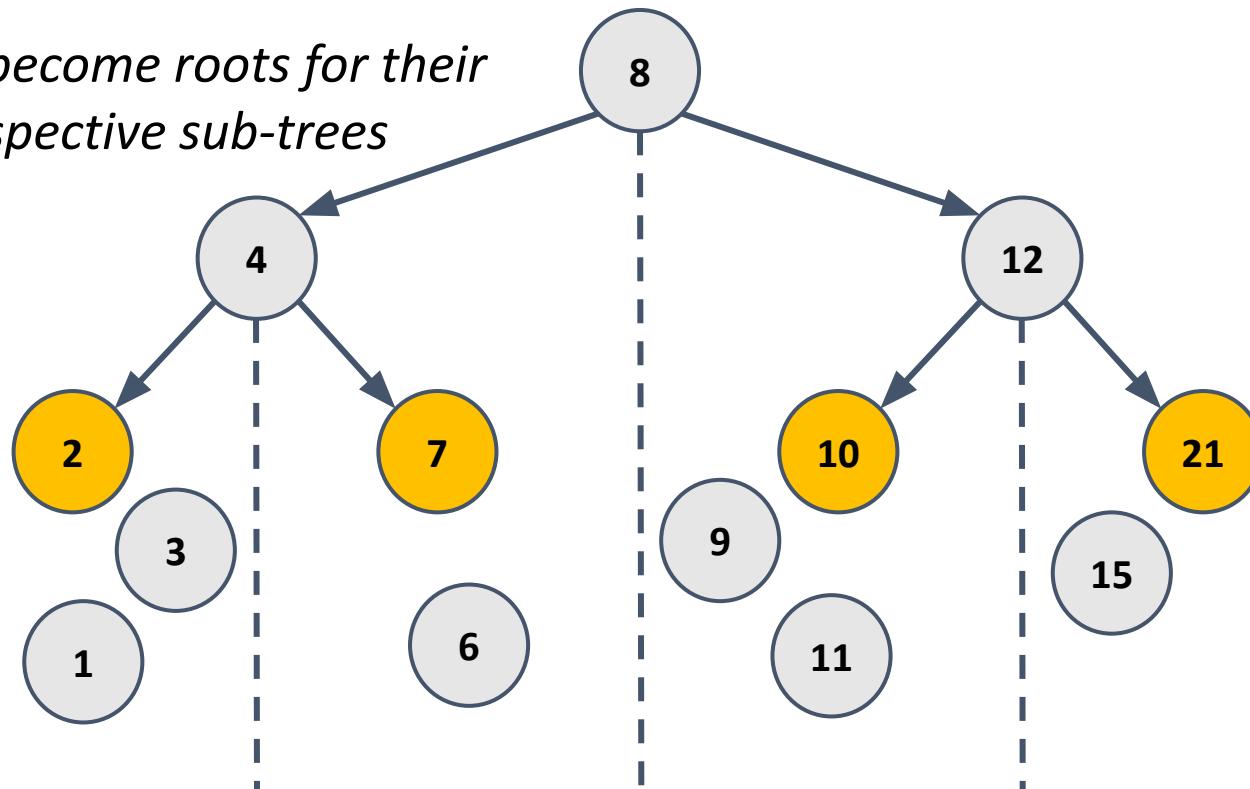


Turning Data into a BST



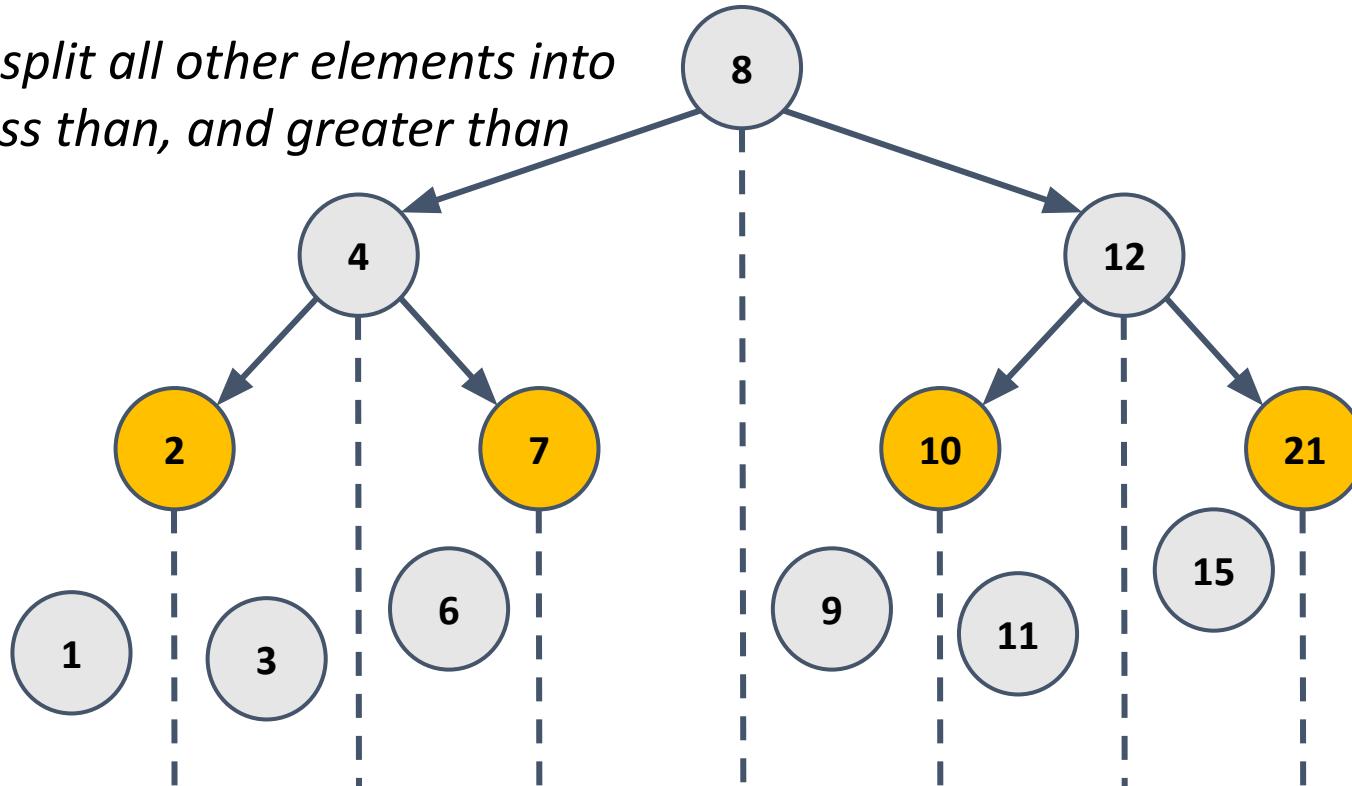
Turning Data into a BST

These become roots for their respective sub-trees

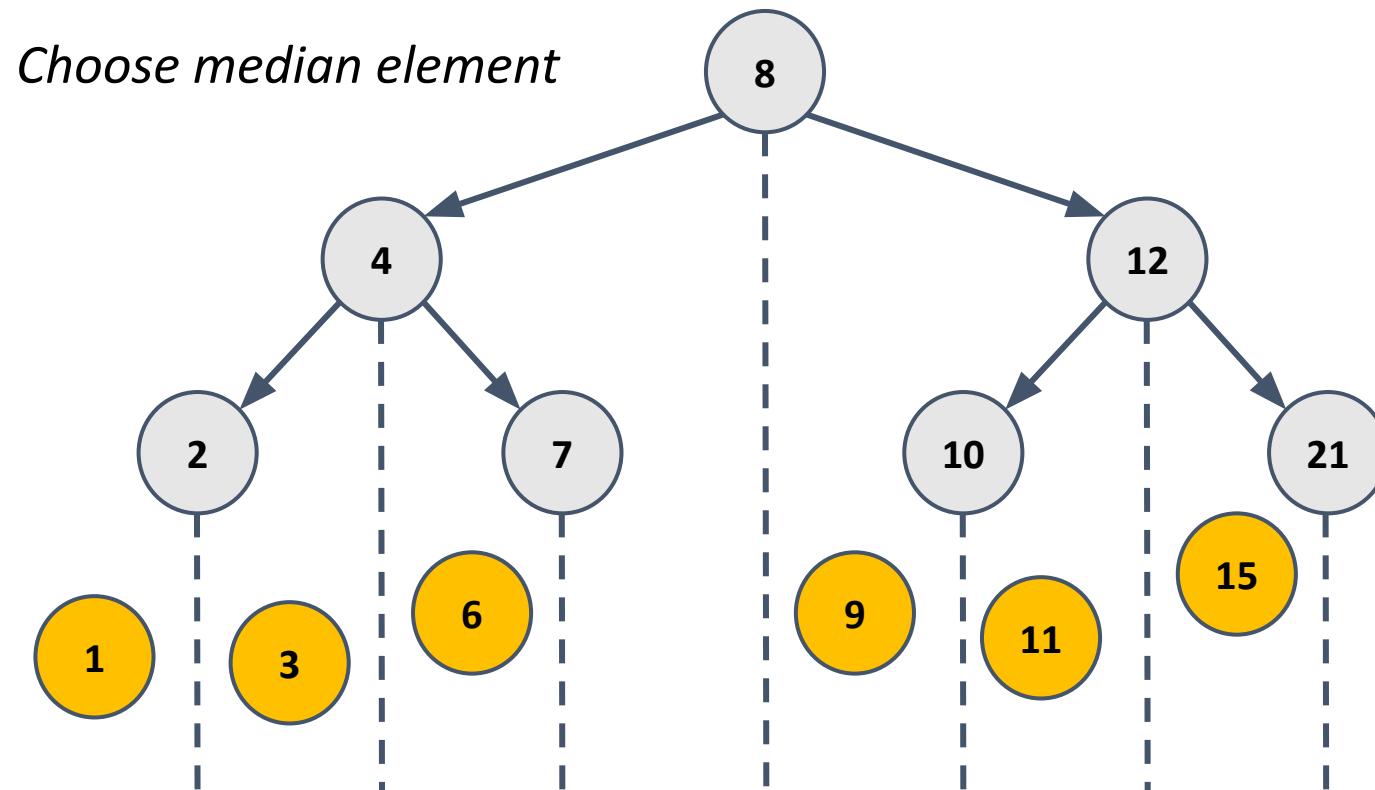


Turning Data into a BST

We split all other elements into less than, and greater than

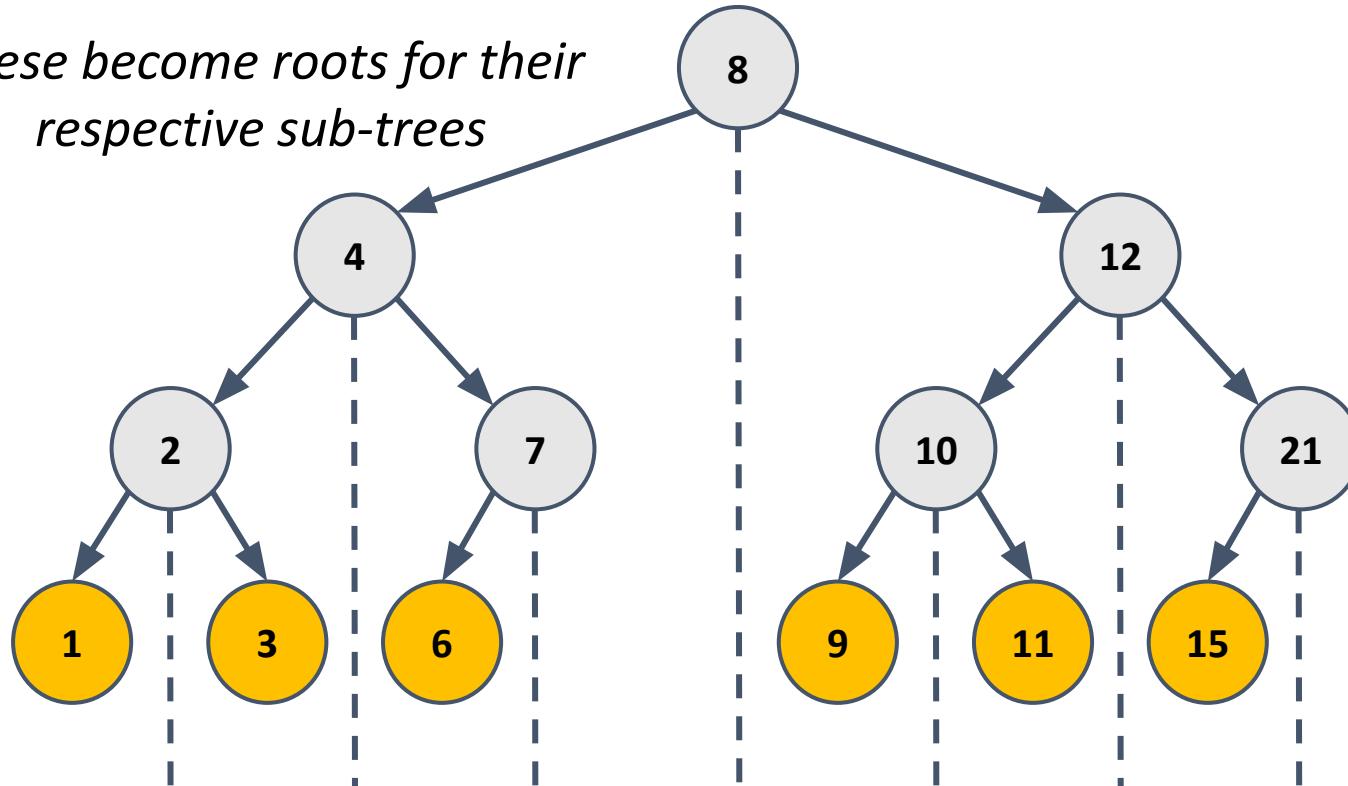


Turning Data into a BST

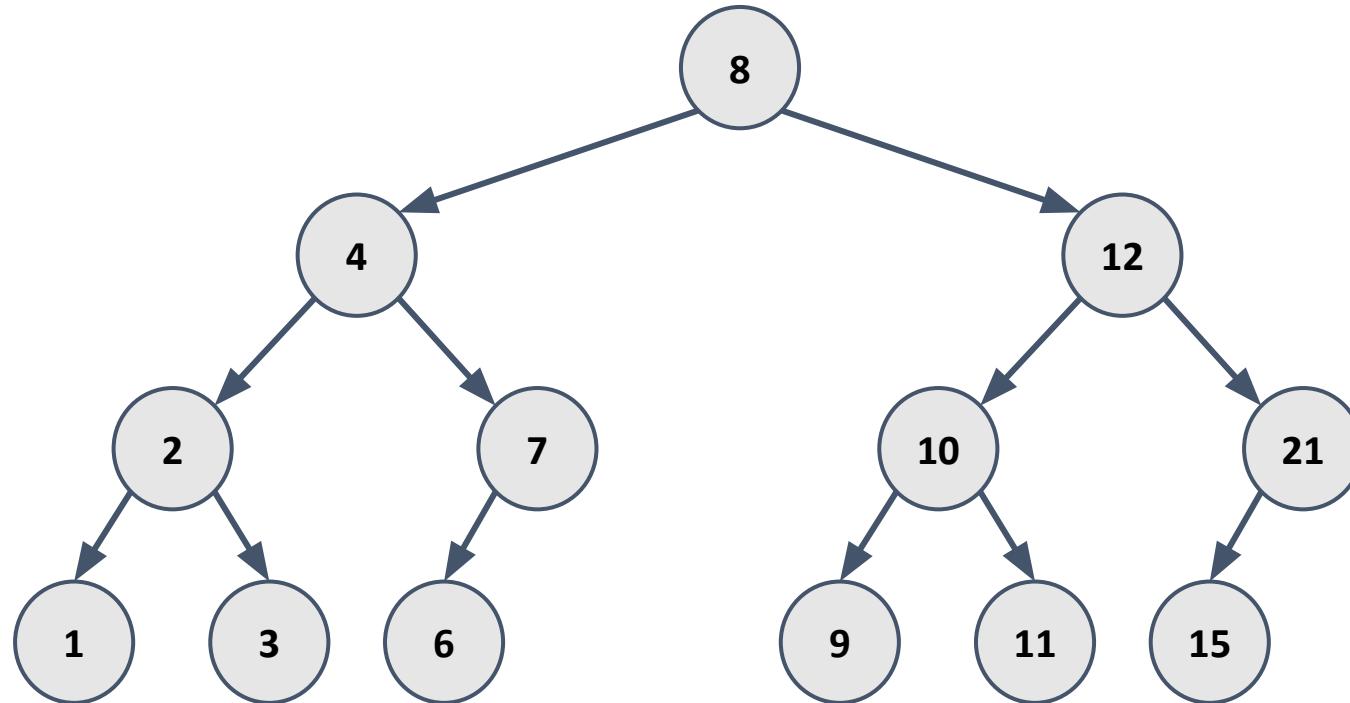


Turning Data into a BST

These become roots for their respective sub-trees



Turning Data into a BST

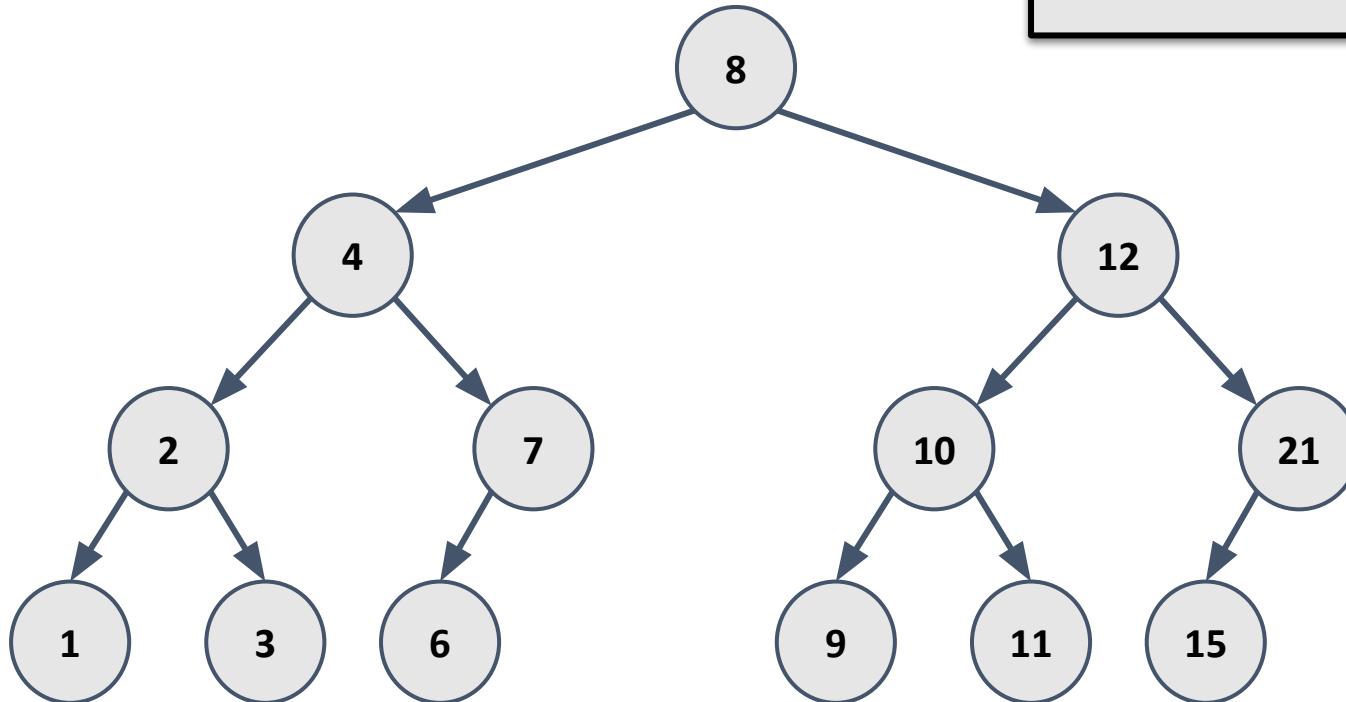


BST Lookups

These data structures are designed for fast lookups!

BST Lookups

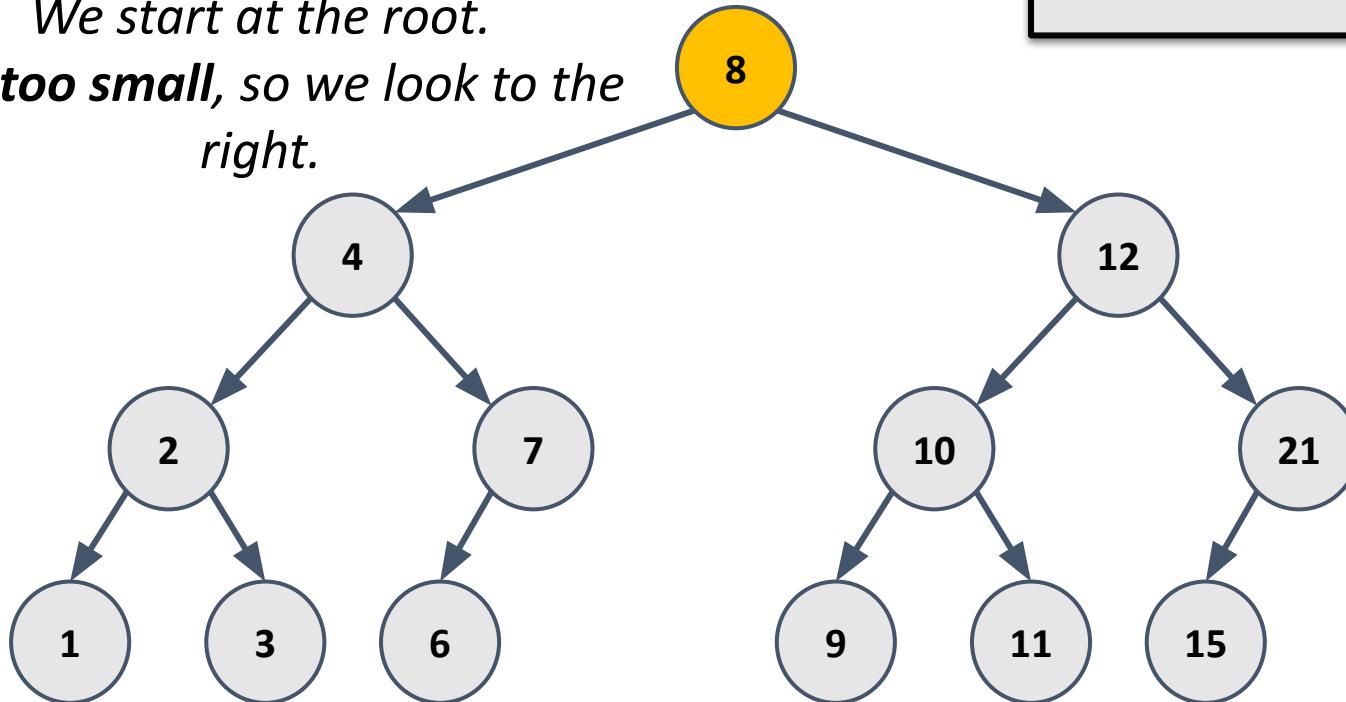
Is 11 in this BST?



BST Lookups

Is 11 in this BST?

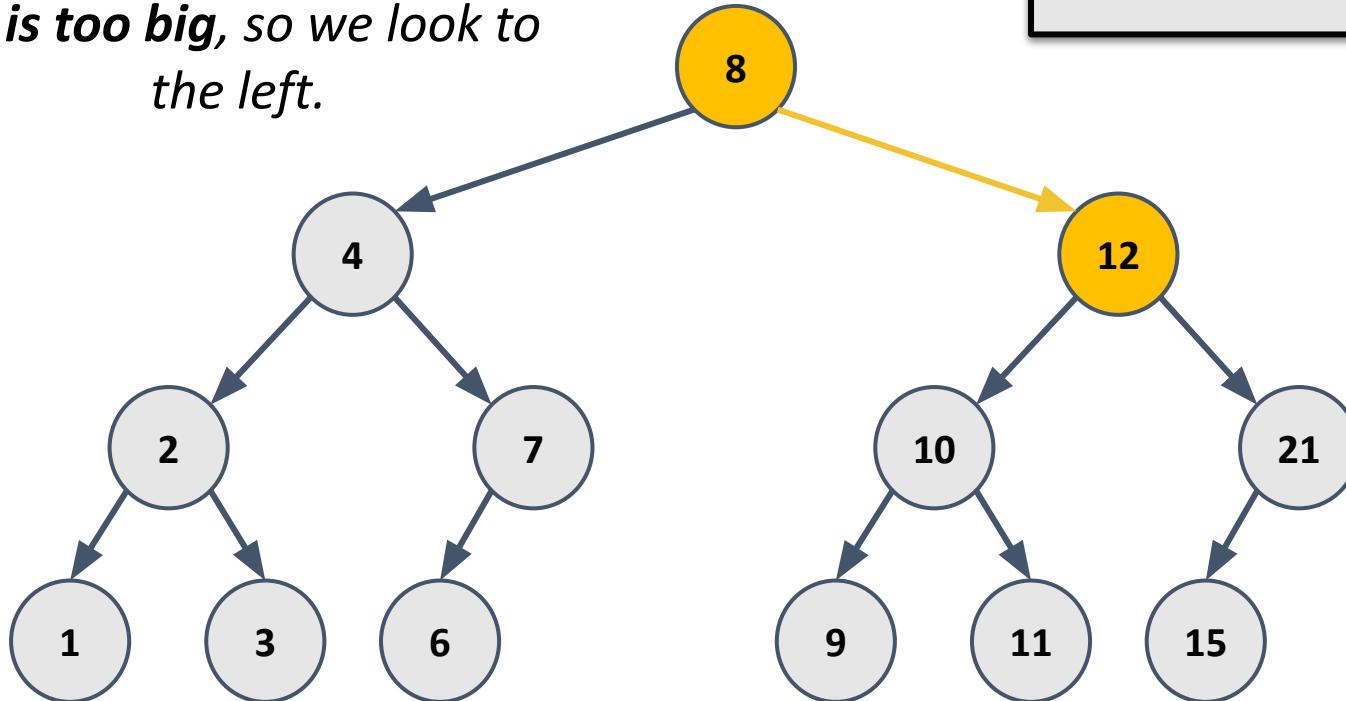
*We start at the root.
8 is too small, so we look to the
right.*



BST Lookups

12 is too big, so we look to the left.

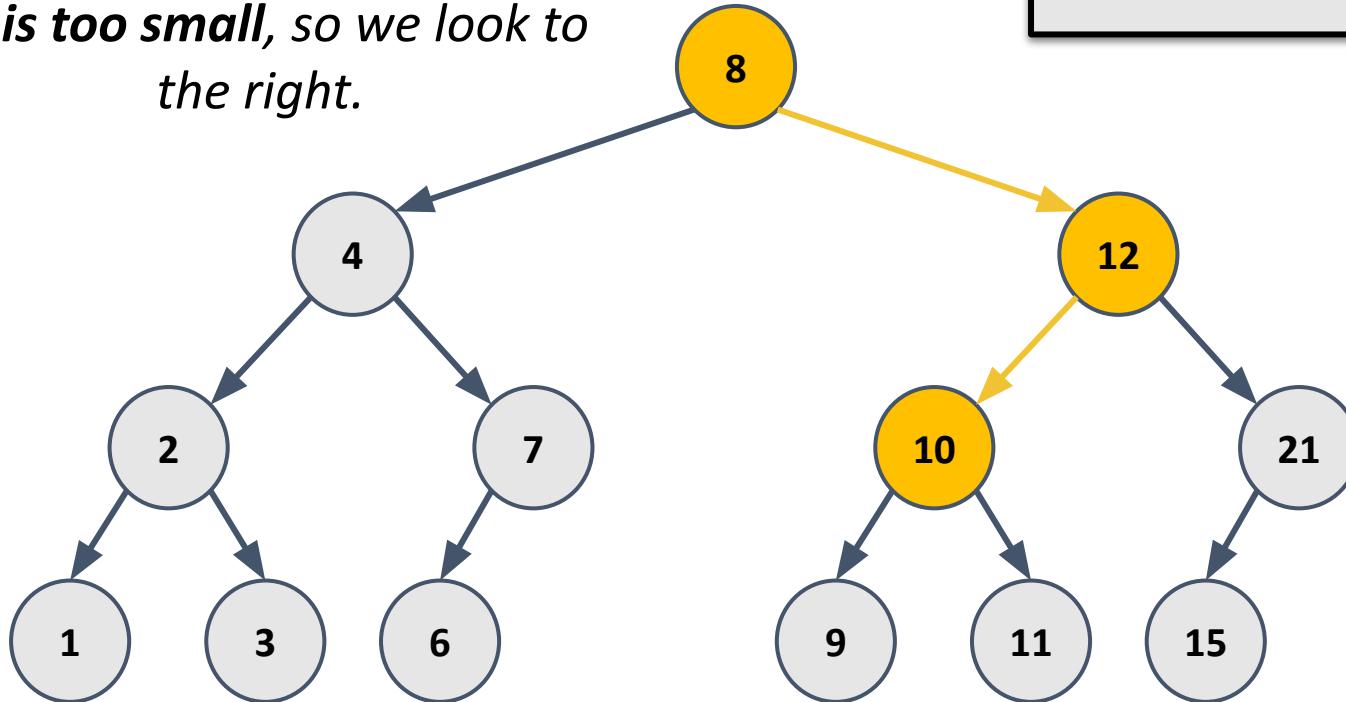
Is 11 in this BST?



BST Lookups

10 is too small, so we look to the right.

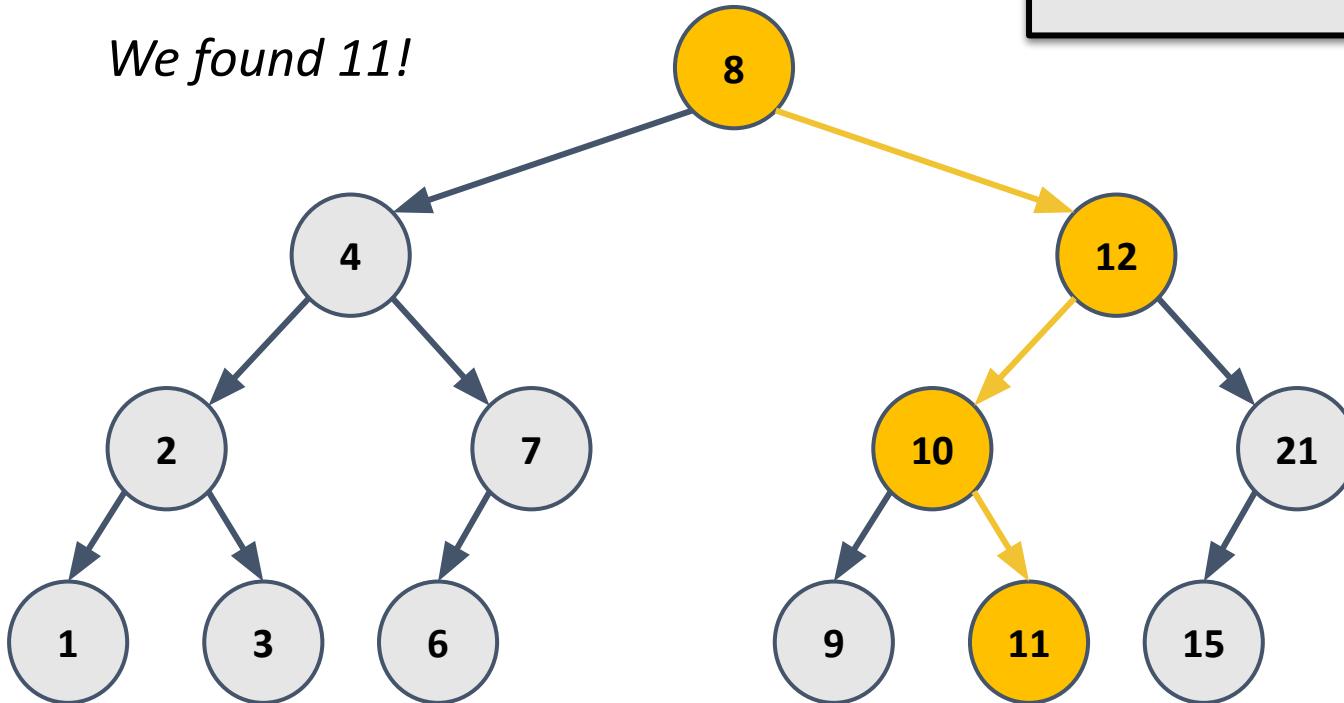
Is 11 in this BST?



BST Lookups

We found 11!

Is 11 in this BST?



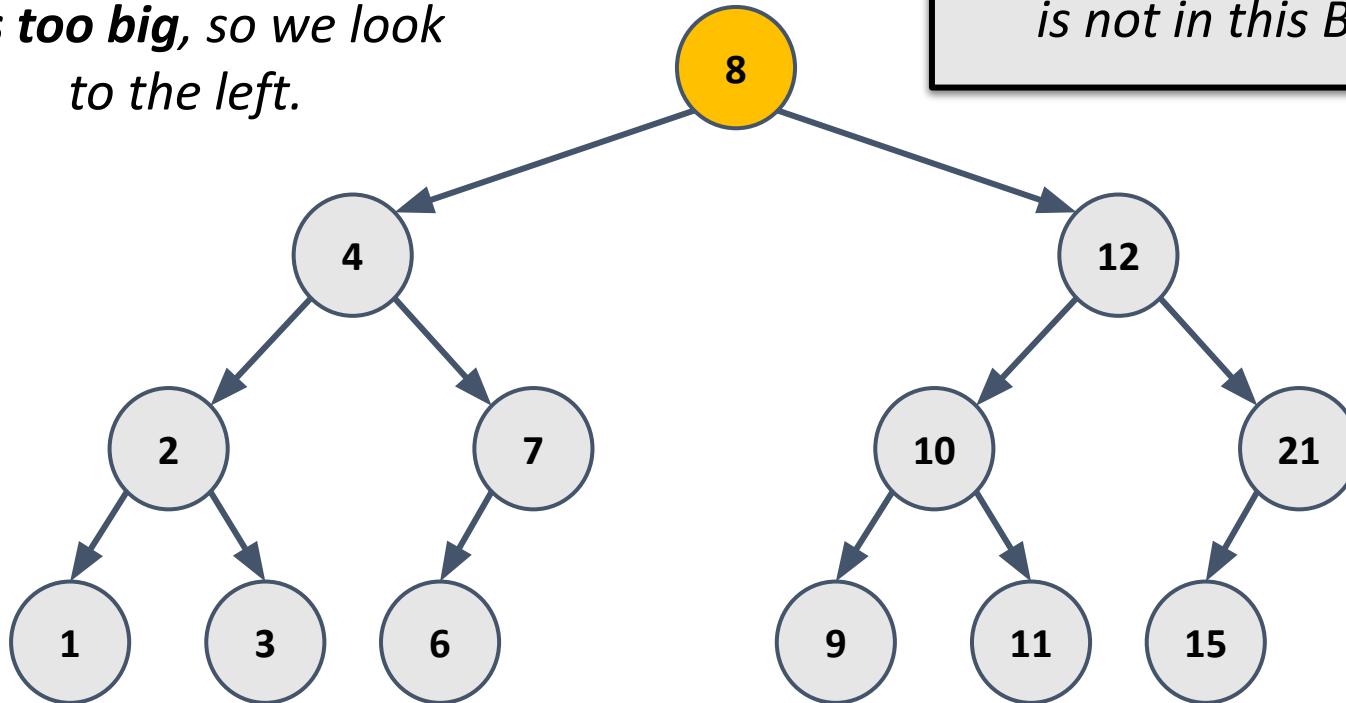
BST Lookups



BST Lookups

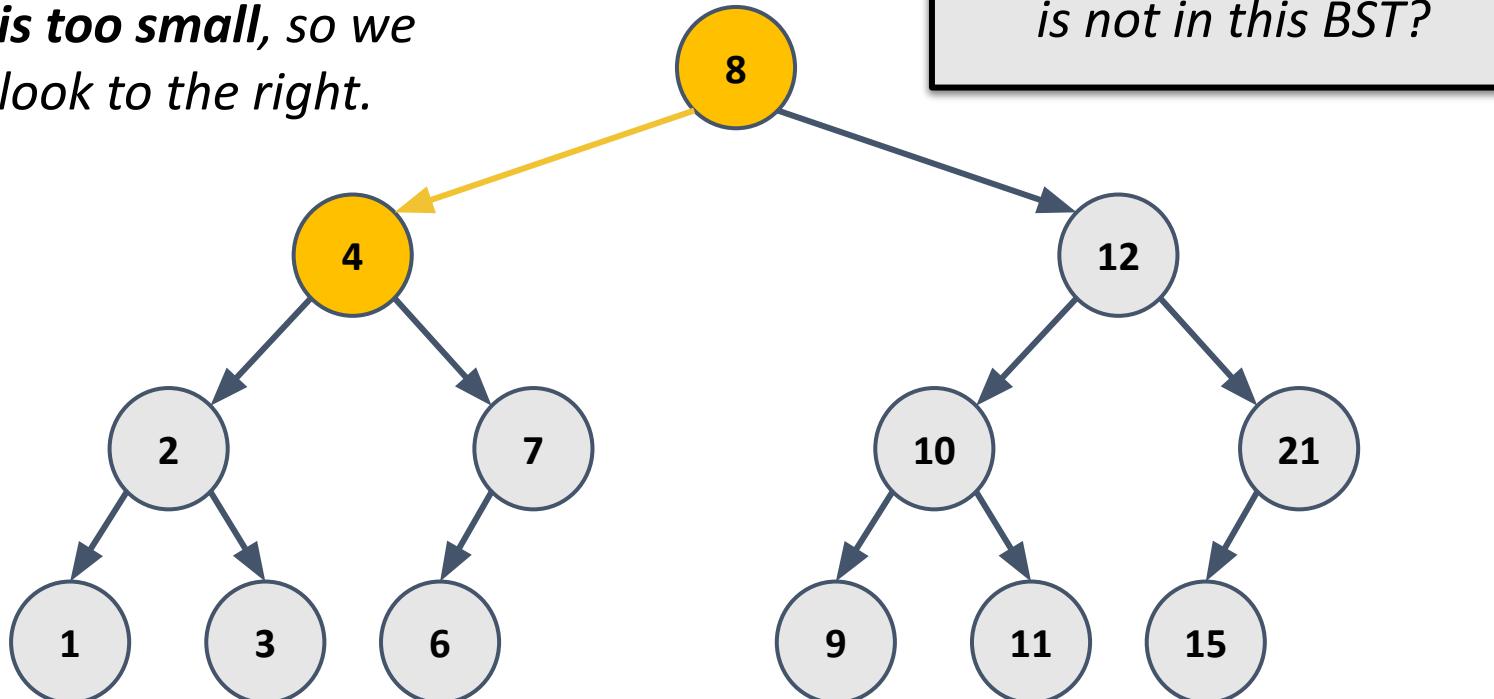
8 is too big, so we look to the left.

How do we know that 5 is not in this BST?



BST Lookups

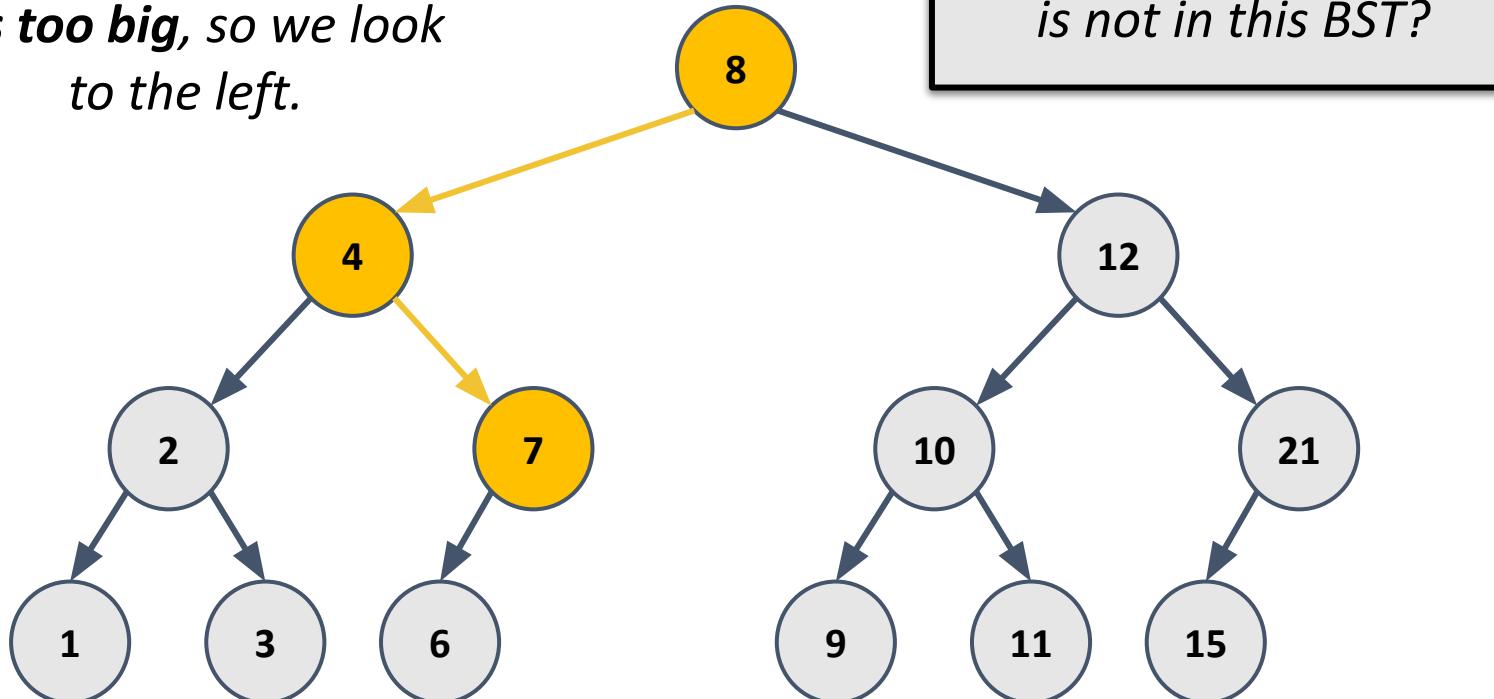
4 is too small, so we look to the right.



How do we know that 5 is not in this BST?

BST Lookups

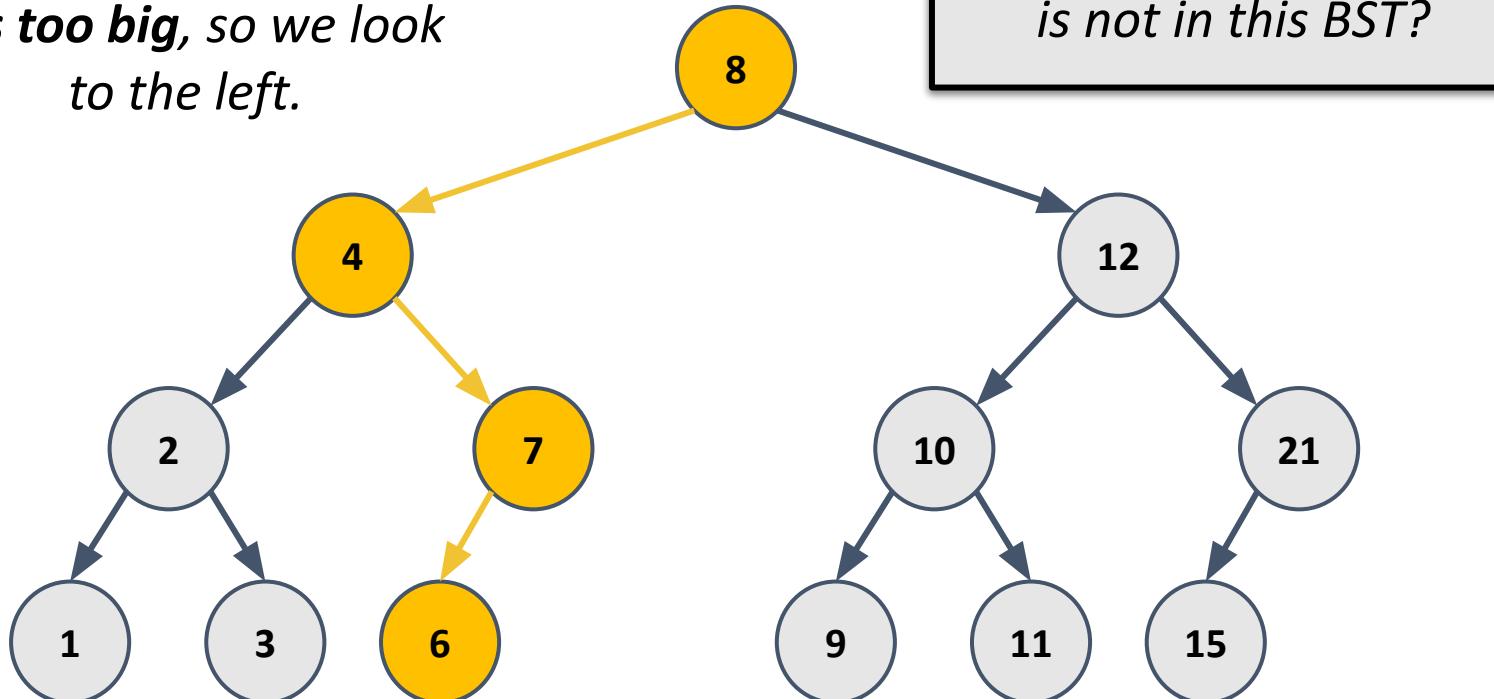
7 is too big, so we look to the left.



How do we know that 5 is not in this BST?

BST Lookups

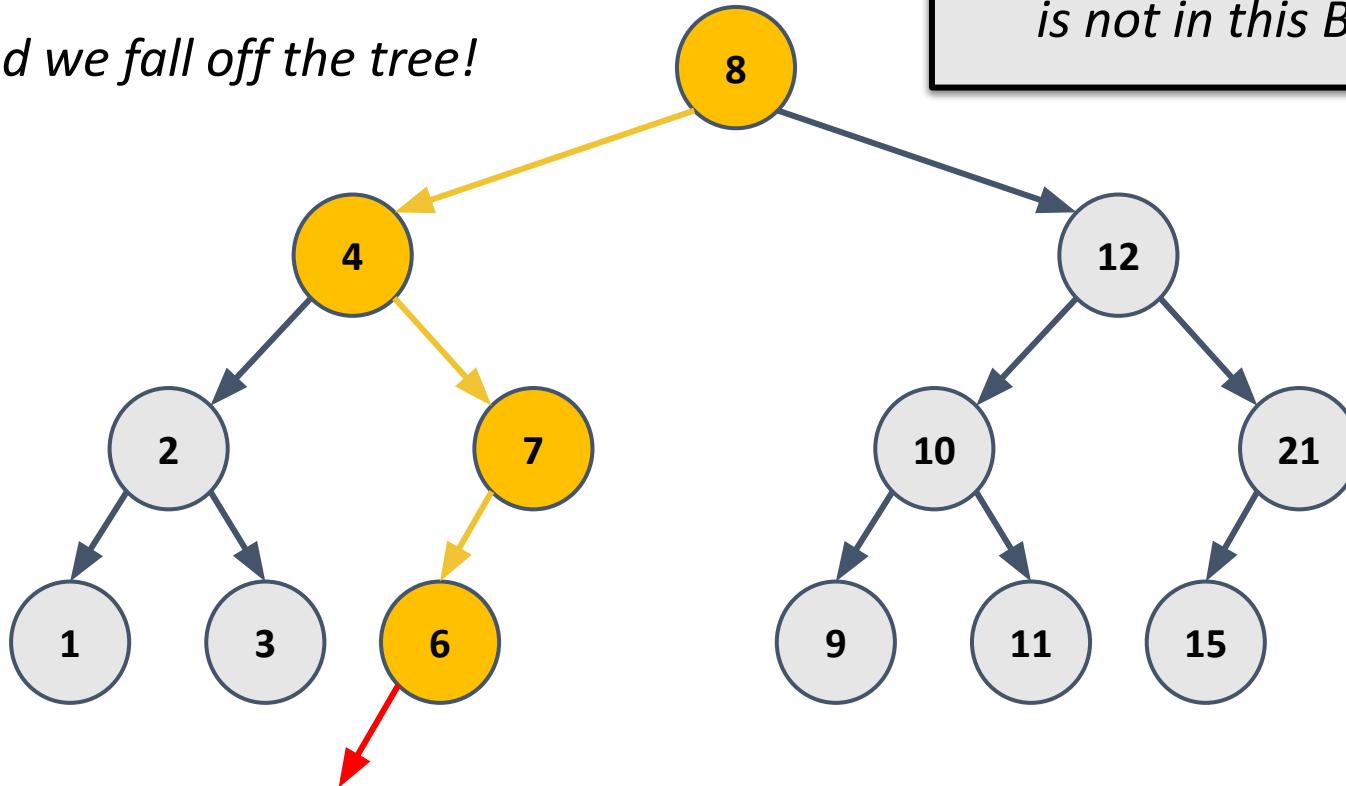
6 is too big, so we look to the left.



How do we know that 5 is not in this BST?

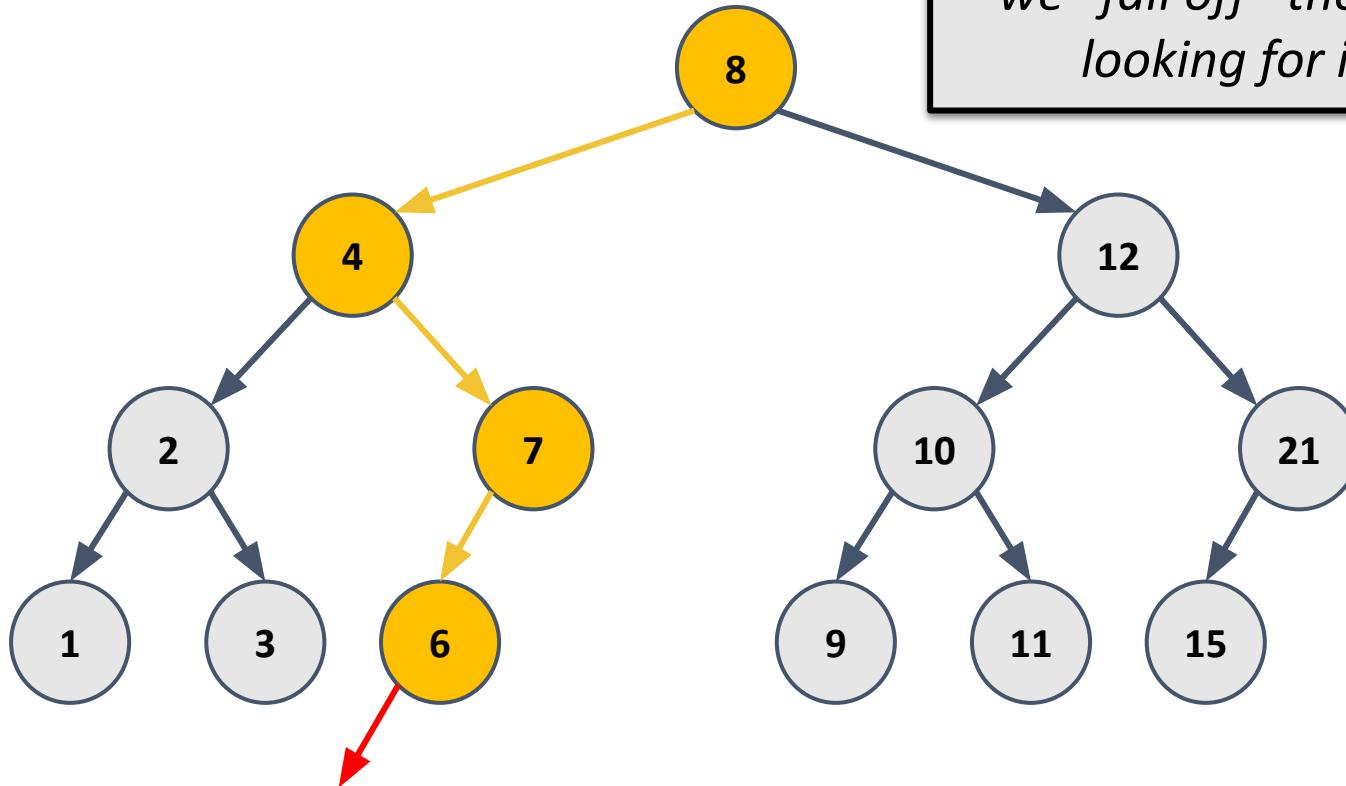
BST Lookups

And we fall off the tree!

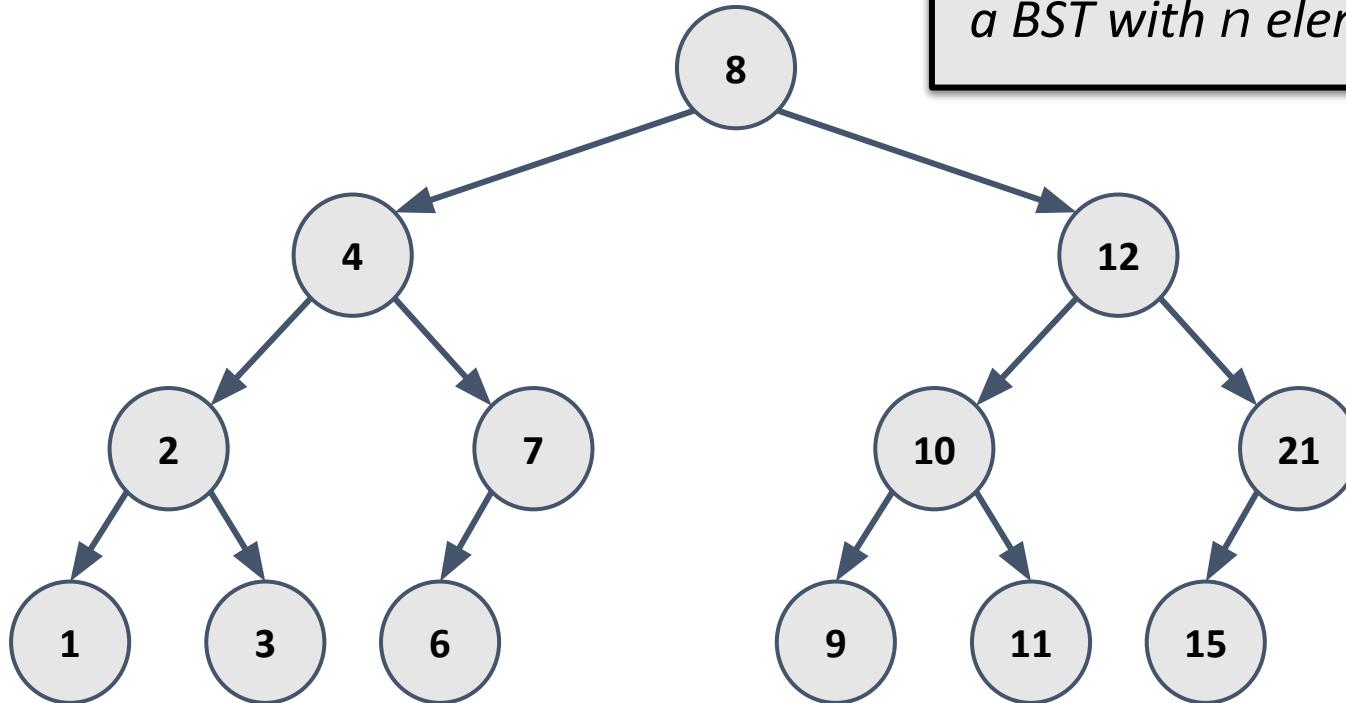


How do we know that 5 is not in this BST?

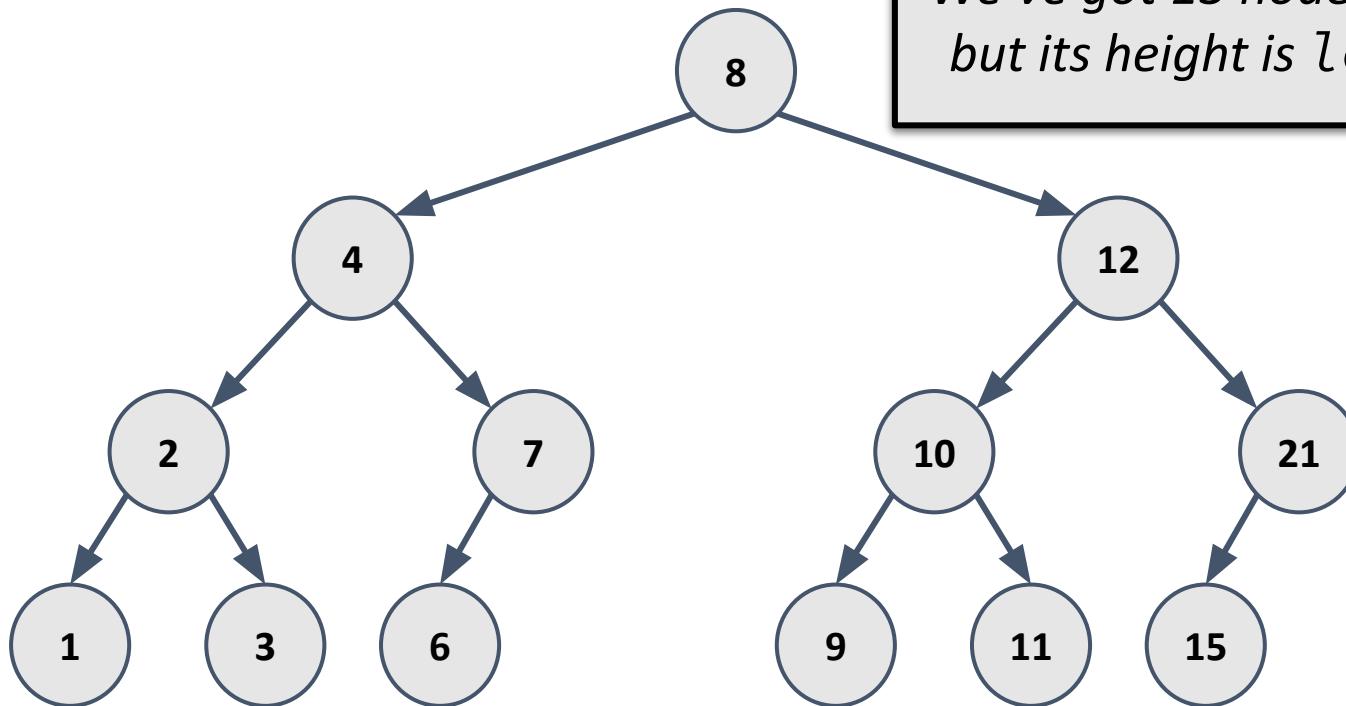
BST Lookups



BST Lookups

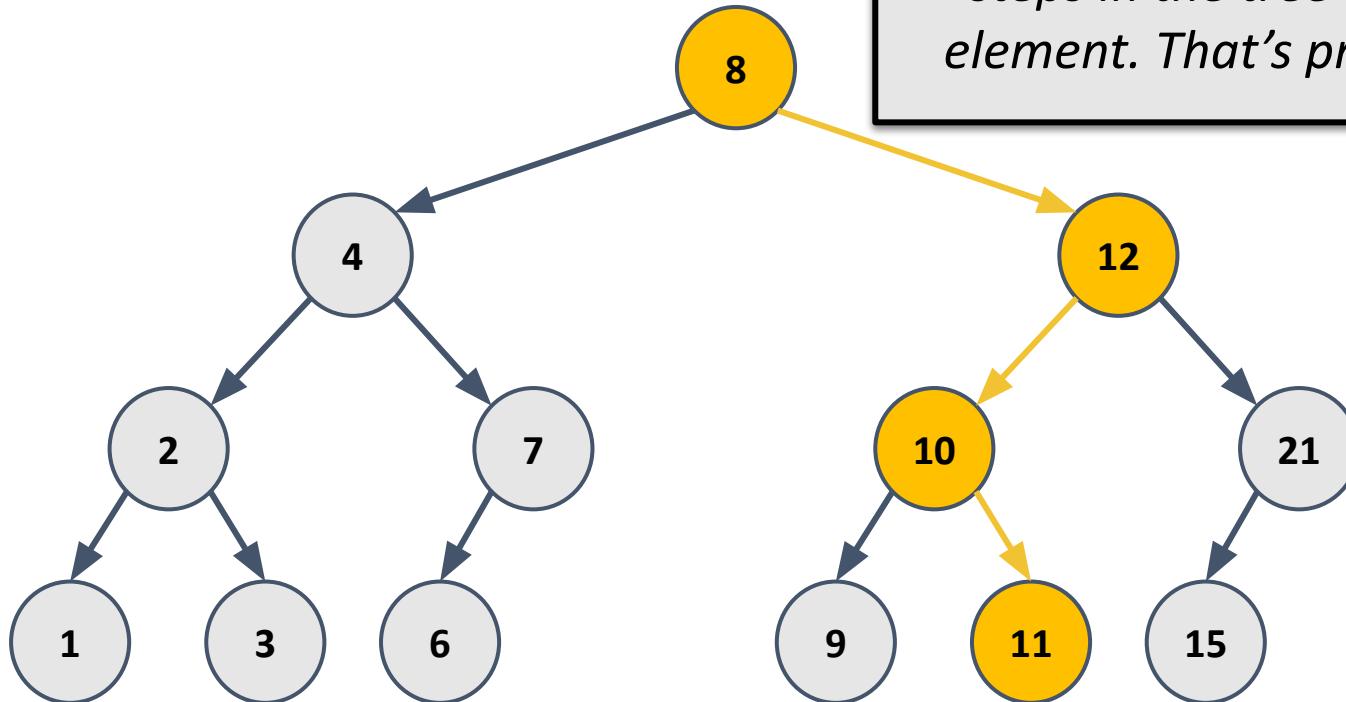


BST Lookups



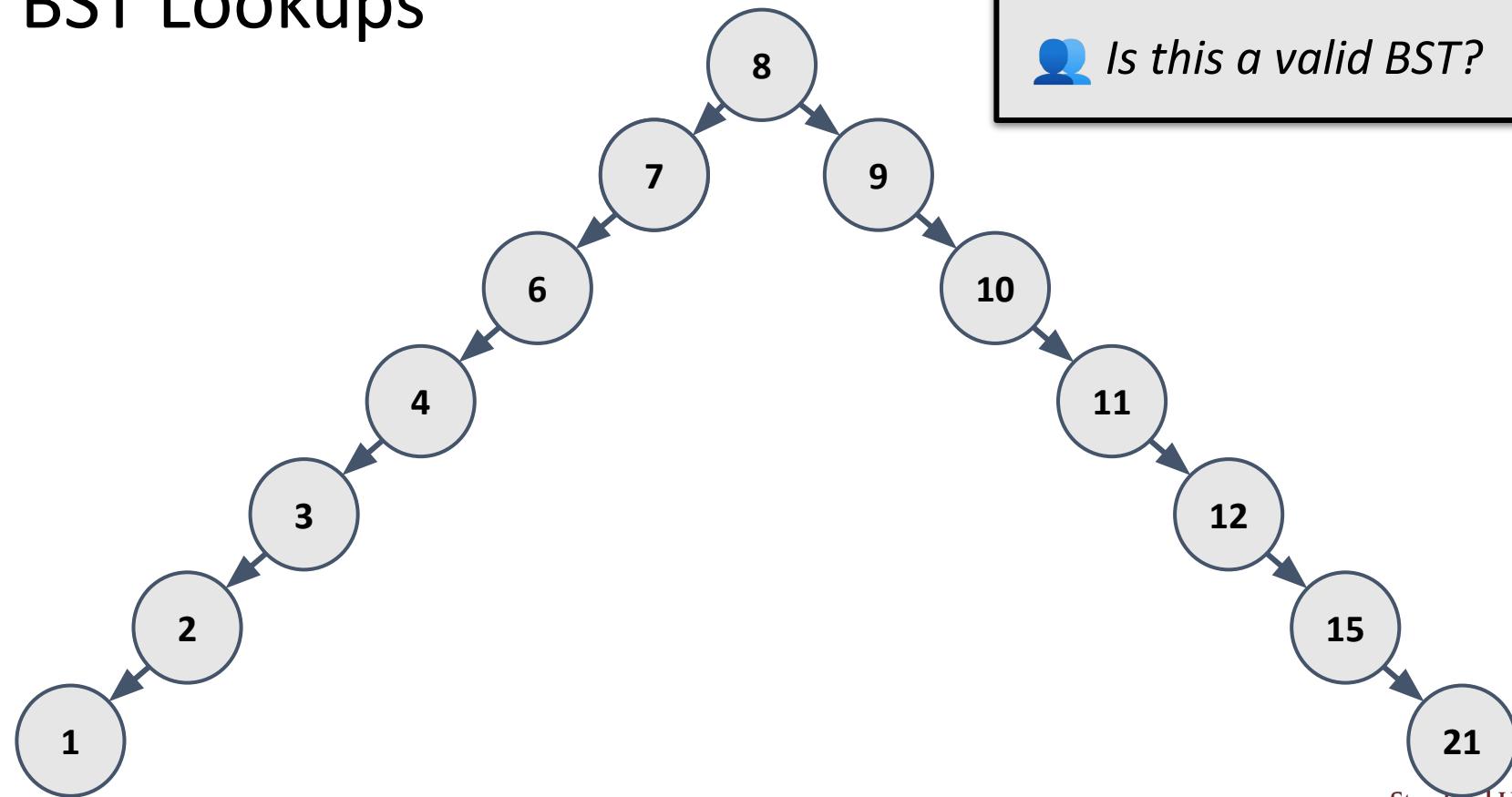
$O(\log_2 n)$
We've got 13 nodes in this tree,
but its height is $\log_2 13 \approx 4$.

BST Lookups

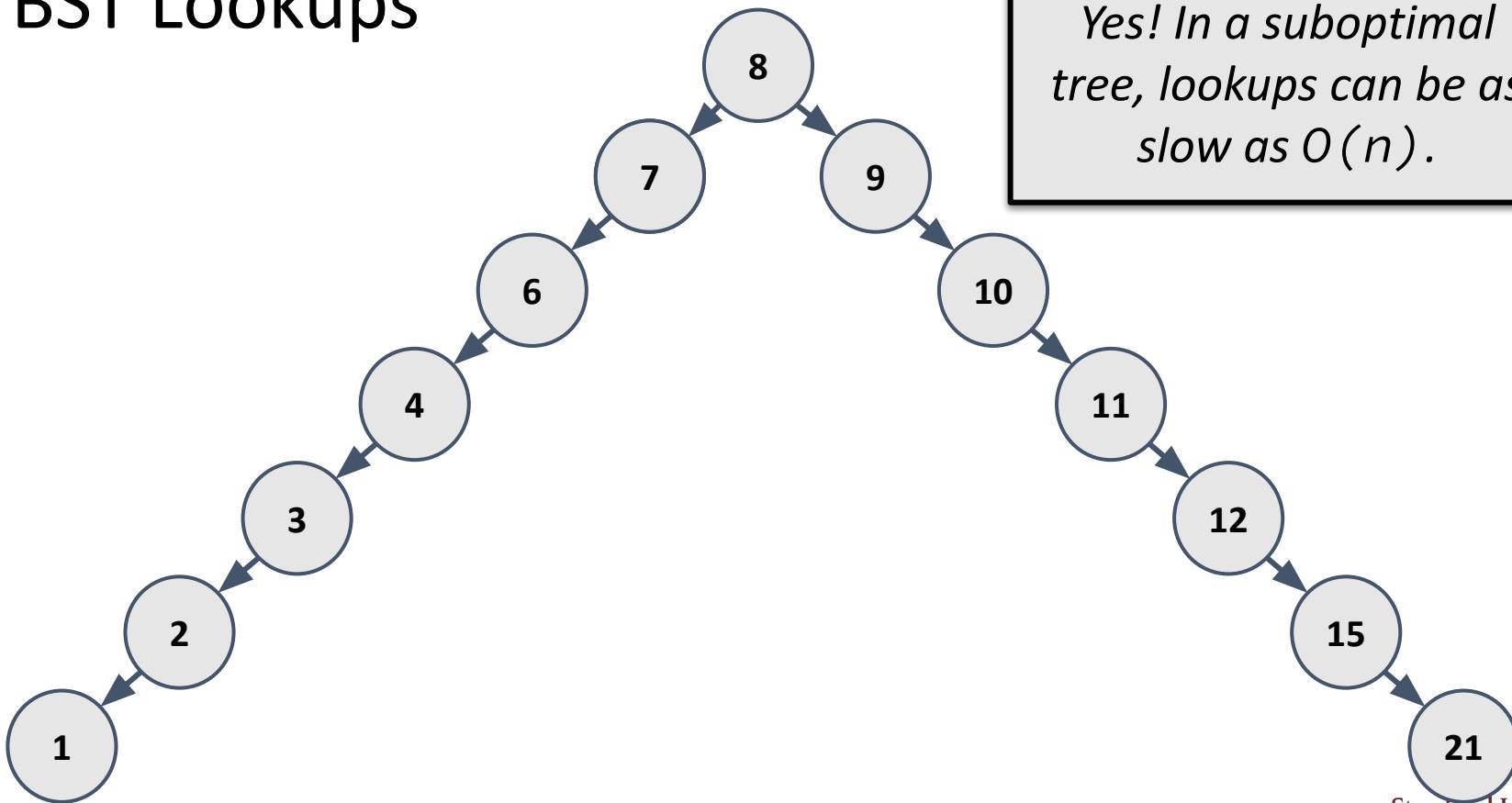


Worst case, we have to take 4 steps in the tree to find an element. That's pretty good!

BST Lookups

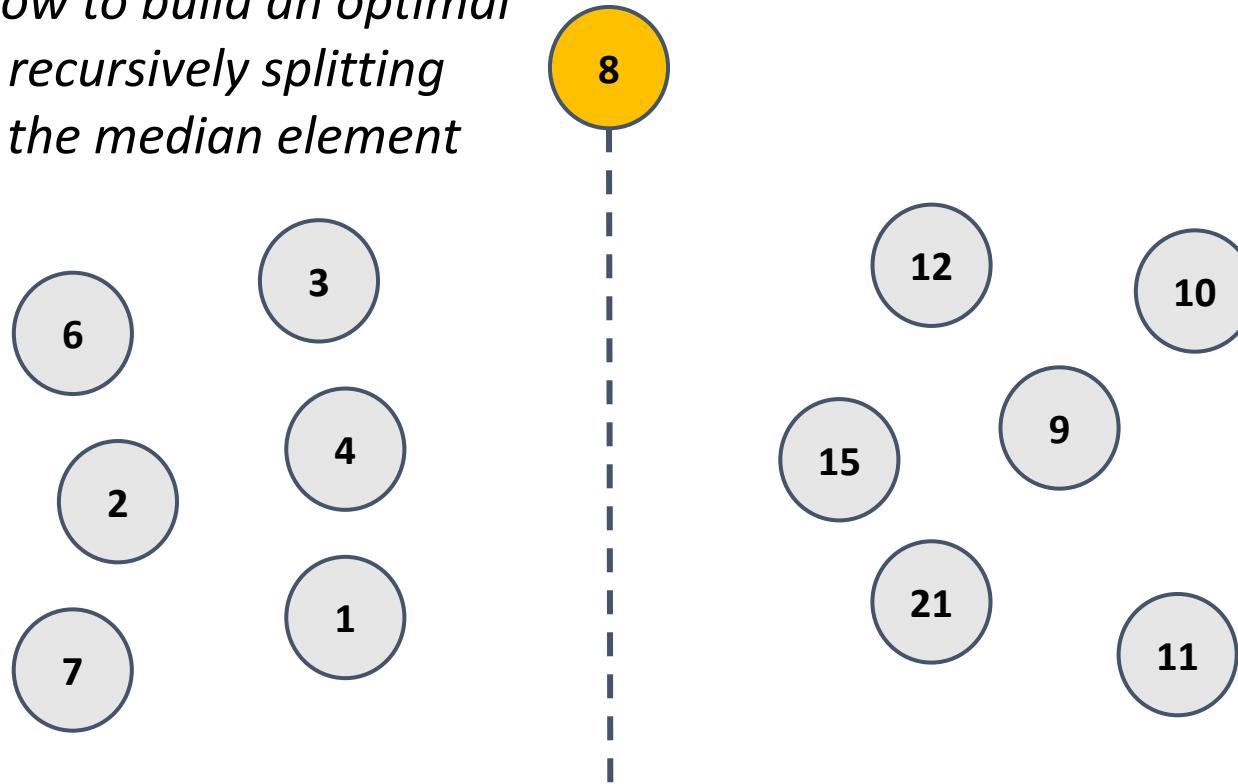


BST Lookups



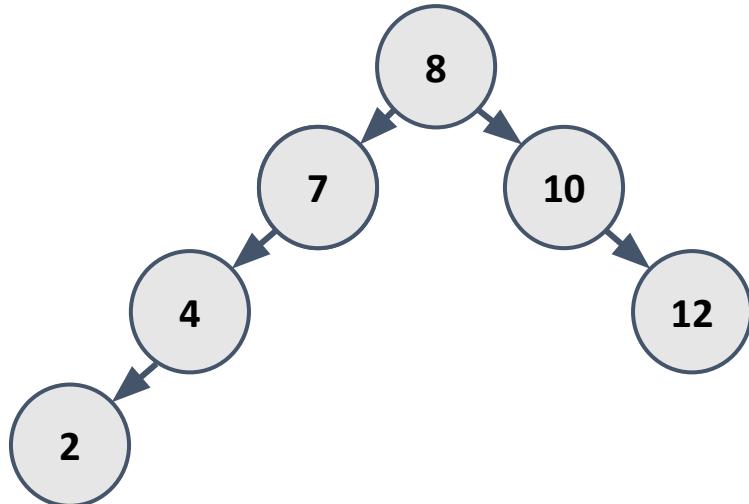
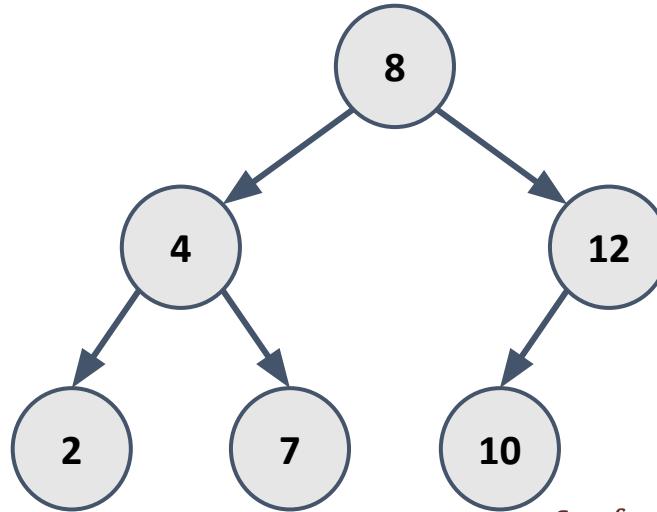
Building an Optimal BST

We saw how to build an optimal BST by recursively splitting around the median element



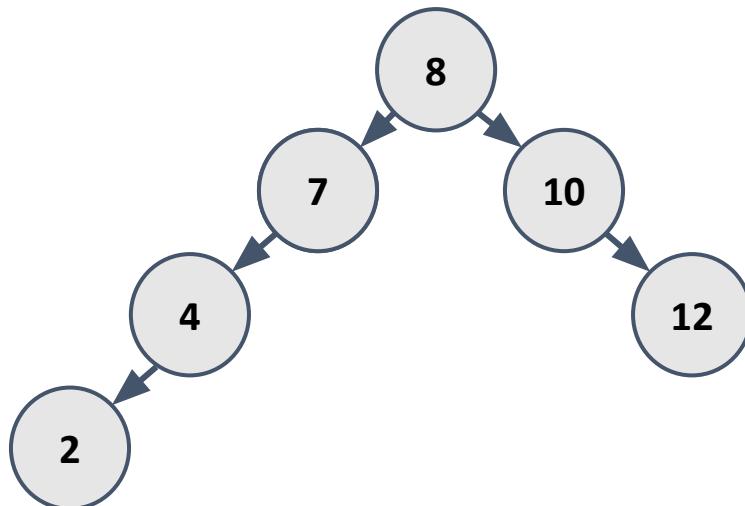
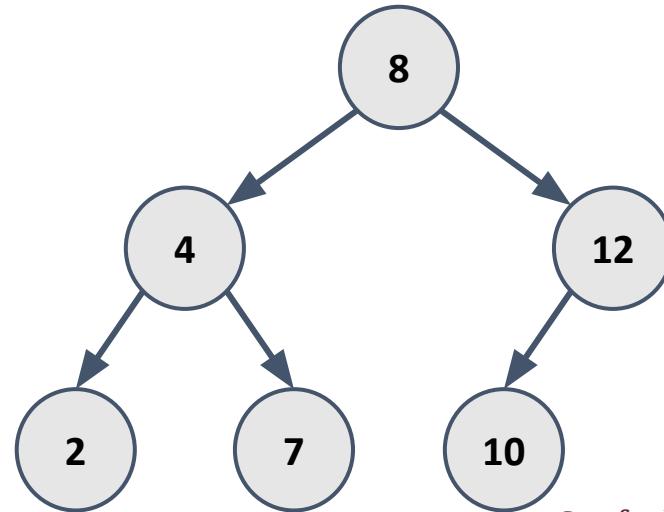
Takeaways

- There can be multiple valid BSTs for the same set of data
- How you construct the tree matters!



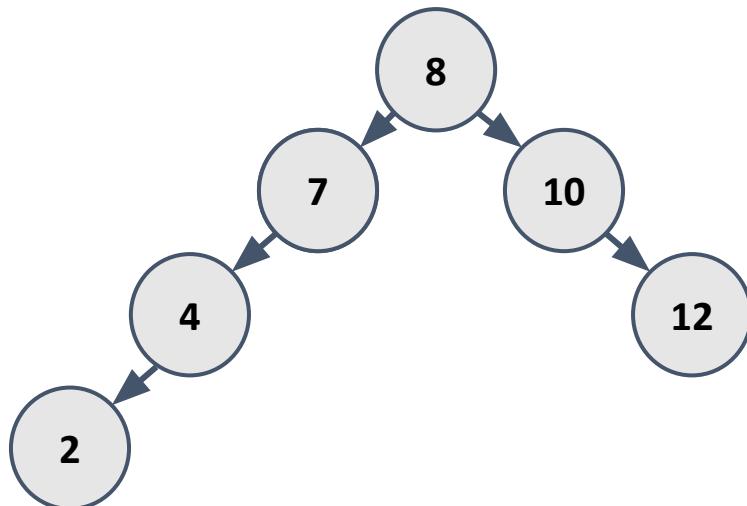
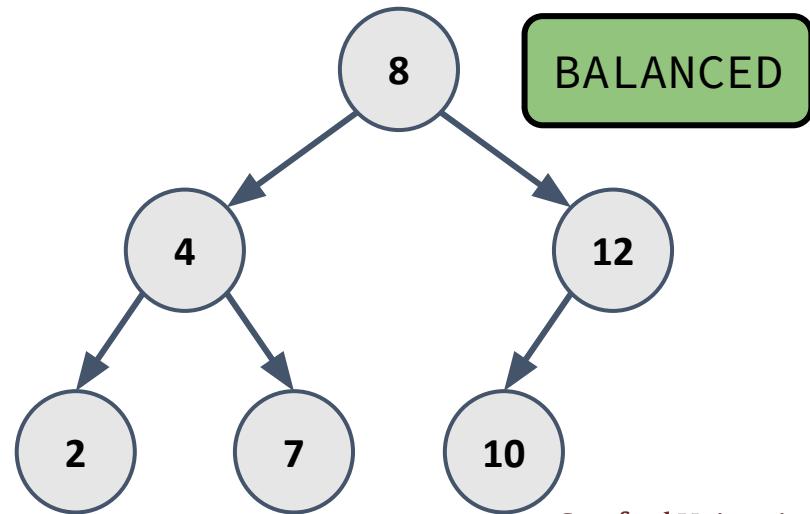
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees don't differ in height by more than 1



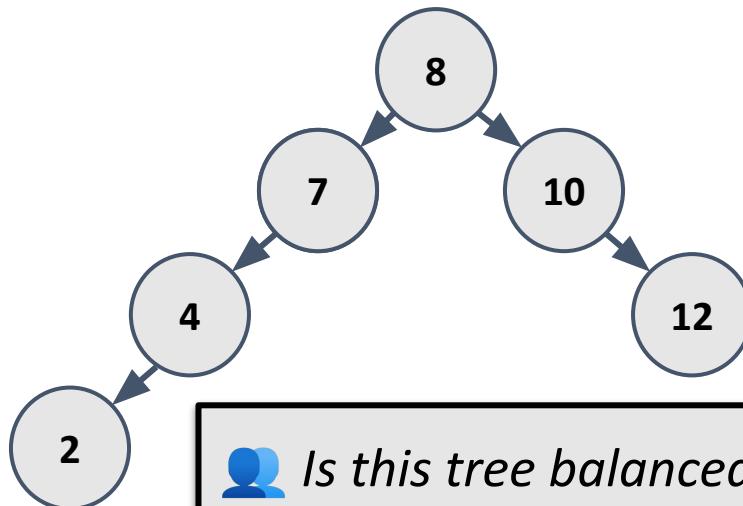
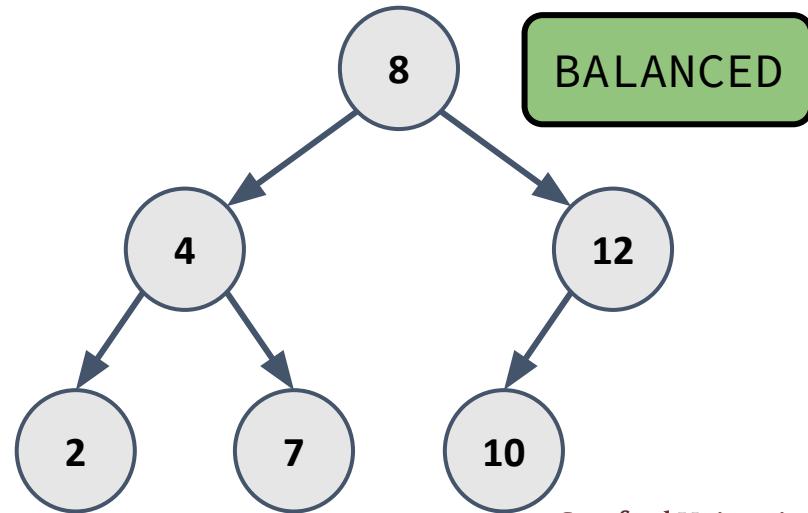
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees don't differ in height by more than 1



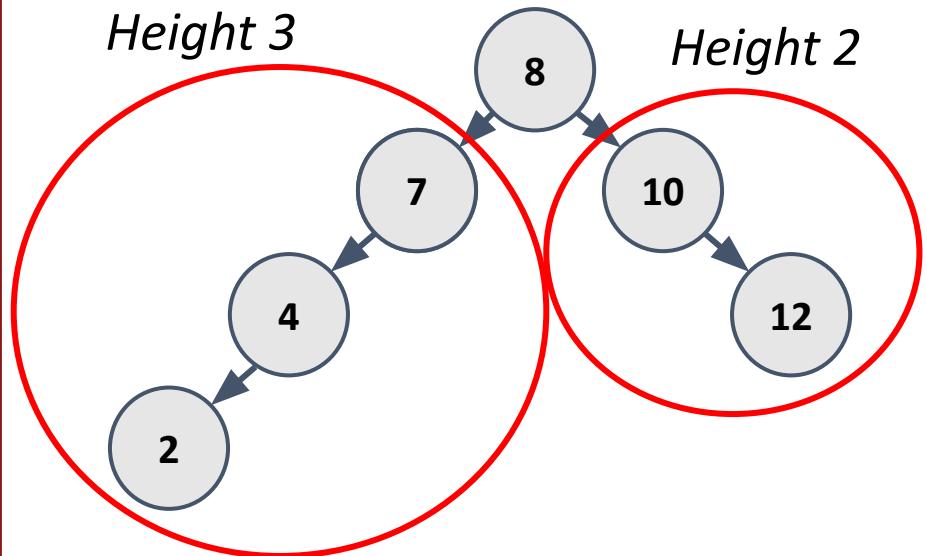
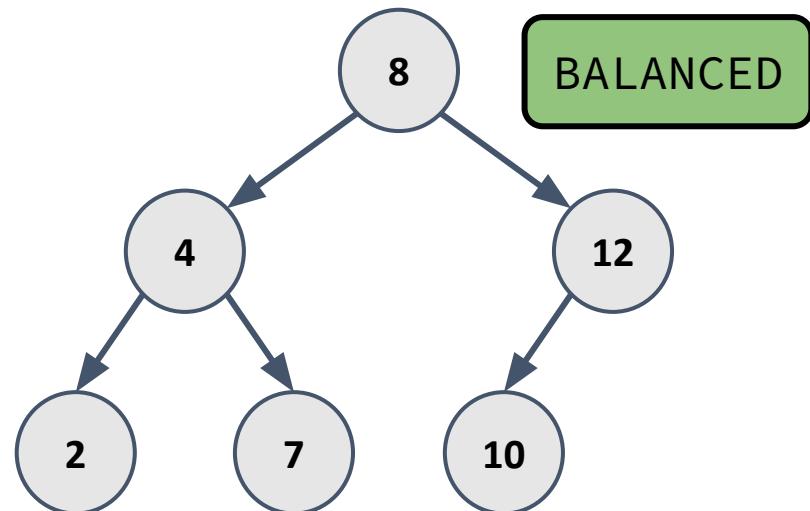
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees don't differ in height by more than 1



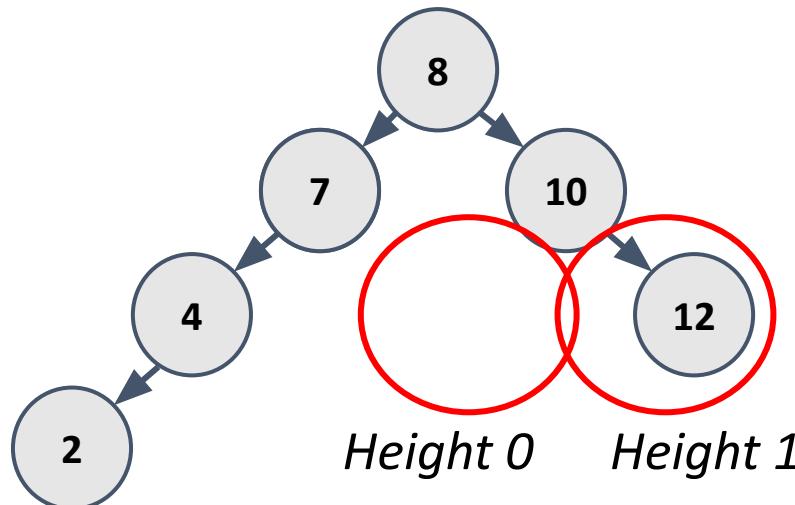
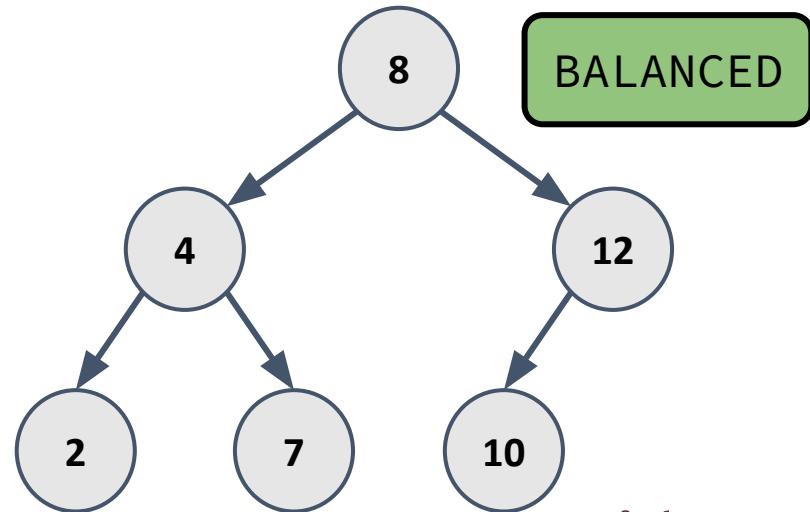
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees **don't differ in height by more than 1**



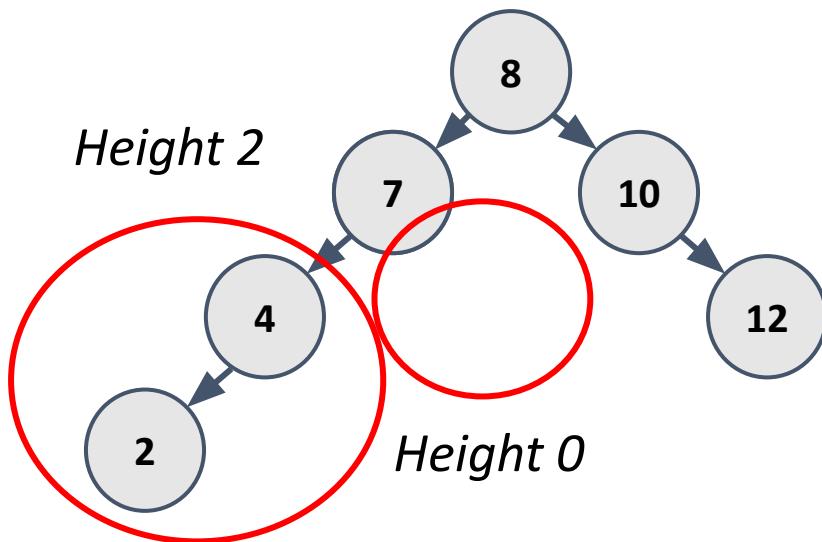
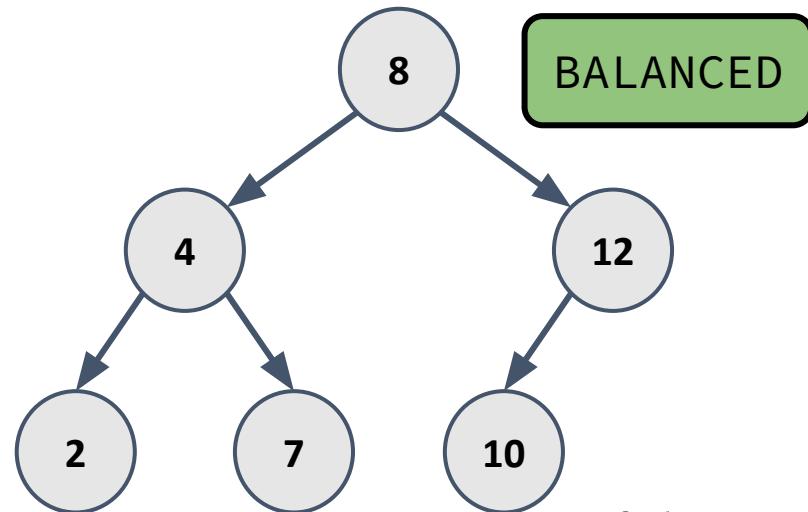
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees **don't differ in height by more than 1**



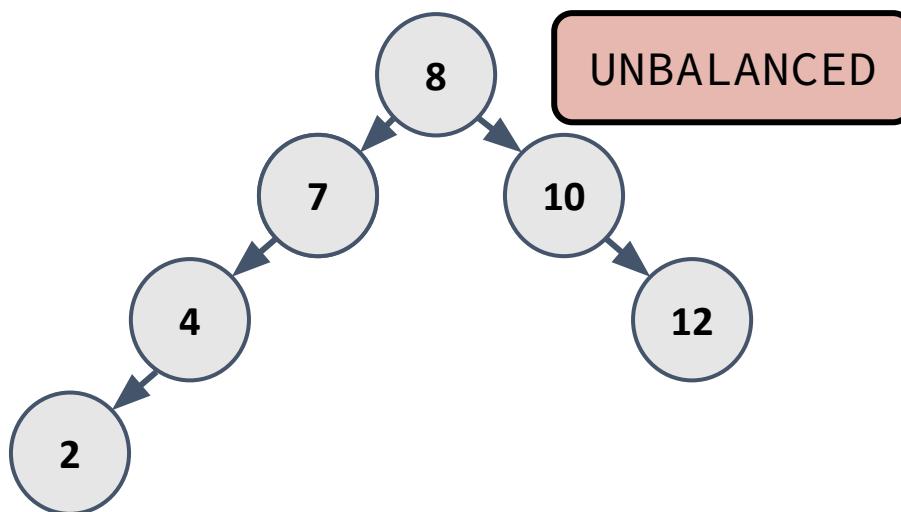
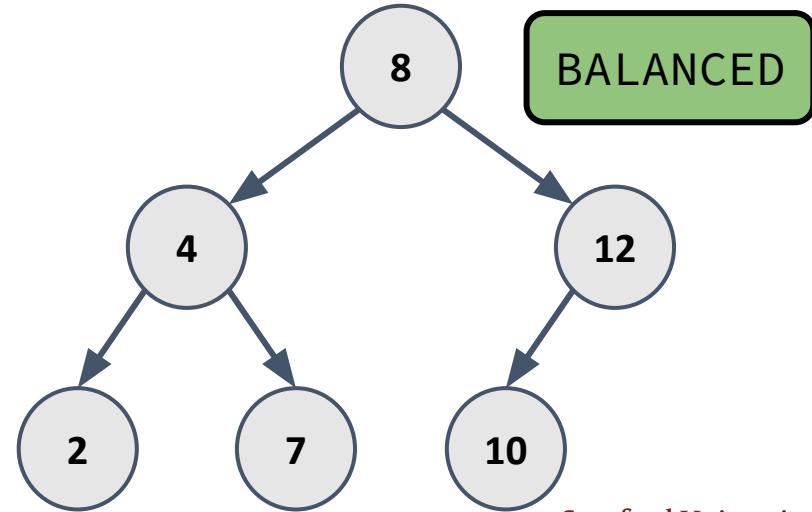
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees **don't differ in height by more than 1**



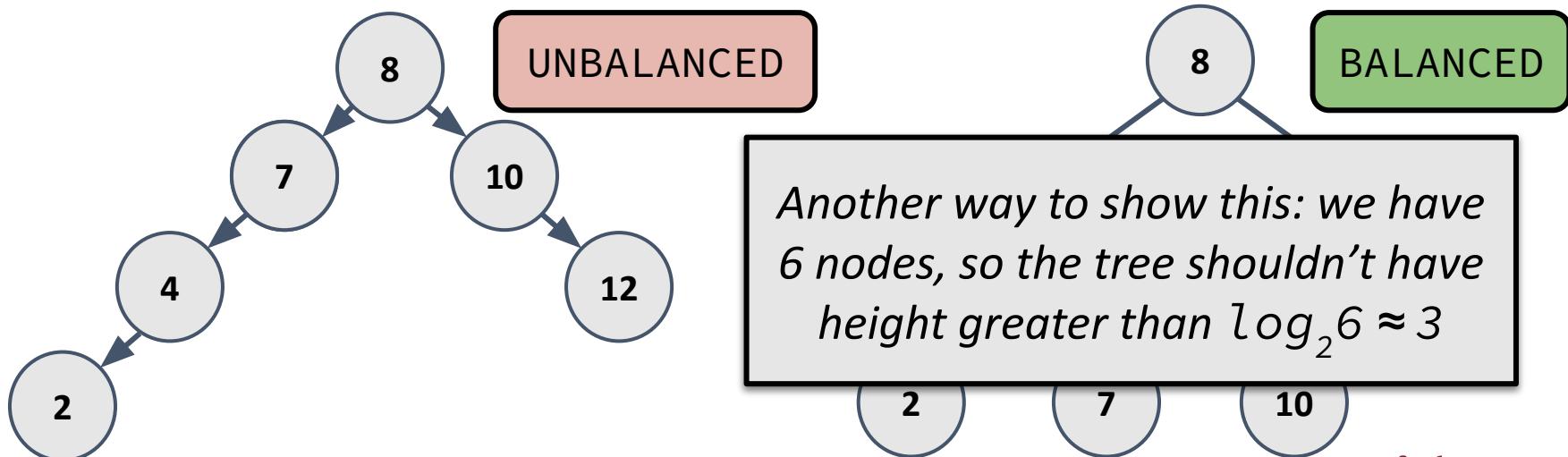
Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees **don't differ in height by more than 1**



Balanced BSTs

- A BST is **balanced** if its **height** is $O(\log n)$, where n is the number of nodes in the tree
 - This means left/right subtrees don't differ in height by more than 1



Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
- Theorem: If you start with an empty tree and add in random values, then with high probability the tree is balanced
 - Take CS161 to find out why!

Balanced BSTs

- A BST is **balanced** if its height is $O(\log n)$, where n is the number of nodes in the tree
- Theorem: If you start with an empty tree and add in random values, then with high probability the tree is balanced
 - Take CS161 to find out why!
- A self-balancing BST reshapes itself on insertions and deletions to stay balanced (how to do this is beyond the scope of this class)
 - AVL trees
 - Red-black trees

Big-O of ADT Operations

Vectors

- `.size()` - $O(1)$
- `.add()` - $O(1)$
- `v[i]` - $O(1)$
- `.insert()` - $O(n)$
- `.remove()` - $O(n)$
- `.sublist()` - $O(n)$
- `traversal` - $O(n)$

Queues

- `.size()` - $O(1)$
- `.peek()` - $O(1)$
- `.enqueue()` - $O(1)$

Sets

- `.size()` - $O(1)$
- `.isEmpty()` - $O(1)$
- `.add()` - $O(\log n)$
- `.remove()` - $O(\log n)$
- `.contains()` - **$O(\log n)$**
- `traversal` - $O(n)$

Grids

- `.numCells()` - $O(1)$
- `.numCells()` - $O(1)$
- `grid[i][j]` - $O(1)$
- `.inBounds()` - $O(1)$
- `traversal` - $O(n^2)$

Why do Sets and Maps have $O(\log n)$ lookups? They use BSTs behind the scenes to store data!

- `.peek()` - $O(1)$
- `.push()` - $O(1)$
- `.pop()` - $O(1)$
- `.isEmpty()` - $O(1)$
- `traversal` - $O(n)$

Maps

- `.size()` - $O(1)$
- `.isEmpty()` - $O(1)$
- `m[key]` - $O(\log n)$
- `.contains()` - **$O(\log n)$**
- `traversal` - $O(n)$

Big-O of ADT Operations

Vectors

- `.size()` - $O(1)$
- `.add()` - $O(1)$
- `v[i]` - $O(1)$
- `.insert()` - $O(n)$
- `.remove()` - $O(n)$
- `.sub`
- `trav`

Queues

- `.size()` - $O(1)$
- `.peek()` - $O(1)$
- `.enqueue()` - $O(1)$
- `.dequeue()` - $O(1)$

Sets

- `.size()` - $O(1)$
- `.isEmpty()` - $O(1)$
- `.add()` - $O(\log n)$
- `.remove()` - $O(\log n)$
- `.contains()` - $O(\log n)$
- `traversal` - $O(n)$

Grids

Let's investigate how BSTs can have $O(\log n)$ insertion and deletion.

- `.num`
- `.numCols()` - $O(1)$
- `grid[i][j]` - $O(1)$
- `.inBounds()` - $O(1)$
- `traversal` - $O(n^2)$

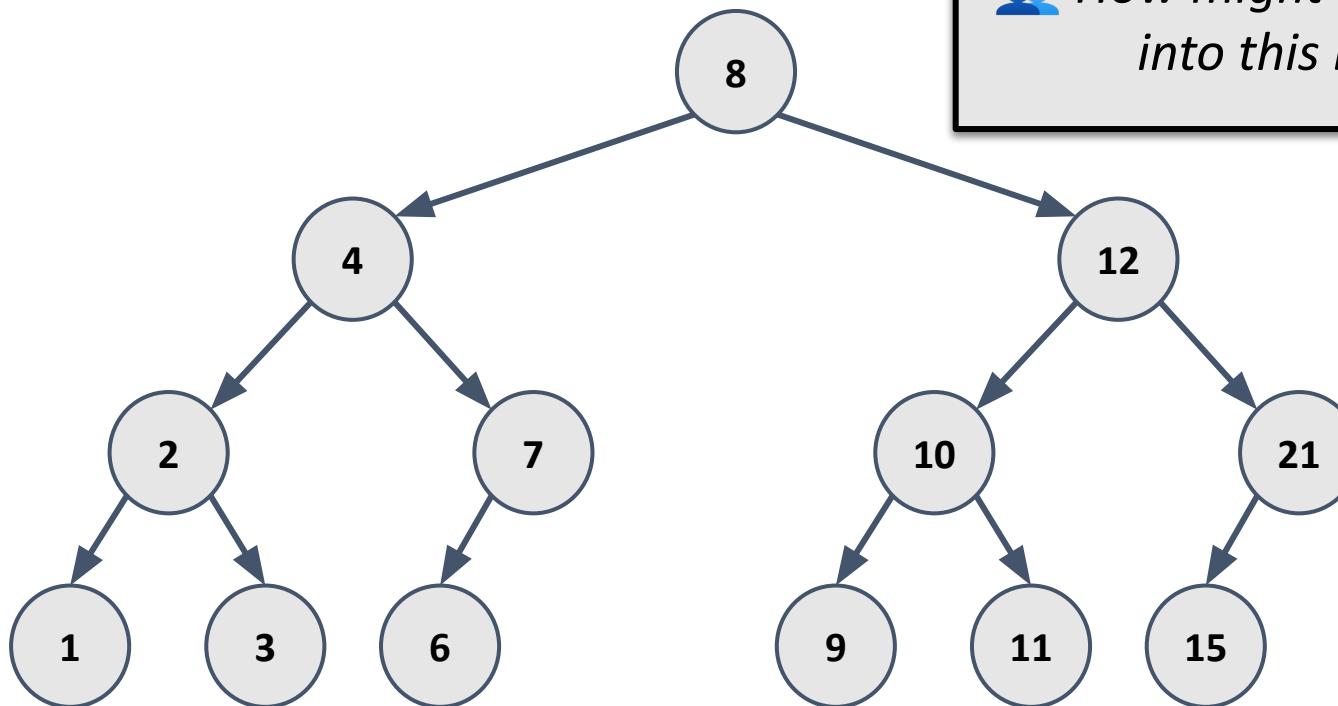
- `.size()` - $O(1)$
- `.peek()` - $O(1)$
- `.push()` - $O(1)$
- `.pop()` - $O(1)$
- `.isEmpty()` - $O(1)$
- `traversal` - $O(n)$

Maps

- `.size()` - $O(1)$
- `.isEmpty()` - $O(1)$
- `m[key]` - $O(\log n)$
- `.contains()` - $O(\log n)$
- `traversal` - $O(n)$

BST Insertion

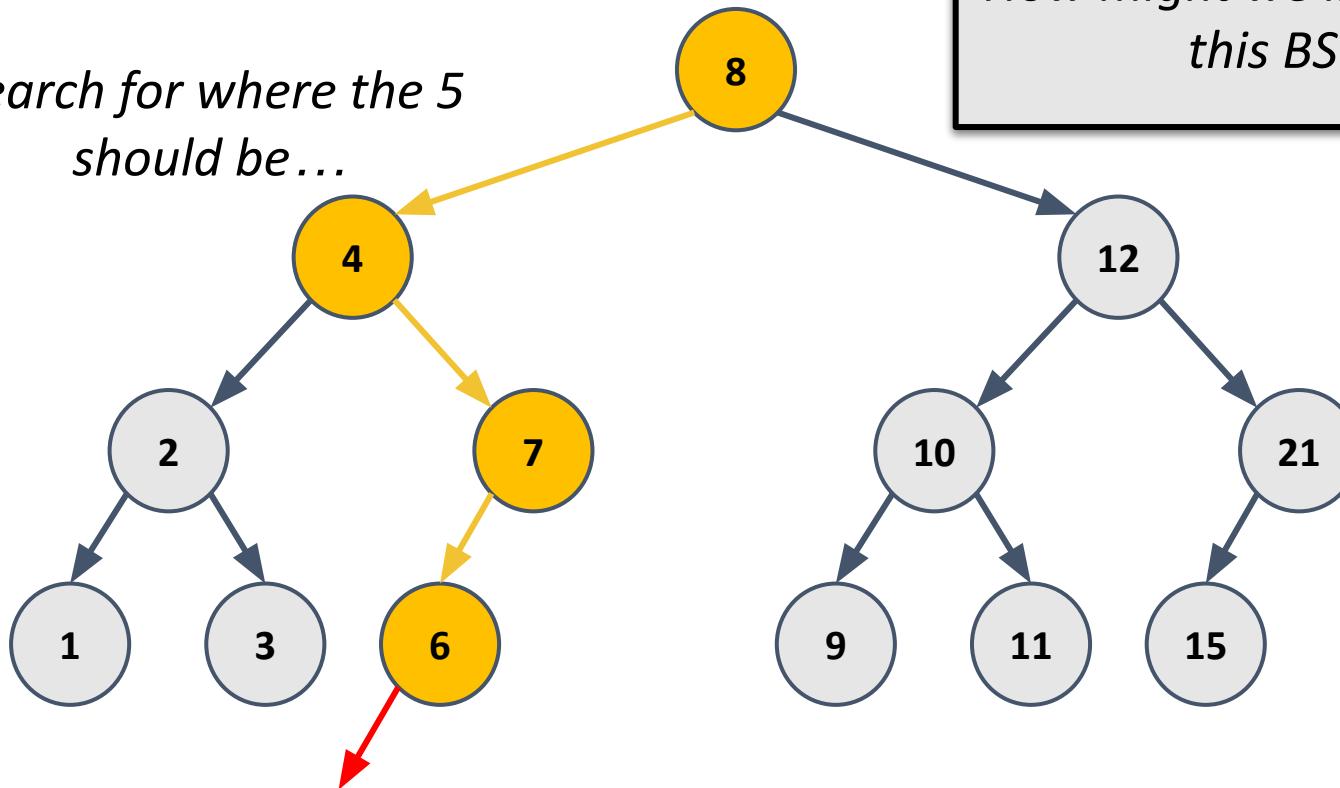
BST Insertion



How might we insert 5 into this BST?

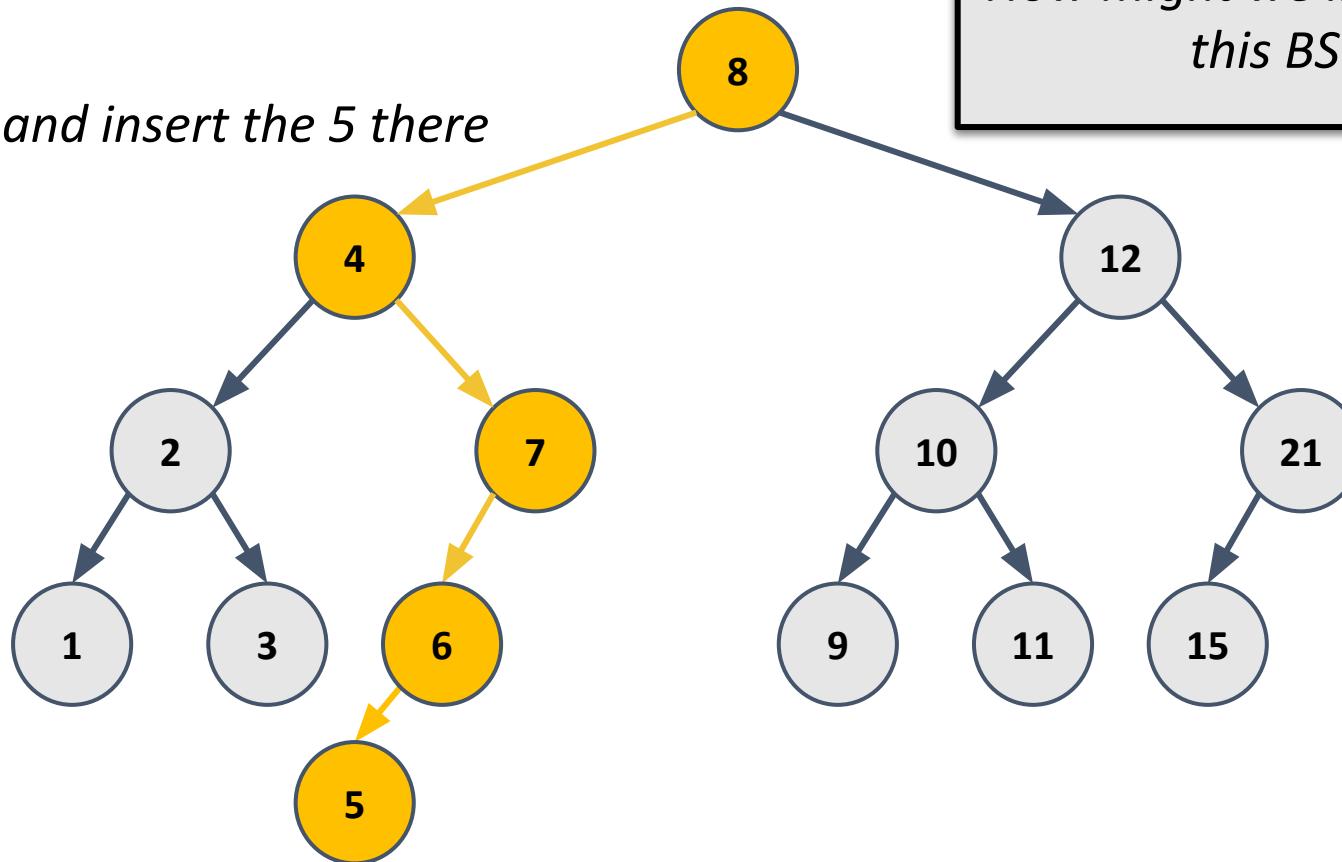
BST Insertion

Search for where the 5 should be...

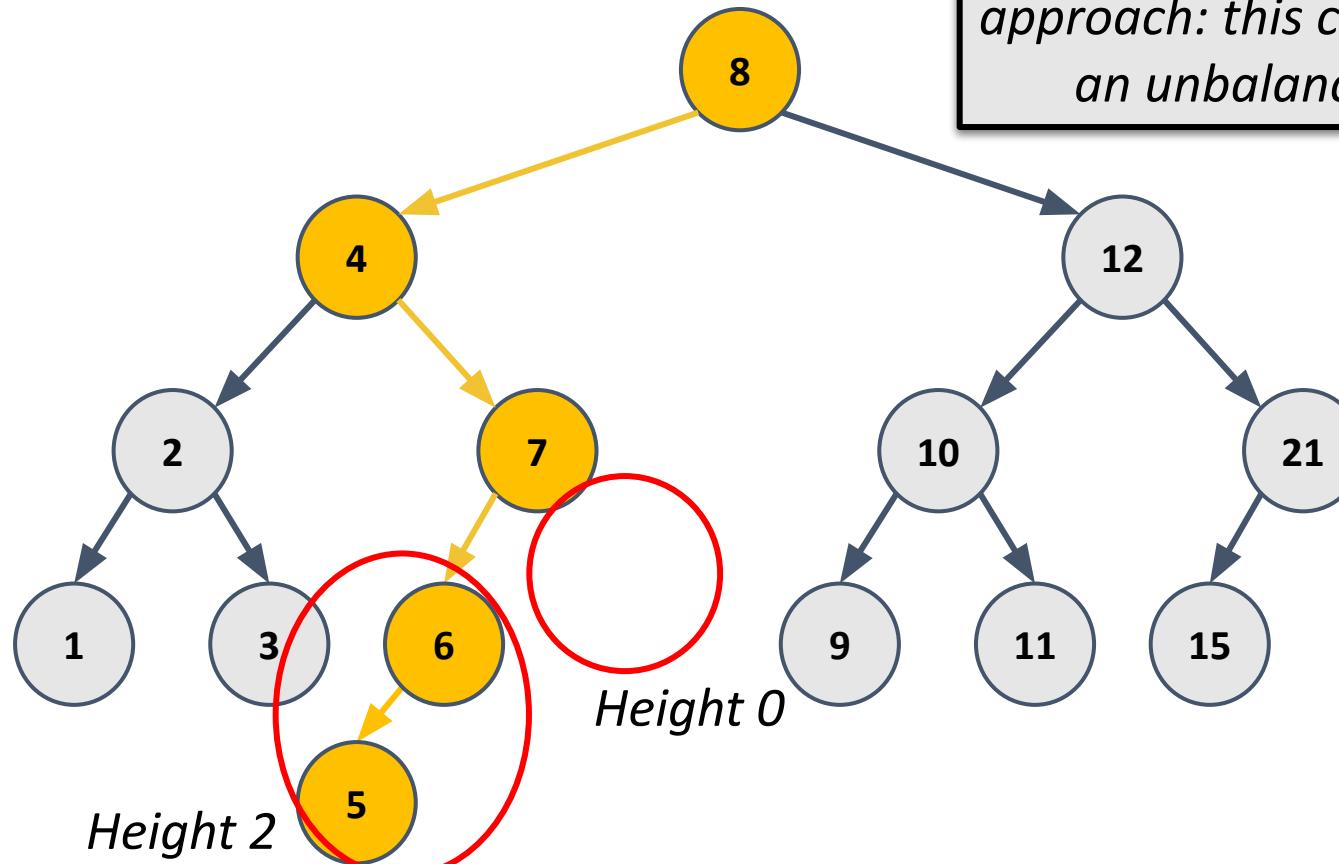


BST Insertion

... and insert the 5 there

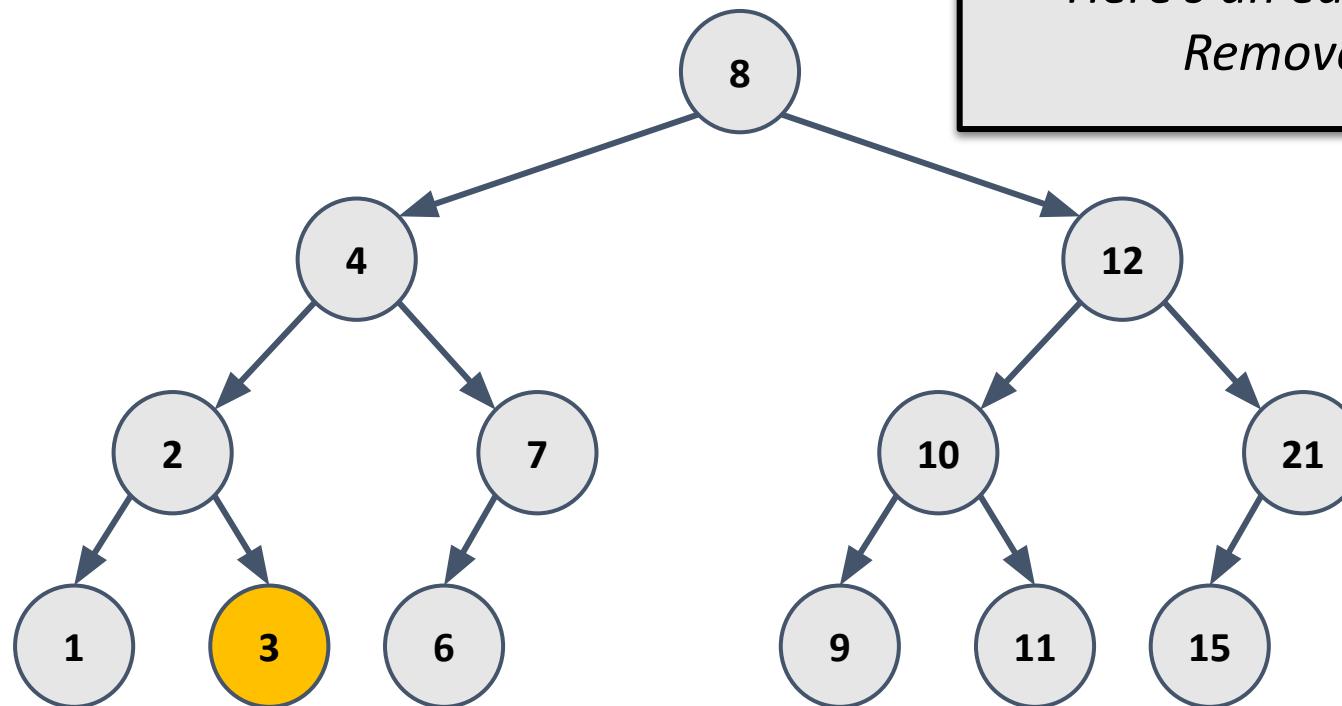


BST Insertion



BST Deletion

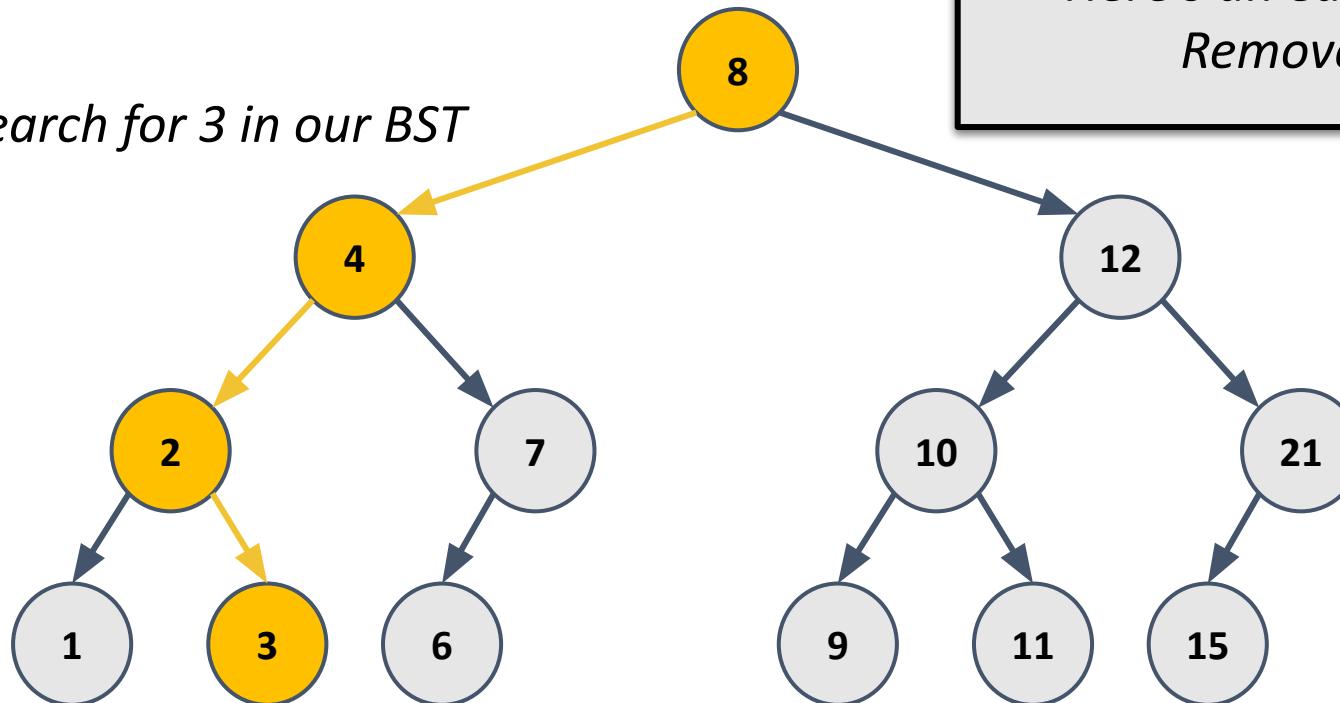
BST Deletion



*Here's an easy case:
Remove 3*

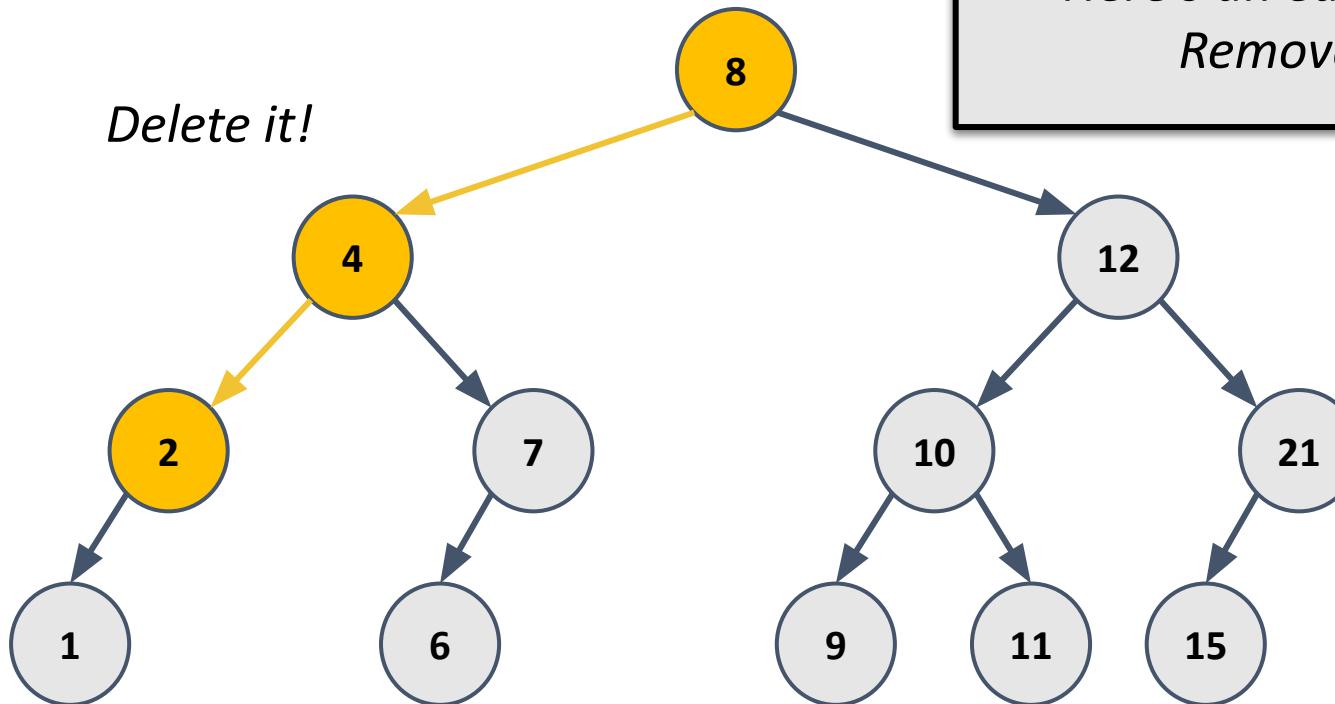
BST Deletion

Search for 3 in our BST



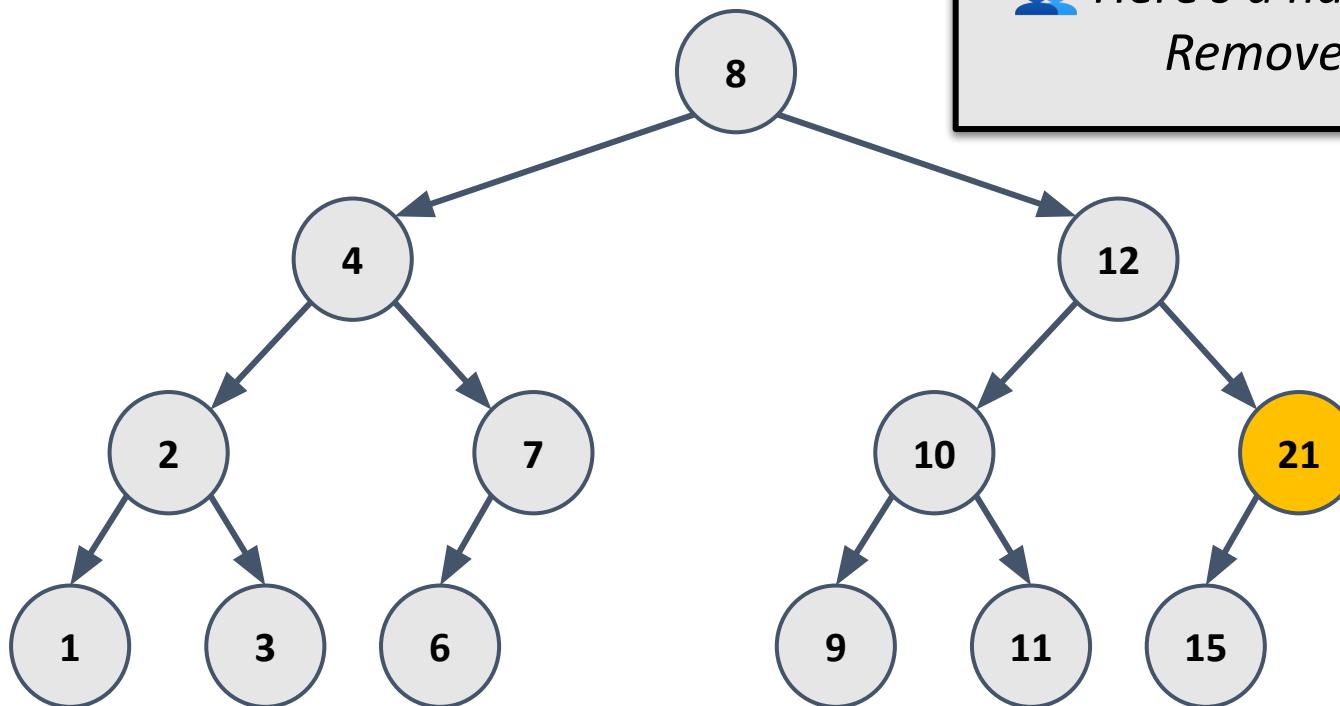
BST Deletion

Delete it!



*Here's an easy case:
Remove 3*

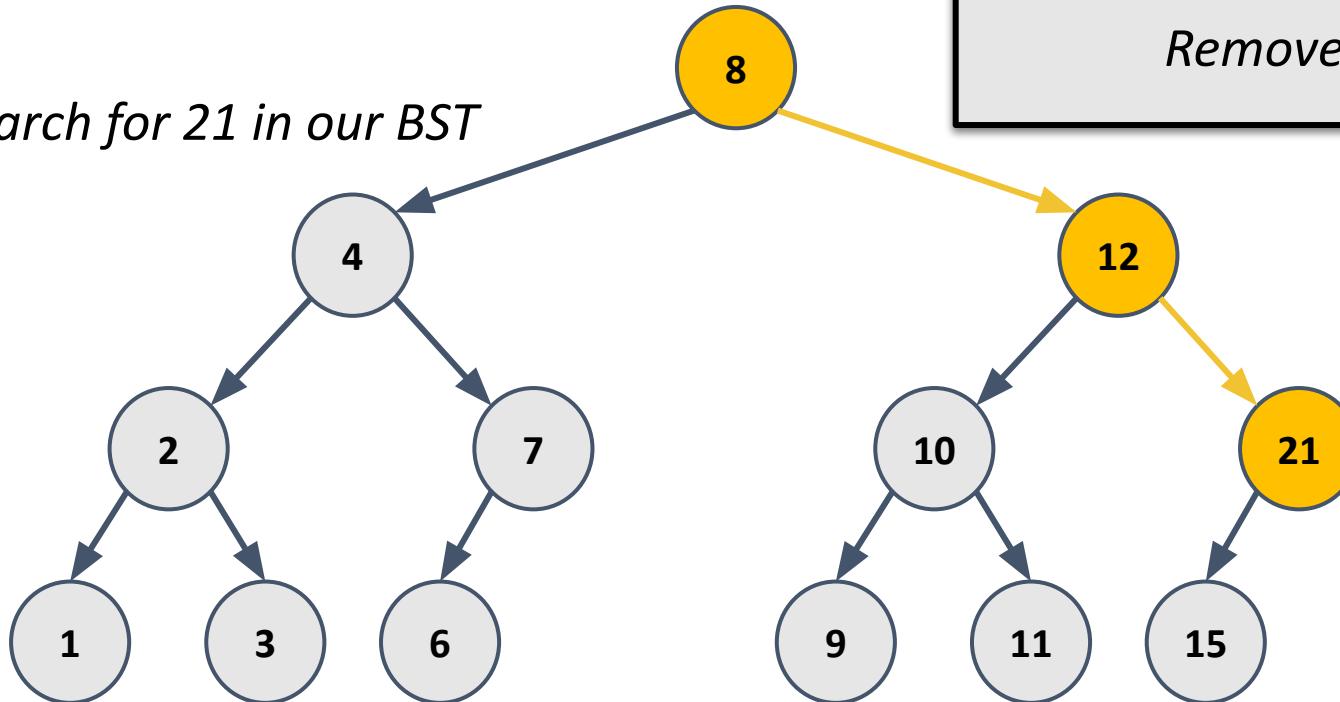
BST Deletion



Here's a harder case:
Remove 21

BST Deletion

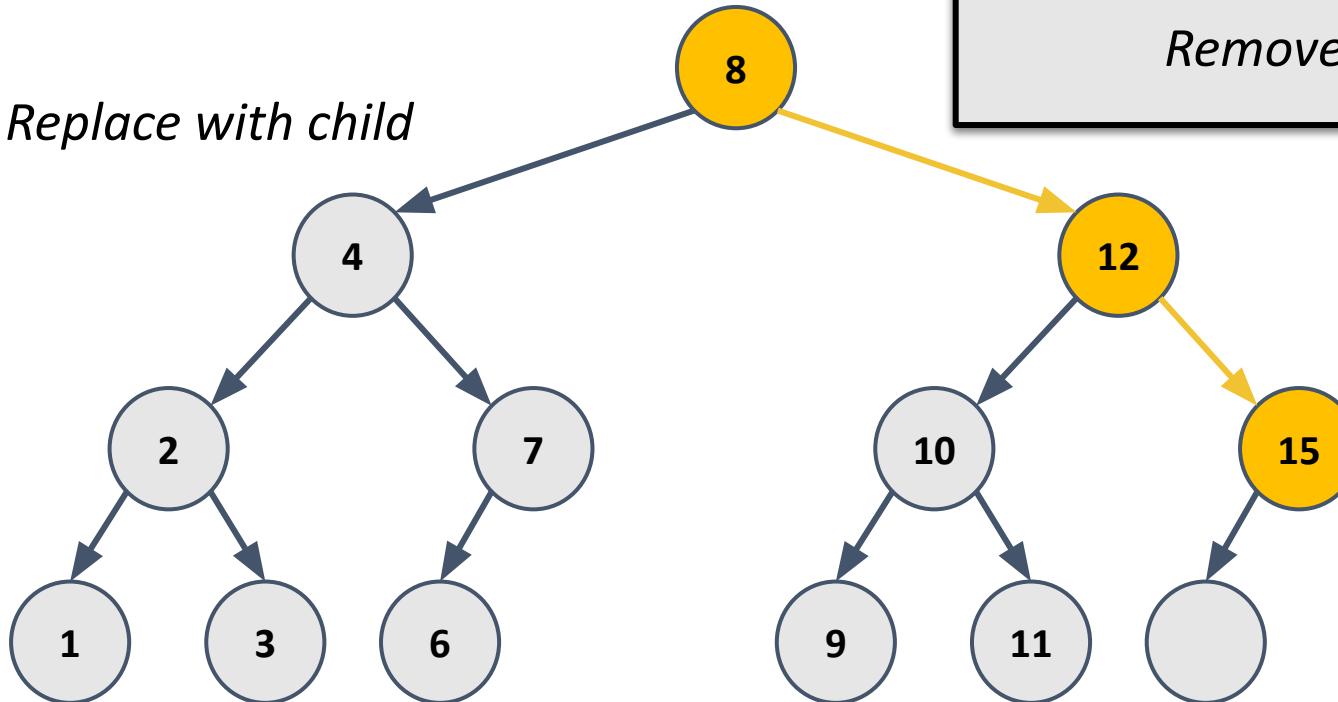
Search for 21 in our BST



*Here's a harder case:
Remove 21*

BST Deletion

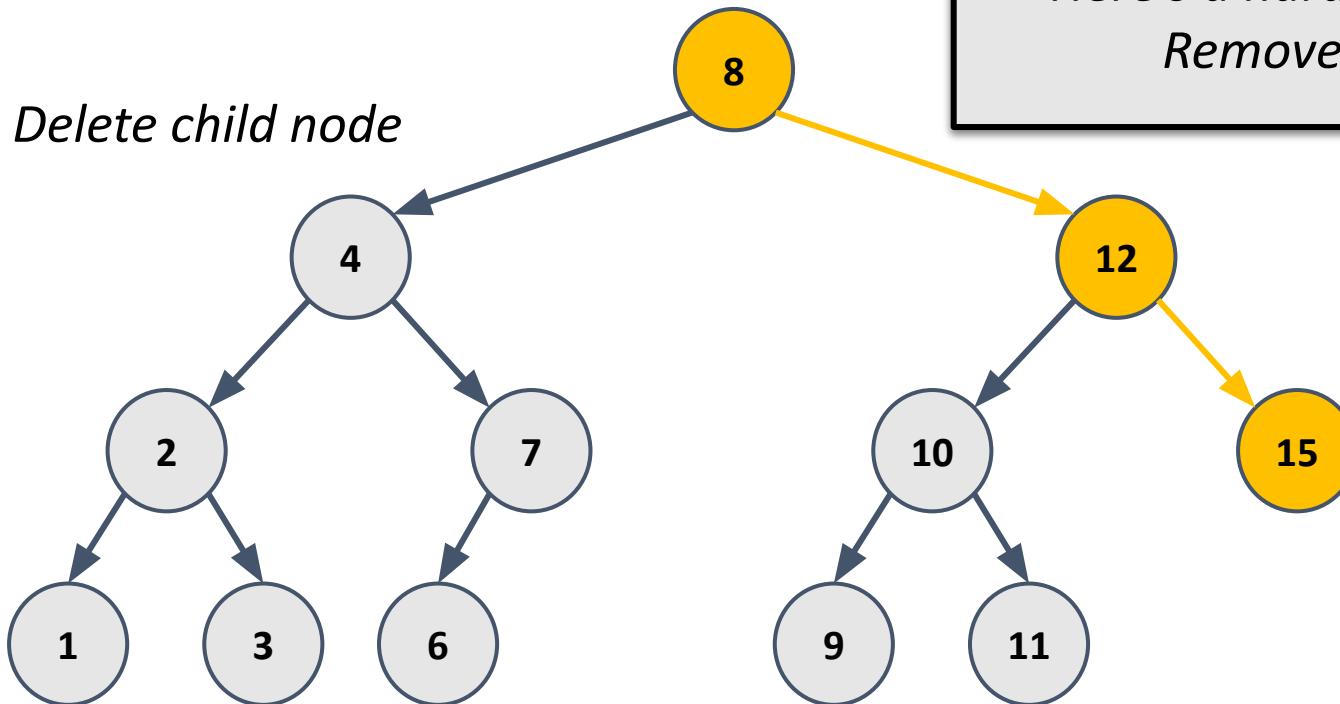
Replace with child



*Here's a harder case:
Remove 21*

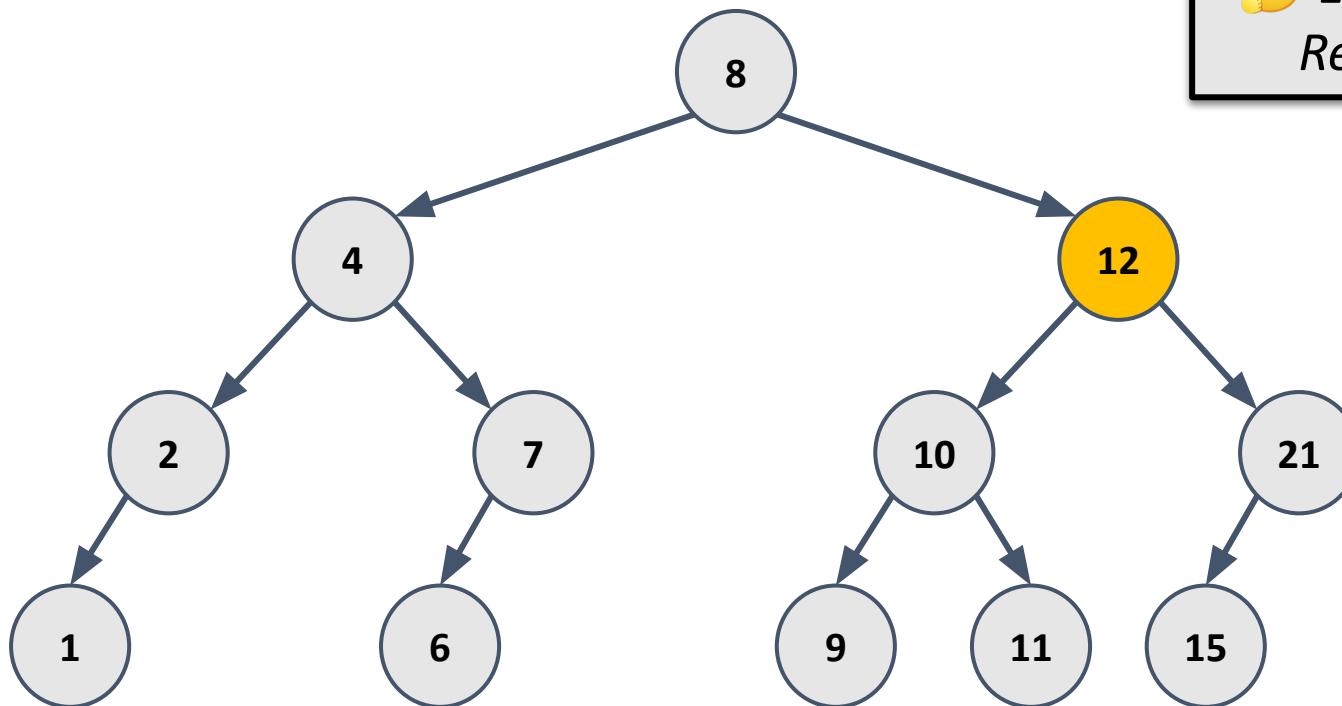
BST Deletion

Delete child node



*Here's a harder case:
Remove 21*

BST Deletion

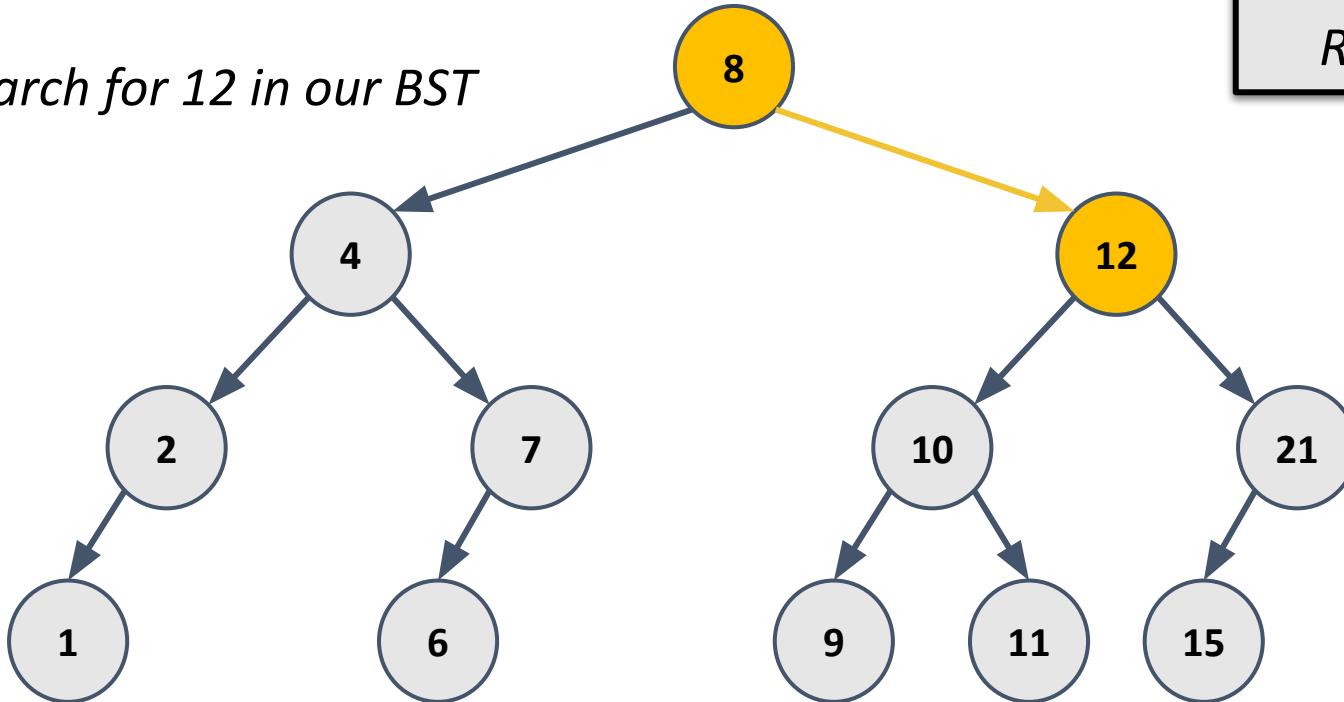


*Even trickier:
Remove 12*

BST Deletion

Search for 12 in our BST

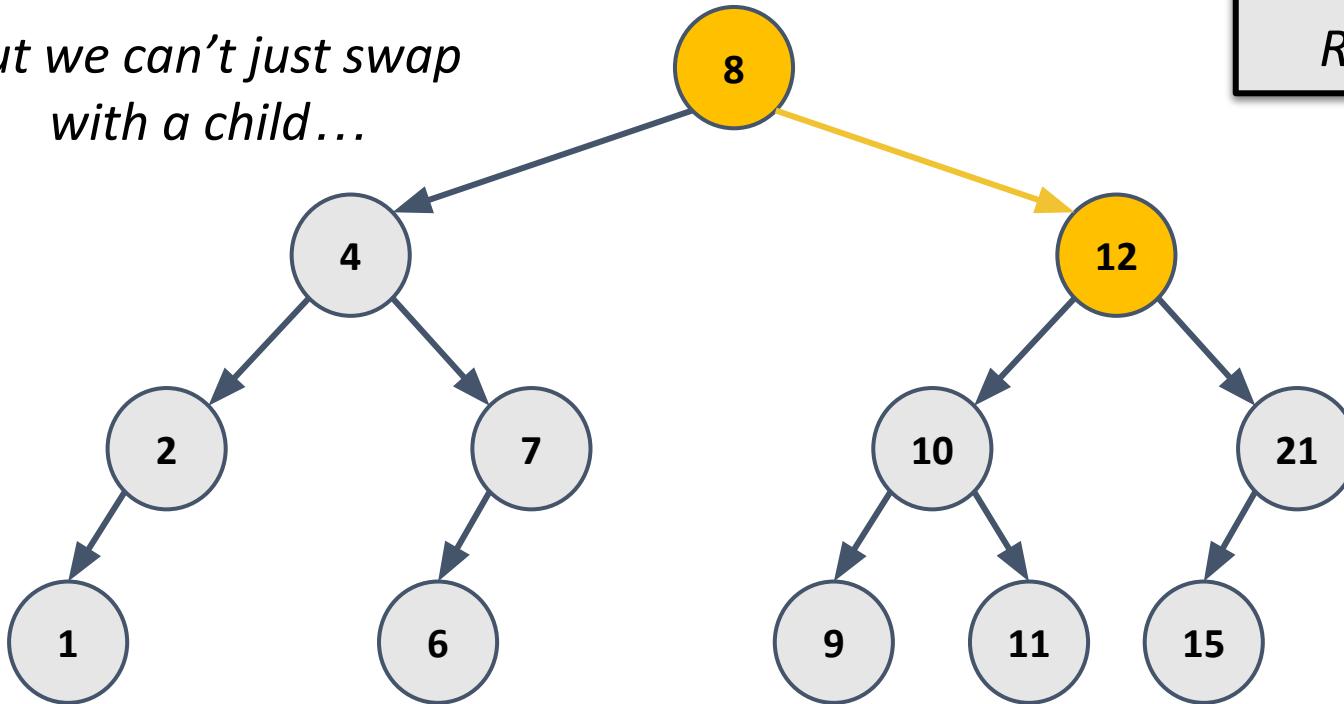
*Even trickier:
Remove 12*



BST Deletion

*But we can't just swap
with a child...*

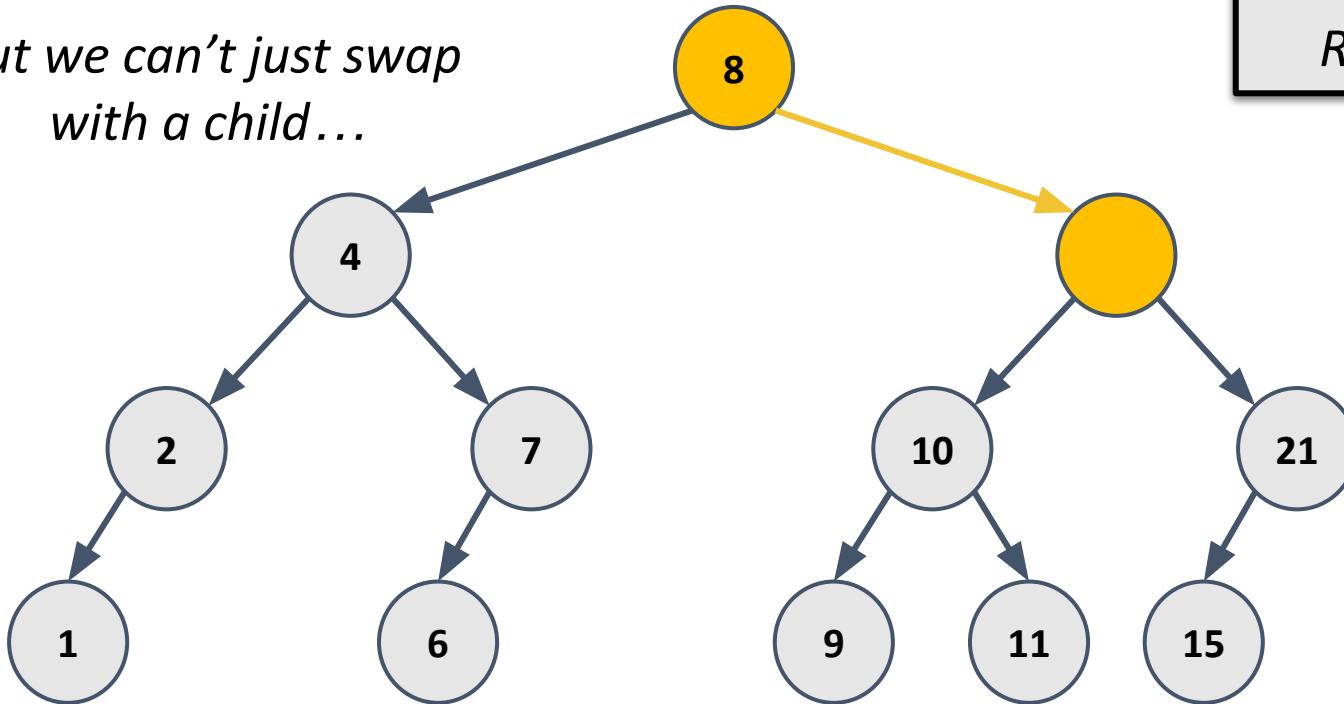
*Even trickier:
Remove 12*



BST Deletion

*But we can't just swap
with a child...*

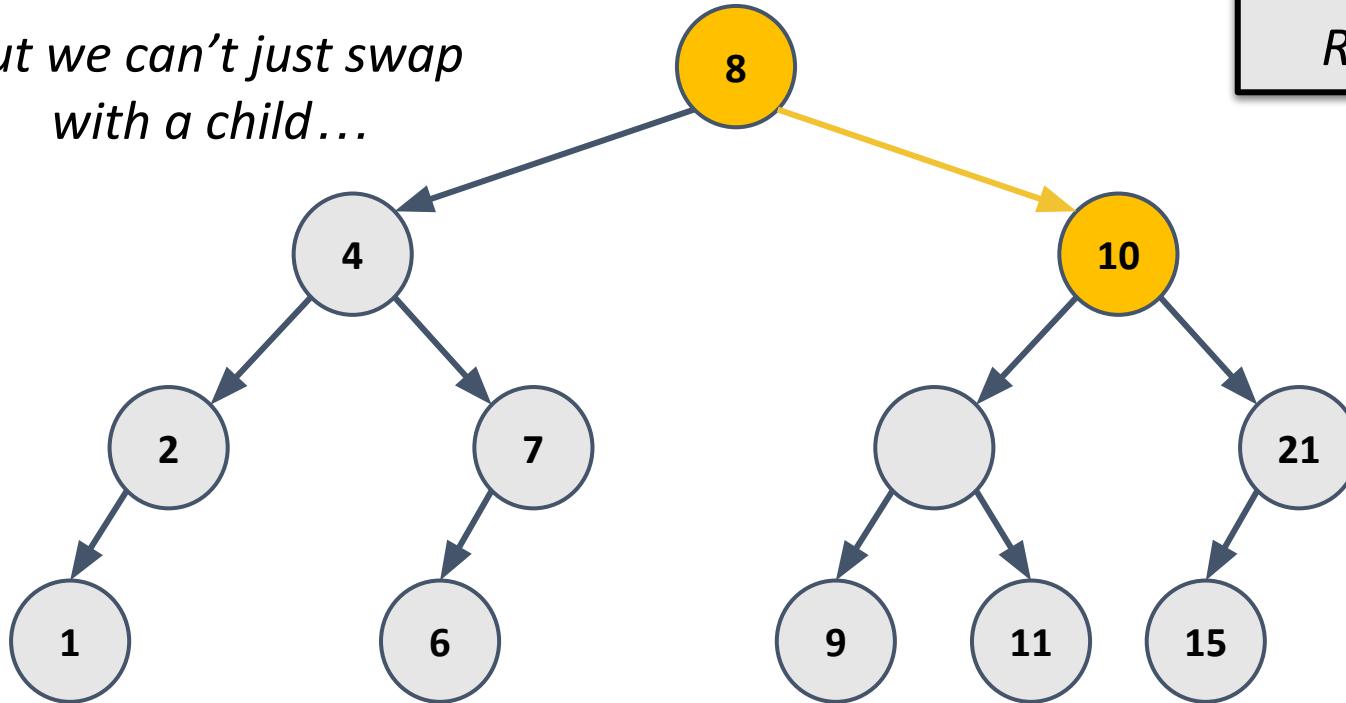
*Even trickier:
Remove 12*



BST Deletion

*But we can't just swap
with a child...*

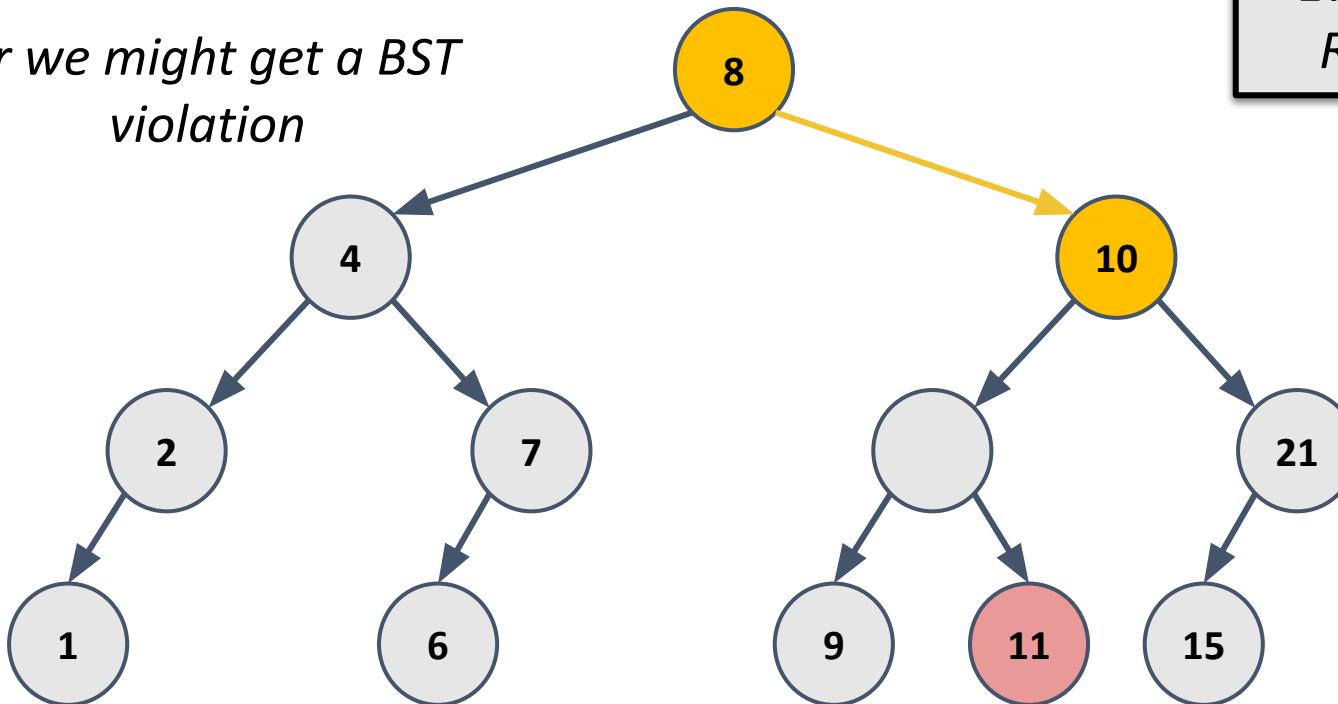
*Even trickier:
Remove 12*



BST Deletion

Or we might get a BST violation

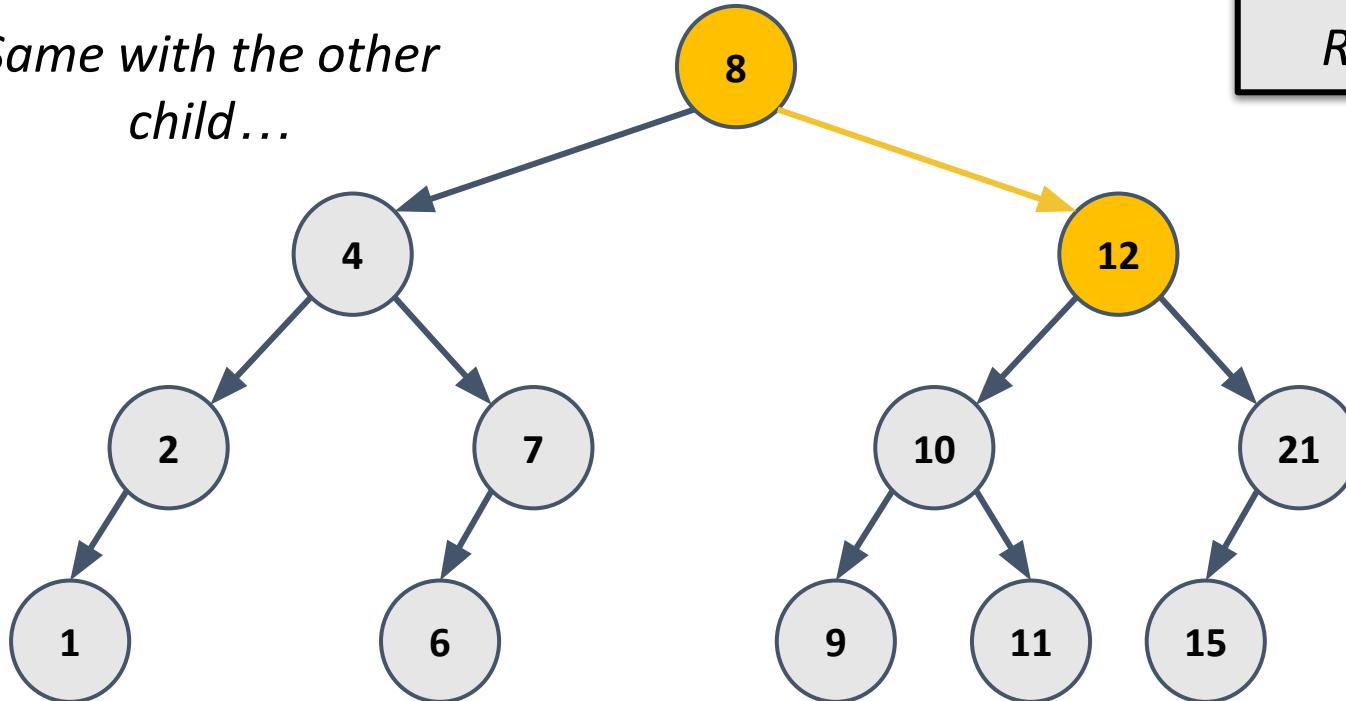
*Even trickier:
Remove 12*



BST Deletion

*Same with the other
child...*

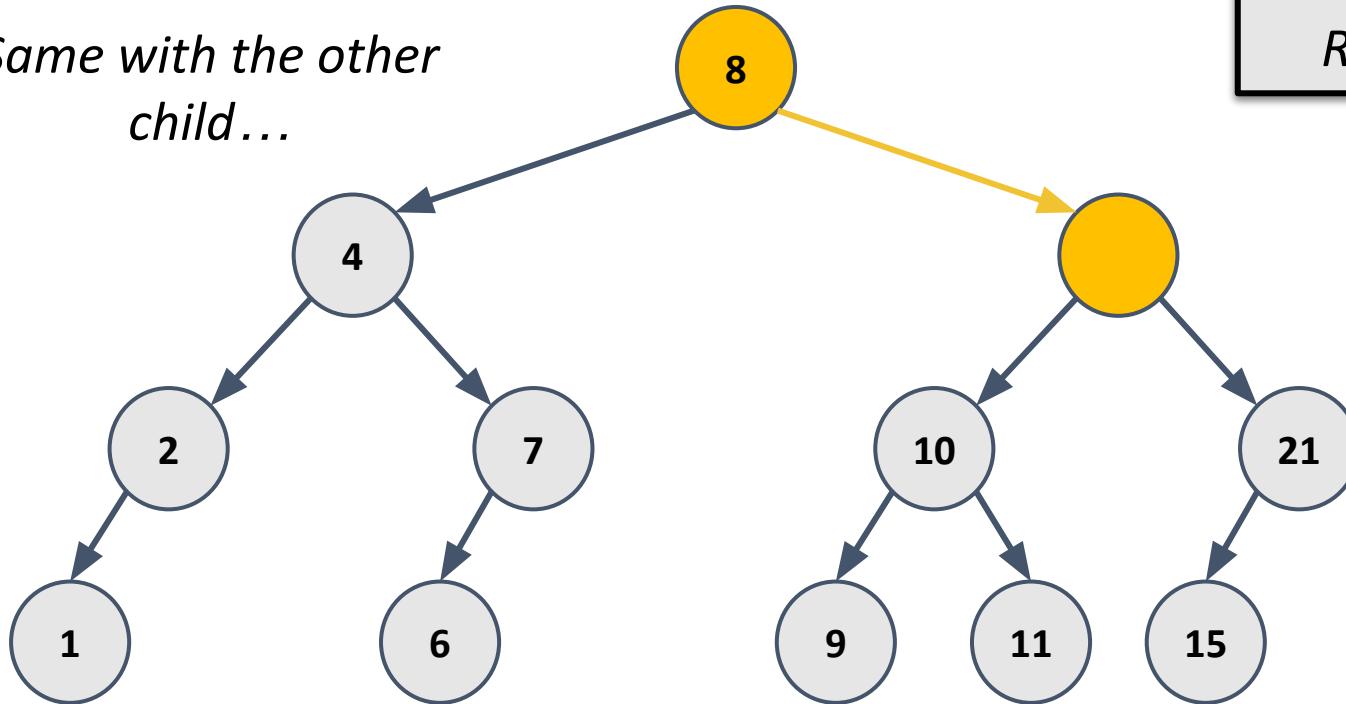
*Even trickier:
Remove 12*



BST Deletion

*Same with the other
child...*

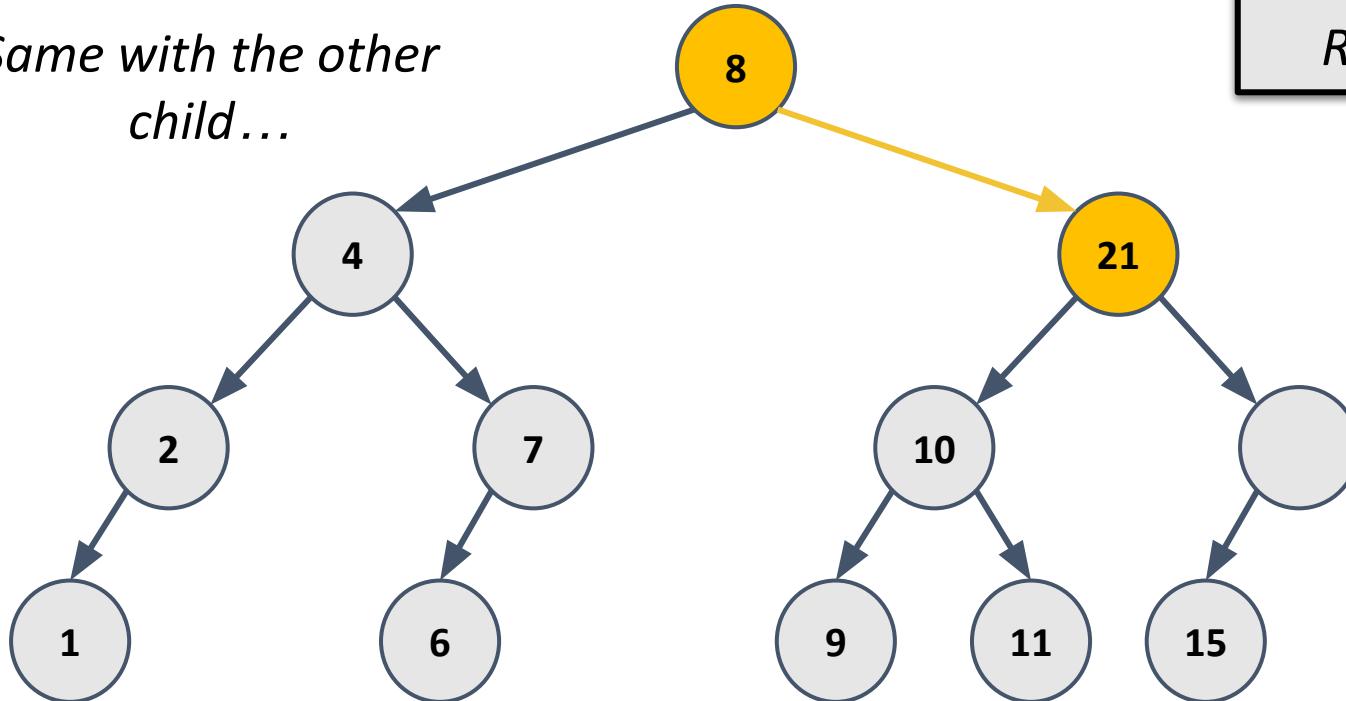
*Even trickier:
Remove 12*



BST Deletion

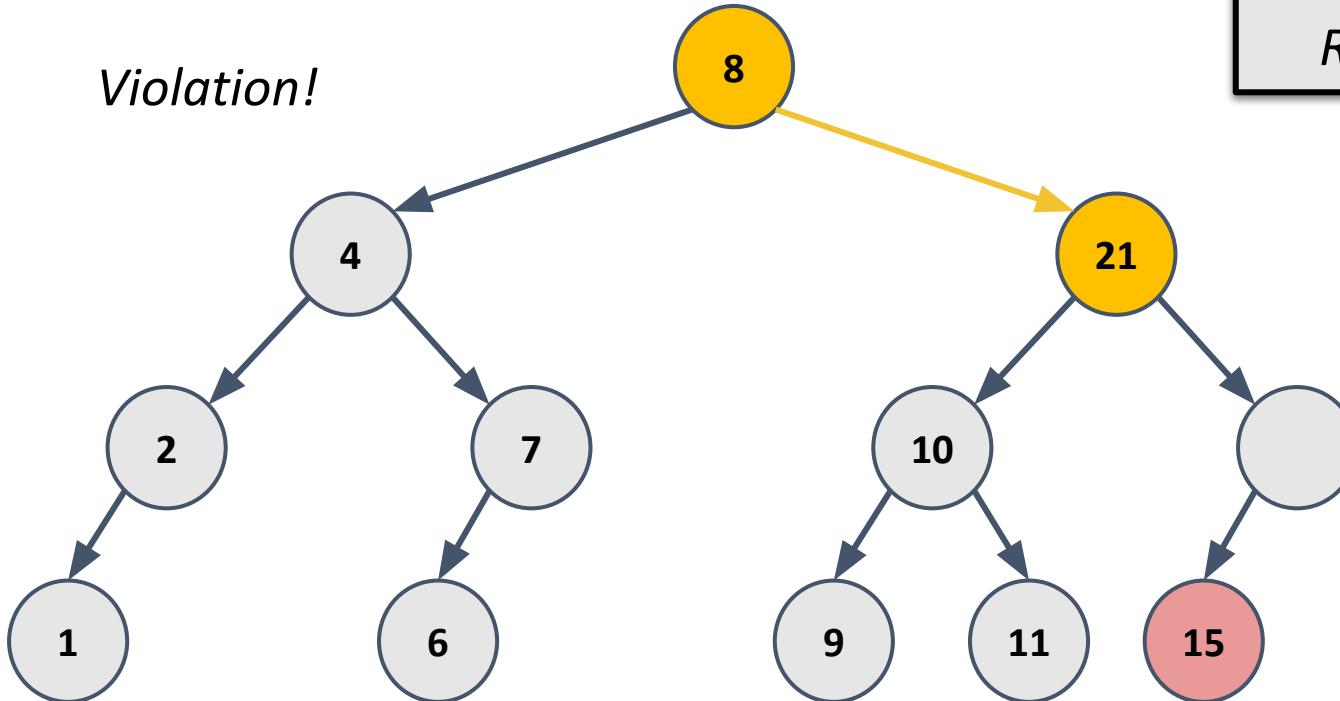
*Same with the other
child...*

*Even trickier:
Remove 12*



BST Deletion

Violation!

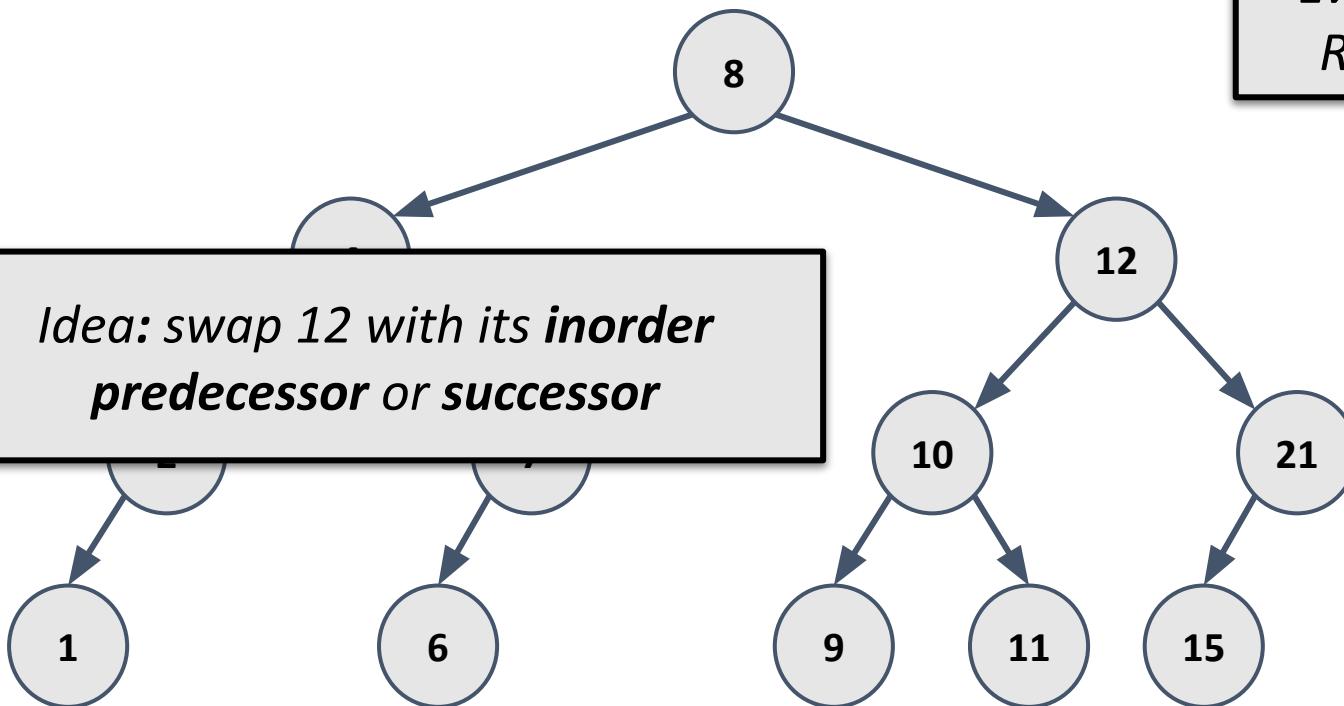


*Even trickier:
Remove 12*

BST Deletion

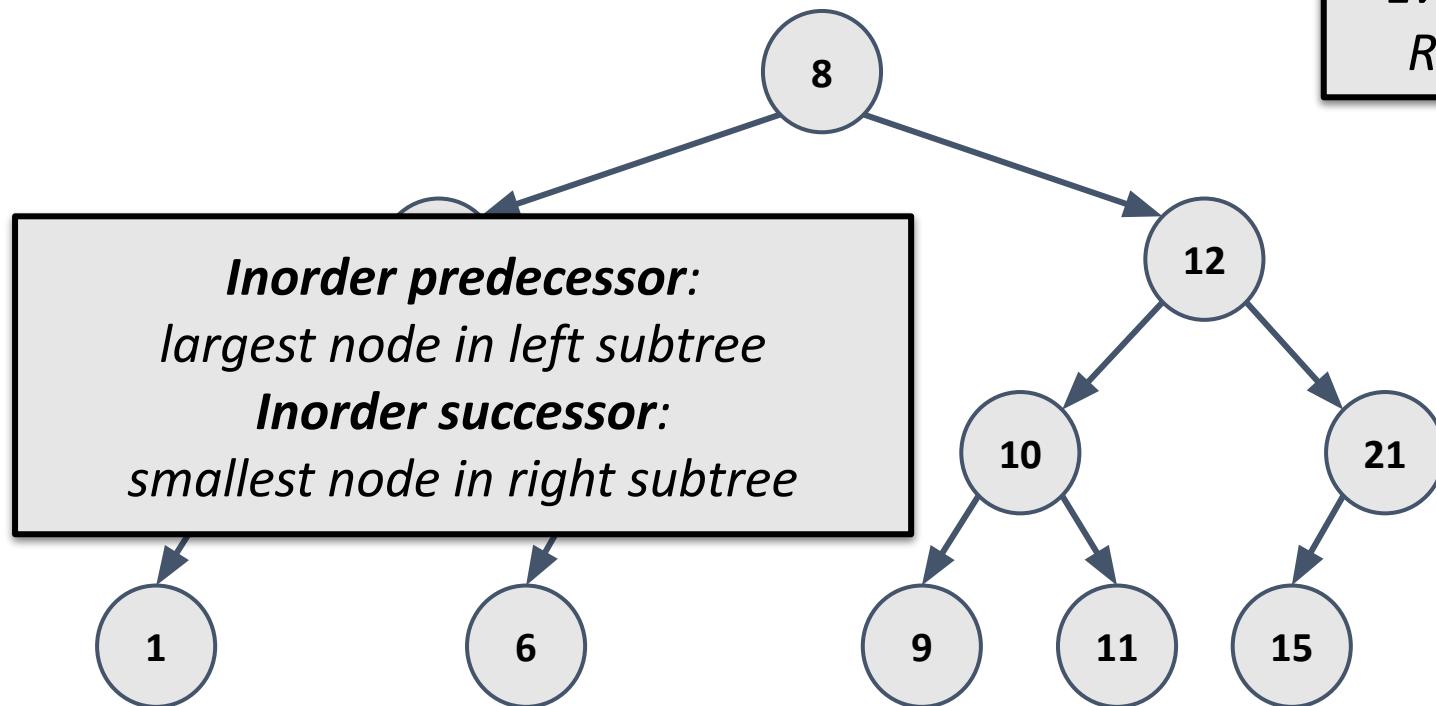
*Even trickier:
Remove 12*

*Idea: swap 12 with its **inorder predecessor** or **successor***



BST Deletion

*Even trickier:
Remove 12*



BST Deletion

💡 *What is the
inorder predecessor of 12?*

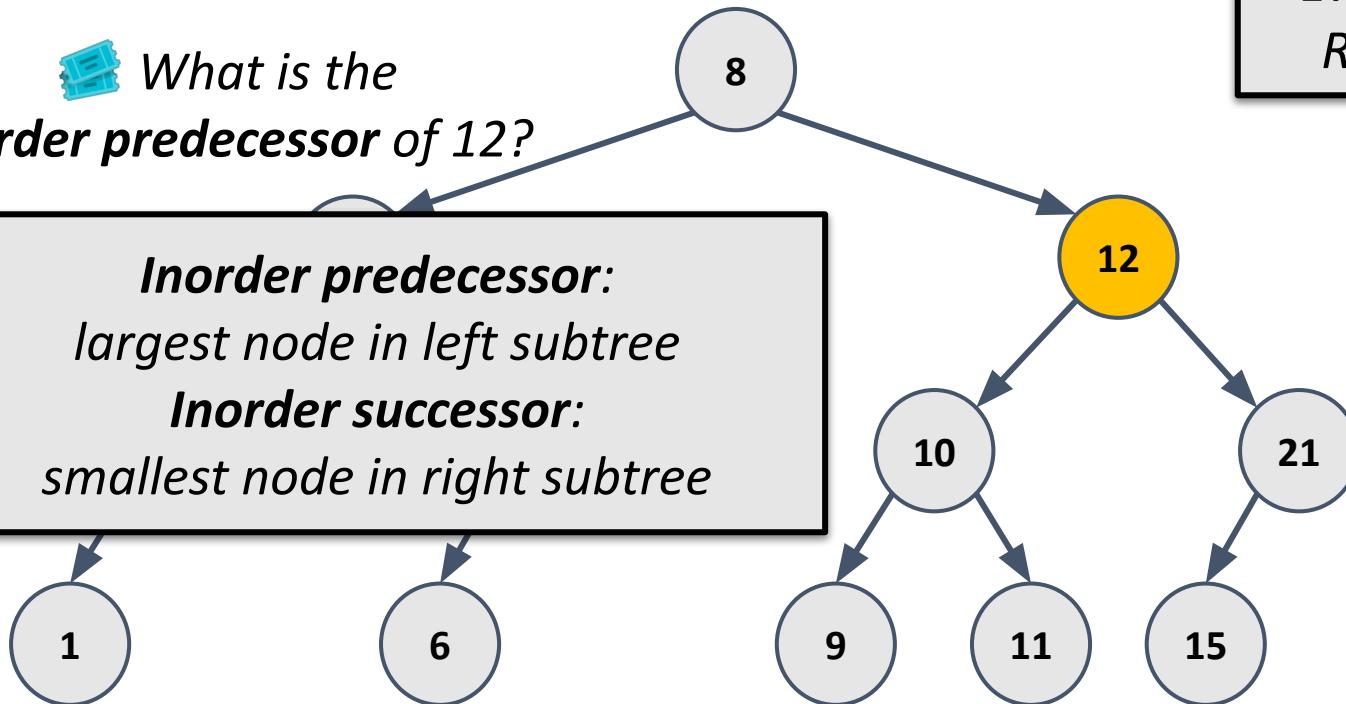
*Even trickier:
Remove 12*

Inorder predecessor:

largest node in left subtree

Inorder successor:

smallest node in right subtree



BST Deletion

💡 *What is the
inorder predecessor of 12?*

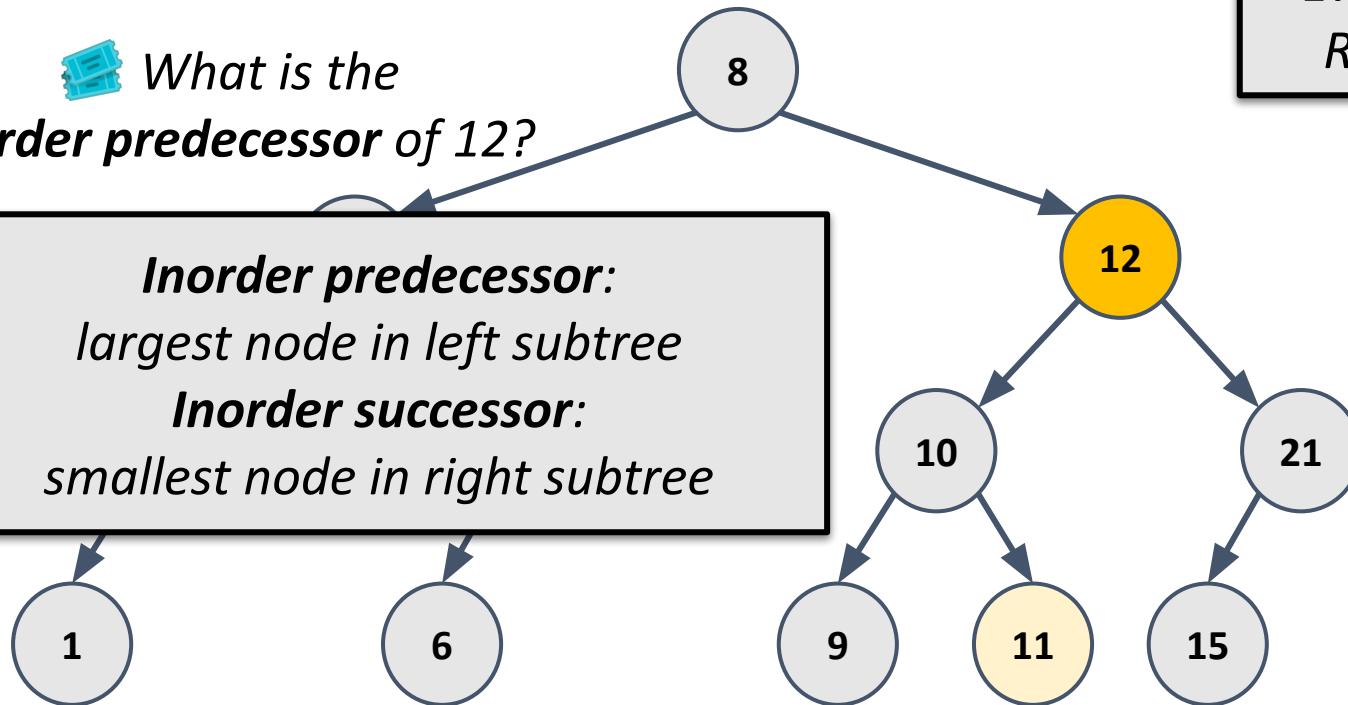
*Even trickier:
Remove 12*

Inorder predecessor:

largest node in left subtree

Inorder successor:

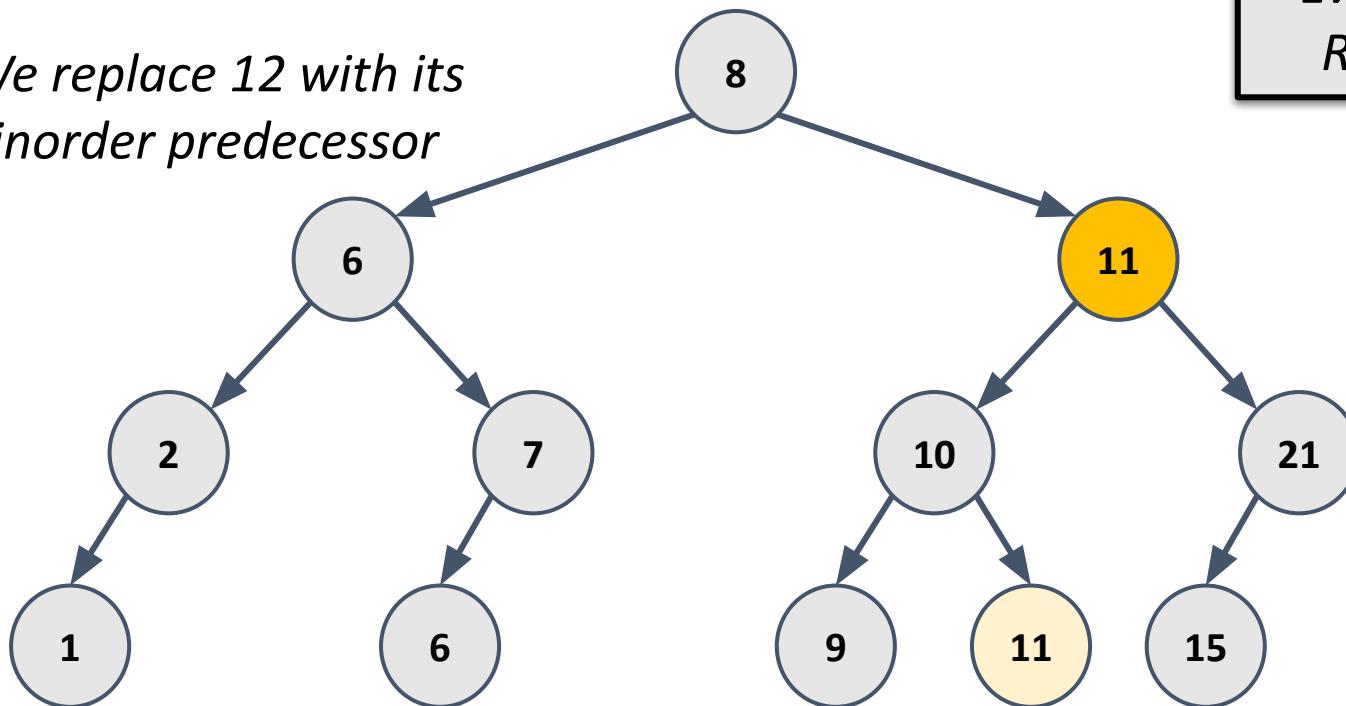
smallest node in right subtree



BST Deletion

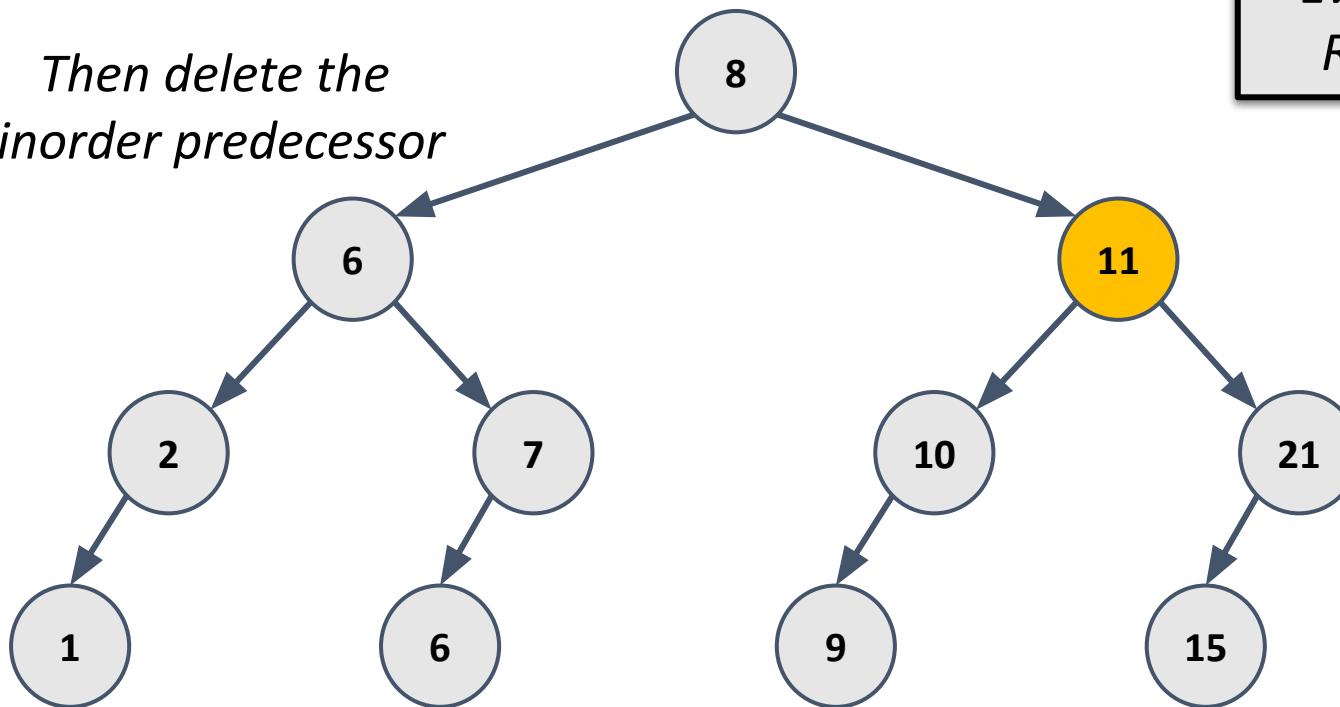
*We replace 12 with its
inorder predecessor*

*Even trickier:
Remove 12*



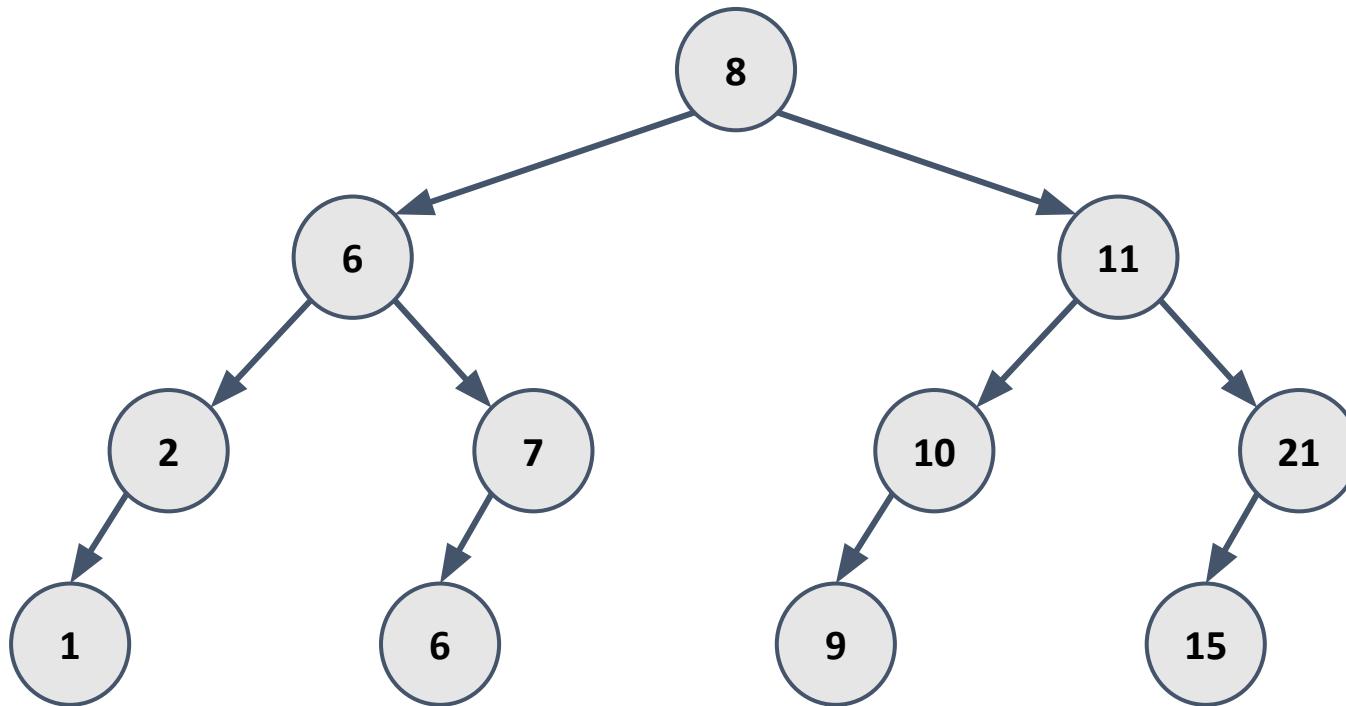
BST Deletion

*Then delete the
inorder predecessor*



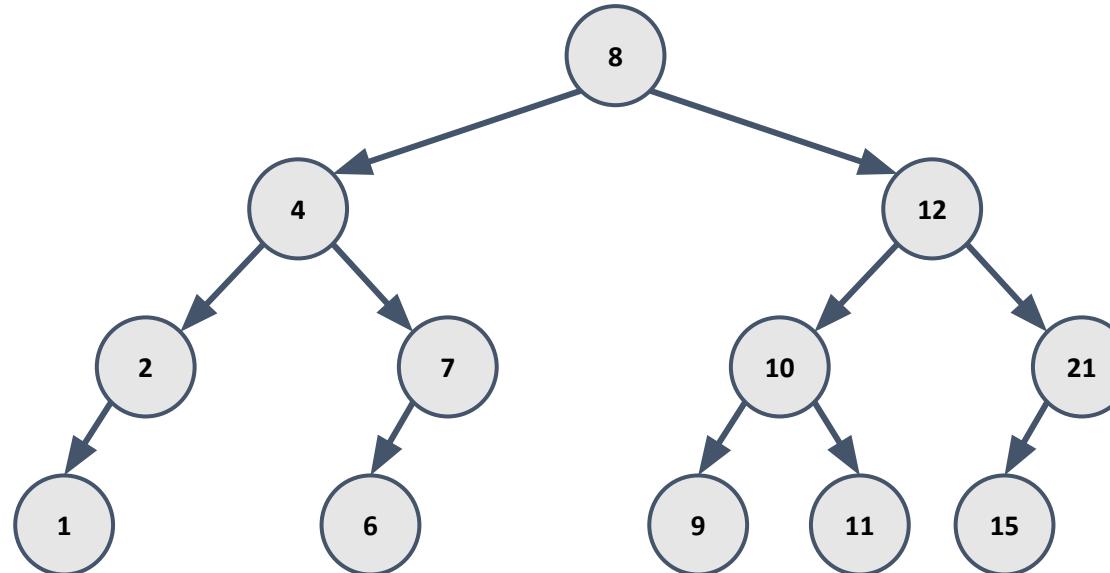
*Even trickier:
Remove 12*

BST Deletion



Takeaways

- To insert/delete nodes, we have to look them up in our BST
 - This is why insertions/deletions are $O(\log n)$, just like lookups



Demo: OurSet

Let's implement a Set using a BST

Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

```
OurSet set;  
set.add(8);  
set.add(9);  
set.add(4);
```

Implementing OurSet

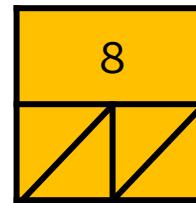
- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

```
OurSet set;  
set.add(8);  
set.add(9);  
set.add(4);
```

Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

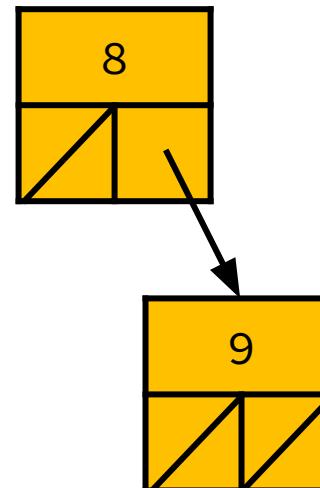
```
OurSet set;  
set.add(8);  
set.add(9);  
set.add(4);
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

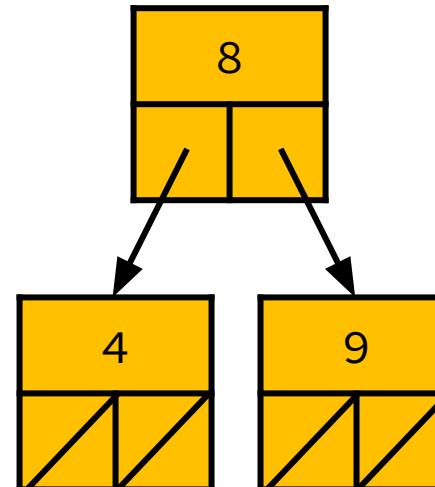
```
OurSet set;  
set.add(8);  
set.add(9);  
set.add(4);
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

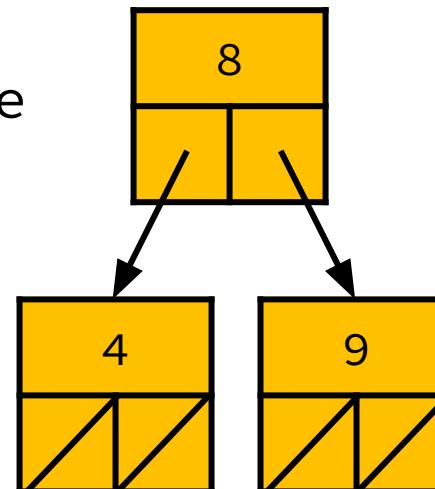
```
OurSet set;  
set.add(8);  
set.add(9);  
set.add(4);
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

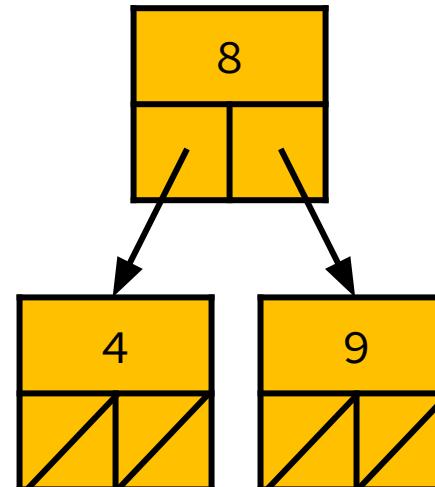
```
set.contains(5); // false  
set.contains(4); // true
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

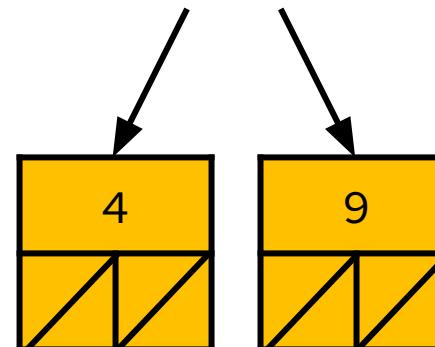
```
set.remove(8);  
set.remove(9);
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

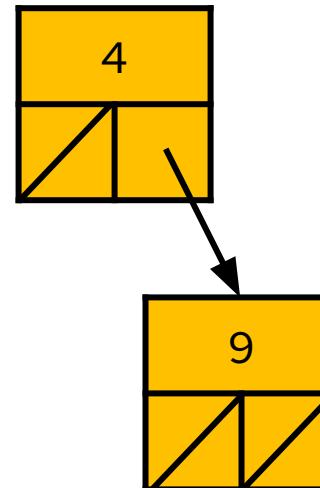
```
set.remove(8);  
set.remove(9);
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

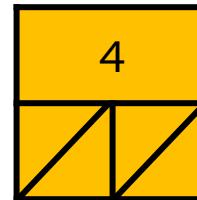
```
set.remove(8);  
set.remove(9);
```



Implementing OurSet

- We're going to use a BST to implement a Set
- We'll create a header file, then implement a few core functions

```
set.remove(8);  
set.remove(9);
```



The Power of Abstraction

- The client doesn't need to know we're using a BST behind the scenes, they just need to be able to store their data
 - After all, you've used a Set all quarter without needing to know this!

```
OurSet set;  
set.add(8);  
set.add(9);  
set.add(4);  
set.contains(5); // false  
set.contains(4); // true  
set.remove(8);  
set.remove(9);
```


OurSet Header

```
class OurSet {  
public:  
    OurSet(); // constructor  
    ~OurSet(); // destructor  
    bool contains(int value);  
    void add(int value);  
    void remove(int value);  
    void clear();  
    int size();  
    bool isEmpty();  
    void printSetContents();  
private:  
    /* To be defined soon! */  
};
```

*Find solutions in starter code
after class*

Let's code it up!

Implement OurSet with a BST

Thank you!