Binary Search Trees

Elyse Cornwall
August 7, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

* This week is our final section
e Exam next Friday (8/18) from 3:30-6:30pm

* Final exam info will be published this afternoon
* Final review session next Tuesday in class

Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

Building Abstractions

Memory
Management

Linked

Advanced
Data Algorithms
Structures
Recursion

Stanford University

Recap: Trees

Stanford University

Uses

* Trees are useful in other ways besides visualizing recursion and

* Describe hierarchies
/

@@

/

%@ 0\ Cf>
? @
&= (X ’ N

Stanford University

modeling priority

Tree Properties

* Any node in a tree can only have one parent

\/®
o
/N
O G

Stanford University

®\®/® Not trees! CTj/

Tree Terminology

Types of nodes

* The root node defines the "top" of the tree

* Every node has 0 or more children nodes descended from it
* Nodes with no children are called leaf nodes

* Every node in a tree has exactly one parent node (except for the root node)

Terminology for quantifying trees

* The length of a path between two nodes is the number of edges between them

* The depth of a node is the length of the path from the root to that node

* The height of a tree is the number of nodes in the longest path through the tree
(i.e. the number of levels in the tree)

Stanford University

Binary Trees

* Most common trees in CS
* We've seen these before, Binary Heaps!
 Every node has either 0, 1, or 2 children
* Children are referred to as left child and right child . u
0
@

X 7

R\
) B,
& 0
8 10 3

Stanford University

Building Binary Trees

A binary tree is composed of nodes

Each node is a struct that contains:

A piece of data (like an int, or string)
A pointer to the left child
A pointer to the right child

struct TreeNode {
int data;
TreeNode* left;
TreeNodex*x right;

}s

Stanford University

Tree Traversal Recap

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589

10

Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985
Stanford University

11

Demo: Freeing a Tree

Traverse a tree and free its nodes

Stanford University

12

@ Which Method Should We Use?

Pre-order

do something(aka delete)
traverse left subtree
traverse right subtree

In-order

traverse left subtree
do something (aka delete)
traverse right subtree

Post-order

traverse left subtree
traverse right subtree
do something (aka delete)

Stanford University

13

Which Method Should We Use?

If we delete a node before deleting its
children, we’ll lose access to its children

Pre-order In-order Post-order
do something(aka delete) traverse left subtree traverse left subtree
traverse left subtree do something (aka delete) traverse right subtree
traverse right subtree traverse right subtree do something (aka delete)

Stanford University

14

Let’s code it up!

Traverse a tree and free its nodes

Stanford University

Solution Code - Freeing a Tree

void freeTree(TreeNodex node) {
it (node == nullptr) {
return;
}
freeTree(node->1left);
freeTree(node->right);
delete node;

15

Stanford University

16

Binary Search Trees

Trees optimized for binary search!

Stanford University

17

Why Trees?

The distance from each node in a tree to root is small, even if there
are many elements

 How can we take advantage of trees to structure and efficiently
manipulate data? °

Stanford University

Binary Search Trees (BSTs)

1. Binary tree (each node has 0, 1, or 2 children)
2. For a node with value X:

a. All nodes in its left subtree must be less than X
b. All nodes in its right subtree must be greater than X

18

Stanford University

Spot the Valid BST

1.
2.

Binary tree (each node has 0, 1, or 2 children)
For a node with value X:

a. All nodes in its left subtree must be less than X
b. All nodes in its right subtree must be greater than X

19

Stanford University

20

Spot the Valid BST

There’s a node in the left subtree . - }
of 6 that is greater than 6 [YOU'RE VALID *=

e e Stanford University

21

Turning Data into a BST

Let’s say we wanted to store
the following numbers in a BST:

o © ®

D e OO
o O @@

Stanford University

22

Turning Data into a BST

To build a BST, we choose the
median element

o © ®

D e OO
o O @@

Stanford University

Turning Data into a BST

This becomes our root node

o © ®

D e OO
o O @@

24

Turning Data into a BST

We split all other elements into

less than and greater than 8

OO
G @

o
o @
o © ® @

Stanford University

Turning Data into a BST

Repeat on each side
I
|

o © I ©®
SECERECRS
®© © 1 Ye

Turning Data into a BST

Choose median element
|
|

o © I @ ®
> ® | ®0
®© © 1 Ye

27

Turning Data into a BST

These become roots for their
respective sub-trees

O
)
(=)
()

Stanford University

Turning Data into a BST

We split all other elements into
less than, and greater than

o

TR
90

e

28

Stanford University

Turning Data into a BST

Choose medi
I

oL ,@, o
© 0 ©°

30

Turning Data into a BST

These become roots for their
respective sub-trees

Stanford University

31

Turning Data into a BST

We split all other elements into
less than, and greater than

9
ROIN
9

)
© 7
O

Stanford University

32

Turning Data into a BST

Choose median element

9@
e
-

Stanford University

33

Turning Data into a BST

These become roots for their °
respective sub-trees

Stanford University

34

Turning Data into a BST

Stanford University

35

BST Lookups

These data structures are designed for fast lookups!

Stanford University

36

BST Lookups

Is 11 in this BST?

Stanford University

37

BST Lookups
We start at the root.
8 is too small, so we look to the °
right.

Is 11 in this BST?

Stanford University

38

BST Lookups

Is 11 in this BST?

12 is too big, so we look to
the left.

Stanford University

39

BST Lookups

Is 11 in this BST?

10 is too small, so we look to
the right.

Stanford University

40

BST Lookups

Is 11 in this BST?

We found 11!

Stanford University

41

BST Lookups

@ How do we know

° that 5 is not in this BST?

Stanford University

42

BST Lookups

How do we know that 5

8 is too big, so we look is not in this BST?
to the left.

Stanford University

43

BST Lookups

How do we know that 5

4 is too small, so we is not in this BST?

look to the right.

Stanford University

44

BST Lookups

How do we know that 5

7 is too big, so we look is not in this BST?

to the left.

Stanford University

45

BST Lookups

How do we know that 5
is not in this BST?

6 is too big, so we look
to the left.

Stanford University

46

BST Lookups

How do we know that 5
is not in this BST?

And we fall off the tree!

Stanford University

47

BST Lookups

A value isn’t in our BST if
we “fall off” the tree
looking for it.

Stanford University

48

BST Lookups

= What’s the height of

° a BST with n elements?

Stanford University

49

BST Lookups 0(1og.n)

We’ve got 13 nodes in this tree,
° but its height is log,13 =4.

Stanford University

50

BST Lookups

Worst case, we have to take 4
steps in the tree to find an

° element. That’s pretty good!

069 00 aﬁe

Stanford University

51

BST Lookups

@ Is this a valid BST?

Stanford University

52

BST Looku PS Yes! In a suboptimal

tree, lookups can be as
slowasO(n).

Stanford University

53

Building an Optimal BST
We saw how to build an optimal
BST by recursively splitting
around the median element

o © EENON®
o O OO
o ©

® @

Stanford University

54

Takeaways

* There can be multiple valid BSTs for the same set of data
 How you construct the tree matters!

Stanford University

55

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

Stanford University

56

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[BALANCED]

Stanford University

Balanced BSTs

57

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree

* This means left/right subtrees don’t differ in height by more than 1

@ Is this tree balanced?

[BALANCED]

Stanford University

58

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

Height 3

[BALANCED]

Stanford University

59

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[BALANCED]

Height 0 Height 1

Stanford University

60

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[BALANCED]

Height 2

Height O

Stanford University

61

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[BALANCED]

Stanford University

62

Balanced BSTs

* ABST is balanced if its height is 0 (Log n), where nis the

number of nodes in the tree
* This means left/right subtrees don’t differ in height by more than 1

[UNBALANCED] [BALANCED]

Another way to show this: we have
6 nodes, so the tree shouldn’t have
height greater than Log 6 =3

T @

Stanford University

63

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the
number of nodes in the tree
* Theorem: If you start with an empty tree and add in random

values, then with high probability the tree is balanced
* Take CS161 to find out why!

Stanford University

64

Balanced BSTs

« ABST is balanced if its height is O(log n), where nis the
number of nodes in the tree
* Theorem: If you start with an empty tree and add in random

values, then with high probability the tree is balanced
* Take CS161 to find out why!

* A self-balancing BST reshapes itself on insertions and deletions to

stay balanced (how to do this is beyond the scope of this class)
* AVL trees
* Red-black trees

Stanford University

65

Big-O of ADT Operations

Vectors Queues Sets

e .size() - 0(1) e .size() - 0(1) e .size() - 0(1)
e .add() - 0(1) e .peek() - 0(1) e .isEmpty() - 0(1)
e v[i] ;+9$lz A7) e .enqueue() - 0(1) ¢ .add() - 0(log n)
: :;gﬁe e« .remove() - 0(log n)
¢ .suff Why do Sets and Maps have * .contains() - 0(log n)
e tra\ e traversal - 0(n)

_ O(log n) lookups? They use BSTs
Grids) Maps

behind the scenes to store data! ,
e .Nun e .size() - 0(1)
* .NUNMCOTST) oTT) * .peer() - o(I) e L.isEmpty() - 0(1)
e grid[i1[3] - o(1) . .push() - 0(1) « m[key] - O(log n)
y Ozg?ounds() - e .pop() - 0(1) e .contains() - 0(log n)
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal - 0(n)
e traversal - 0(n)

Stanford University

66

Big-O of ADT Operations

Vectors Queues Sets
e .size() - 0(1) e .size() - 0(1) e .size() - 0(1)
e .add() - 0(1) e .peek() - 0(1) e .isEmpty() - 0(1)
: VE;ge;t?§lz o(ny ° -enqueue() - 0(1) o .add() - 0(log n)
. :rengg() _ 0(n) . .qequeue§} - O(l} e .remove() - 0(log n)
e .suH e .contains() - 0(log n)
- tray Let’s investigate how BSTs can have « traversal - 0(n)
Grids O(log n) insertion and deletion. Maps
e .nun ——r———— oy e .size() - 0(1)
e .numCols() - 0(1) . .peek() - 0(1) e .isEmpty() - 0(1)
e grid[i1[3] - o(1) . .push() - 0(1) e m[key] - 0(log n)
y Ozg?ounds() - e .pop() - 0(1) e .contains() - 0(log n)
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal - 0(n)
e traversal - 0(n)

Stanford University

67

BST Insertion

Stanford University

68

BST Insertion @ How might we insert 5

° into this BST?

Stanford University

69

BST Insertion How might we insert 5 into
this BST?

Search for where the 5
should be...

Stanford University

70

BST Insertion How might we insert 5 into
this BST?

... and insert the 5 there

@ Stanford University

71

BST Insertion We’re using a naive
approach: this could lead to

an unbalanced tree

9

Height 2

Stanford University

72

BST Deletion

Stanford University

73

BST Deletion Here’s an easy case:

° Remove 3

Stanford University

74

BST Deletion Here’s an easy case:

Remove 3

Search for 3 in our BST

Stanford University

75

BST Deletion Here’s an easy case:

Remove 3

Delete it!

Stanford University

76

BST Deletion @ Here’s a harder case:

° Remove 21

Stanford University

77

BST Deletion Here’s a harder case:

Remove 21

Search for 21 in our BST

Stanford University

78

BST Deletion Here’s a harder case:

Remove 21

Replace with child

Stanford University

79

BST Deletion Here’s a harder case:

Remove 21

Delete child node

Stanford University

80

BST Deletion =) Even trickier:

° Remove 12

Stanford University

81

BST Deletion Even trickier:

Remove 12

Search for 12 in our BST

Stanford University

82

BST Deletion Even trickier:

Remove 12

But we can’t just swap
with a child...

Stanford University

83

BST Deletion Even trickier:

Remove 12

But we can’t just swap
with a child...

Stanford University

84

BST Deletion Even trickier:

Remove 12

But we can’t just swap
with a child...

Stanford University

85

BST Deletion Even trickier:

Remove 12

Or we might get a BST
violation

Stanford University

86

BST Deletion Even trickier:

Remove 12

Same with the other

Stanford University

87

BST Deletion Even trickier:

Remove 12

Same with the other

Stanford University

88

BST Deletion Even trickier:

Remove 12

Same with the other

Stanford University

89

BST Deletion Even trickier:

Remove 12

Violation!

Stanford University

90

BST Deletion Even trickier:

Remove 12

Idea: swap 12 with its inorder
predecessor or successor

Stanford University

91

BST Deletion Even trickier:

Remove 12

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree

Stanford University

92

BST Deletion Even trickier:

Remove 12

¥ What is the
inorder predecessor of 127

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree

Stanford University

93

BST Deletion Even trickier:

Remove 12

¥ What is the
inorder predecessor of 127

Inorder predecessor:
largest node in left subtree
Inorder successor:
smallest node in right subtree

Stanford University

94

BST Deletion Even trickier:

We replace 12 with its ° Remove 12
inorder predecessor

Stanford University

95

BST Deletion Even trickier:

Then delete the Remove 12
inorder predecessor

Stanford University

96

BST Deletion

Stanford University

97

Takeaways

* Toinsert/delete nodes, we have to look them up in our BST
* Thisis why insertions/deletions are 0 (Log n), just like lookups

Stanford University

98

Demo: OurSet

Let’s implement a Set using a BST

Stanford University

99

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

Stanford University

100

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

OurSet set;
set.add(8);
set.add(9);
set.add(4);

Stanford University

101

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

OurSet set;
set.add(8);
set.add(9);
set.add(4);

Stanford University

102

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

8
OurSet set;

set.add(8);
set.add(9);
set.add(4);

Stanford University

103

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

8
OurSet set;
set.add(8); //1 \
set.add(9) \

set.add(4);

N/

Stanford University

104

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

8
OurSet set;
set.add(8); / 1\
set.add(9);
set.add(4); / \
4 9

AN A

Stanford University

Implementing OurSet

 We’re going to use a BST to implement a Set

105

 WeEe'll create a header file, then implement a few core functions

set.contains(5); // false
set.contains(4); // true

8

/

/

4

A/

A/

Stanford University

Implementing OurSet

 We’re going to use a BST to implement a Set

106

 WeEe'll create a header file, then implement a few core functions

set.remove(8);
set.remove(9);

8

A/

A/

Stanford University

107

Implementing OurSet

 We’re going to use a BST to implement a Set
 WeEe'll create a header file, then implement a few core functions

set.remove(8);

set.remove(9); / \
AN A4

Stanford University

Implementing OurSet

 We’re going to use a BST to implement a Set

108

 WeEe'll create a header file, then implement a few core functions

set.remove(8);

4

set.remove(9);

N/

Stanford University

Implementing OurSet

 We’re going to use a BST to implement a Set

109

 WeEe'll create a header file, then implement a few core functions

set.remove(8);
set.remove(9);

4

v

Stanford University

110

The Power of Abstraction

* The client doesn’t need to know we’re using a BST behind the
scenes, they just need to be able to store their data

After all, you’ve used a Set all quarter without needing to know this!

OurSet set;

set

set

set

.add(8);
set.
set.
.contains(5); // false
set.
set.

add(9) ;
add(4);

contains(4); // true
remove(8) ;

.remove(9) ;

Stanford University

OurSet Header

class OurSet {
public:
OurSet(); // constructor
~QurSet(); // destructor
bool contains(int value);
void add(int value);
void remove(int value);
void clear();
int size();
bool 1isEmpty();
void printSetContents();
private:
/* To be defined soon! %/

I

111

Find solutions in starter code

after class

Stanford University

112

Let’s code it up!

Implement OurSet with a BST

Stanford University

113

Thank youl! @

Stanford University

