
Sorting
Elyse Cornwall

August 3, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 5: Linked Lists is out, due next Wednesday
• This is the penultimate assignment 😥

• Change of grading basis deadline is tomorrow at 5pm

2

Recap: Trees

3

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

4

New Tree Terminology

5

A

D

J

L

C E FB

KH IG

N nodes in a tree

New Tree Terminology

6

A

D

J

L

C E FB

KH IG

root

New Tree Terminology

7

A

D

J

L

C E FB

KH IG

B, C, D, E, and F are
the children of A

New Tree Terminology

8

A

D

J

L

C E FB

KH IG

A is the parent
of B, C, D, E, and F

New Tree Terminology

9

A

D

J

L

C E FB

KH IG

B has no children,
so it’s a leaf node

New Tree Terminology

10

A

D

J

L

C E FB

KH IG

B, G, H, I, D, E, L, and K
are all leaf nodes

New Tree Terminology

11

A

D

J

L

C E FB

KH IG

The depth of a node is the
length of its path to the root

depth: 0

depth: 1

depth: 2

depth: 3

Tree Properties

• Any node in a tree can only have one parent

12

Not trees!

Binary Trees

• Today, we’ve seen that nodes in a tree can have a variable amount

of children (subtrees)

• Previously, we’ve worked with binary trees
• Most common trees in CS

• Every node has either 0, 1, or 2 children

• No node may have more than 2 children

• Children are referred to as left child and right child

13

8

7 1

0

10 3

Building Binary Trees

• A binary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the right child

14

6

struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

};

Tree Traversal Recap

15

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

16

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Advanced
Algorithms

Sorting
Motivating sorting algorithms

17

Sorting

• Goal: given some data points, arrange those data points into

ascending/descending order by some quantity
• E.g. sort cards by face value or suit

18

Sorting

• Sorted data is often easier to work with

• Sorted data can allow for faster insert/retrieval/deletion

19

Sorting

• Today we’ll investigate and compare different sorting algorithms

• Motivating questions:
• What are the different ways we can sort data?

• What’s the “best” strategy?

20

Selection Sort
Our first sorting algorithm

21

Selection Sort

• Let’s say we have the following elements, that we’d like to sort in

ascending numerical order

22

4 8 2 710

Selection Sort

• Idea: find the smallest element, put it in front of other elements

23

4 8 2 710

Selection Sort

• Idea: find the smallest element, put it in front of other elements

24

4 8 2 710

Selection Sort

• Idea: find the smallest element, put it in front of other elements

25

4 8 2 710

We’d like the 2 to go at the
beginning, so let’s swap it with the

element currently in that place.

Selection Sort

• Idea: find the smallest element, put it in front of other elements

26

482 710

Selection Sort

• Idea: find the smallest element, put it in front of other elements

27

482 710

Everything on
this side of the
line is sorted…

Selection Sort

• Idea: find the smallest element, put it in front of other elements

28

482 710

Everything on
this side of the
line is sorted…

… and
everything over
here has yet to be
sorted.

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

29

482 710

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

30

482 710

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

31

4 82 710

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

32

4 82 710

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

33

4 82 710

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

34

4 82 7 10

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

35

4 82 7 10

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

36

4 82 7 10

Sorted Unsorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

37

4 1082 7

Sorted

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

38

4 102 7

Sorted

8

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

39

4 102 7

Sorted

8

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

40

4 102 7

Sorted

8

Selection Sort

• Idea: find the smallest element, put it in front of other elements

• Repeat, putting the next smallest element in the next smallest spot

41

4 102

Sorted

7 8

Demo: Selection Sort

42

Selection Sort Code

void selectionSort(Vector<int>& elems) {
 for (int index = 0; index < elems.size(); index++) {
 int smallestIndex = indexOfSmallest(elems, index);
 swap(elems, index, smallestIndex);
 }
}

int indexOfSmallest(const Vector<int>& elems, int startPoint) {
 int smallestIndex = startPoint;
 for (int i = startPoint + 1; i < elems.size(); i++) {
 if (elems[i] < elems[smallestIndex]) {
 smallestIndex = i;
 }
 }
 return smallestIndex;
}

43

Selection Sort Runtime

void selectionSort(Vector<int>& elems) {
 for (int index = 0; index < elems.size(); index++) {
 int smallestIndex = indexOfSmallest(elems, index);
 swap(elems, index, smallestIndex);
 }
}

int indexOfSmallest(const Vector<int>& elems, int startPoint) {
 int smallestIndex = startPoint;
 for (int i = startPoint + 1; i < elems.size(); i++) {
 if (elems[i] < elems[smallestIndex]) {
 smallestIndex = i;
 }
 }
 return smallestIndex;
}

44

O(n) operation

O(n) operation

Selection Sort Recap

• Selection sort repeatedly takes the smallest of the remaining

elements and places it in front of those remaining elements

• O(n2) sorting algorithm
• We can do better!

45

4 82 7 10

Sorted

Unsorted

Divide-and-Conquer Algorithms
Problem solving strategy to achieve better than O(n2) sorting

46

🎟 Why Divide-and-Conquer?

• Let’s say selection sort on a vector with 400 elements takes x ms

• How long would selection sort take on a vector with 200 elements?

47

4 16 -2 2 54 13 47 6 19 2

4 16 -2 2 54 13 47 6 19 2

🎟 Why Divide-and-Conquer?

• Let’s say selection sort on a vector with 400 elements takes x ms

• How long would selection sort take on a vector with 200 elements?

48

x/4 ms.
For a quadratic function,

halving input size quarters
the runtime.

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2)

Why Divide-and-Conquer?

• Let’s say selection sort on a vector with 400 elements takes x ms

• Sorting two vectors with 200 elements each takes x/4 + x/4 =
x/2 ms… sorting smaller arrays speeds us up!

49

4 16 -2 2 54 13 47 6 19 2

4 16 -2 2 54 13 47 6 19 2

Why Divide-and-Conquer?

• Let’s say selection sort on a vector with 400 elements takes x ms

• Sorting two vectors with 200 elements each takes x/4 + x/4 =
x/2 ms… sorting smaller arrays speeds us up!

50

4 16 -2 2 54 13 47 6 19 2

4 16 -2 2 54 13 47 6 19 2

Divide-and-conquer algorithms take
advantage of the fact that smaller
inputs can be sorted much faster.

Merge Sort

Recursive sorting algorithm:

• Base case:
• An empty or length-1 list is already sorted

• Recursive case:
• Break each list in half and recursively sort (merge sort) each half

• Merge them back into a single sorted list

51

You saw this on Assignment 3!

Merge Sort

52

4 16 2 -2 54 13 47 6

Split list in half

Merge Sort

53

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

Split list in half

Merge Sort

54

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

Split list in half

Merge Sort

55

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Base case: size 0 and 1 lists are
already sorted

Merge Sort

56

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Repeatedly merge sorted lists

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

57

-2 2 4 16 6 13 47 54

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

58

-2 2 4 16 6 13 47 54

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

59

2 4 16 6 13 47 54

-2

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

60

2 4 16 6 13 47 54

-2

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

61

4 16 6 13 47 54

-2 2

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

62

4 16 6 13 47 54

-2 2

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

63

16 6 13 47 54

-2 2 4

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

64

16 6 13 47 54

-2 2 4

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

65

16 13 47 54

-2 2 4 6

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

66

16 13 47 54

-2 2 4 6

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

67

16 47 54

-2 2 4 6 13

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

68

16 47 54

-2 2 4 6 13

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

69

47 54

-2 2 4 6 13 16

Merging Sorted Sequences

• Look at the first element of both sorted lists, take the smaller one
and put it into the result list

• If one list becomes empty, add the other list to the end of result

70

-2 2 4 6 13 16 47 54

Merge Sort

71

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Let’s merge some sorted lists!

Merge Sort

72

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Let’s merge some sorted lists!

4 16

Merge Sort

73

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Let’s merge some sorted lists!

4 16 -2 2

Merge Sort

74

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Let’s merge some sorted lists!

4 16 -2 2 13 54

Merge Sort

75

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

4 16 -2 2 13 54 6 47

Merge Sort

76

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

4 16 -2 2 13 54 6 47

-2 2 4 16

Merge Sort

77

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

4 16 -2 2 13 54 6 47

-2 2 4 16 6 13 47 54

Merge Sort

78

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

4 16 -2 2 13 54 6 47

-2 2 4 16 6 13 47 54

-2 2 4 6 13 16 47 54

Demo: Merge Sort

79

Merge Sort Code

void mergeSort(Vector<int>& vec) {
 // Base case: vector is size 0 or 1, return
 if (vec.size() <= 1) return;

 // Split the list into two, equally sized halves
 Vector<int> left, right;
 split(vec, left, right);

 // Recursively sort the two halves
 mergeSort(left);
 mergeSort(right);

 // Fill vec with two sorted halves
 vec.clear(); // our merge expects an empty vector
 merge(vec, left, right);
}

80

Merge Sort Code

void mergeSort(Vector<int>& vec) {
 // Base case: vector is size 0 or 1, return
 if (vec.size() <= 1) return;

 // Split the list into two, equally sized halves
 Vector<int> left, right;
 split(vec, left, right);

 // Recursively sort the two halves
 mergeSort(left);
 mergeSort(right);

 // Fill vec with two sorted halves
 vec.clear(); // our merge expects an empty vector
 merge(vec, left, right);
}

81

O(n) operation

O(n) operation

Merge Sort Runtime

• At each level, we do O(n) work

• How many levels are there?

82

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Merge Sort Runtime

• At each level, we do O(n) work

• How many levels are there?

83

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

O(log2n) levels, splitting
input in half at each level.

Merge Sort Runtime

• At each level, we do O(n) work, and we have O(log n) levels

84

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Merge Sort Runtime

• At each level, we do O(n) work, and we have O(log n) levels

• Merge sort runtime is O(n log n), which is better than O(n2)

85

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

4 16 2 -2

4 16 2 -2

54 13 47 6

54 13 47 6

Merge Sort Runtime

• At each level, we do O(n) work, and we have O(log n) levels

• Merge sort runtime is O(n log n), which is better than O(n2)

86

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) O(n log n)

Merge Sort Runtime

void mergeSort(Vector<int>& vec) {
 // Base case: vector is size 0 or 1, return
 if (vec.size() <= 1) return;

 // Split the list into two, equally sized halves
 Vector<int> left, right;
 split(vec, left, right);

 // Recursively sort the two halves
 mergeSort(left);
 mergeSort(right);

 // Fill vec with two sorted halves
 vec = {}; // our merge expects an empty vector
 merge(vec, left, right);
}

87

O(n) operation

O(n) operation

👥 mergeSort is a recursive
function, but these O(n) helper
functions were iterative. Why?

Merge Sort Runtime

void mergeSort(Vector<int>& vec) {
 // Base case: vector is size 0 or 1, return
 if (vec.size() <= 1) return;

 // Split the list into two, equally sized halves
 Vector<int> left, right;
 split(vec, left, right);

 // Recursively sort the two halves
 mergeSort(left);
 mergeSort(right);

 // Fill vec with two sorted halves
 vec = {}; // our merge expects an empty vector
 merge(vec, left, right);
}

88

O(n) operation

O(n) operation

Think about the stack frames! We
don’t want to do O(n) operations

recursively, but we can make
O(log n) recursive calls.

Merge Sort Recap

• Recursively sort left and right half of input, then merge result back

into one sorted sequence

• Divide step: easy (just split in half and recurse)

• Conquer step: hard (merge sorted sequences)

• O(n log n) sorting algorithm
• This is better than Selection Sort!

89

4 16 2 -2 54 13 47 6

4 16 2 -2 54 13 47 6

Quick Sort

1. Choose a “pivot” element

2. Group your elements into three groups:
a. Less than pivot

b. Equal to pivot

c. Greater than pivot

3. Recursively sort (quick sort) the less than and greater than groups

4. Concatenate the three sorted groups back together again

90

You will see this on Assignment 5!

Quick Sort

91

7102485

1. Choose a “pivot” element

Quick Sort

92

7102485

1. Choose a “pivot” element

Quick Sort

93

7102485

We’ll just choose the first element

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

94

7102485

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

95

7102485

less than greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

96

710245

8

less than greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

97

71025

8

less than

4

greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

98

7105

8

less than

4 2

greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

99

75

8

less than

4 2 10

greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

100

5

8

less than

4 2 10 7

greater than

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

101

71024 8

5

less than greater than

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

102

71024 8

5

less than greater than

Let’s recurse and
Quick Sort this list

1. Choose a “pivot” element

Quick Sort

103

24

1. Choose a “pivot” element

Quick Sort

104

24

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

105

24

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

106

24

less than greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

107

2

4

less than greater than

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

108

2

4

less than greater than

Let’s recurse again
Quick Sort this list

Quick Sort

109

2

A list of length 1 is trivially sorted,
base case! Let’s return.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

110

2

4

less than greater than

The less than list is now sorted.
Let’s sort the greater than group.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

111

2

4

less than greater than

Recurse!

Quick Sort

112

A list of length 0 is trivially sorted,
base case! Let’s return.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

113

2

4

less than greater than

We’ve returned our sorted lists,
so we’re ready for step 4.

4. Concatenate the three sorted groups back together again

Quick Sort

114

2

4

less than greater than

4. Concatenate the three sorted groups back together again

Quick Sort

115

2 4

less than greater than

4. Concatenate the three sorted groups back together again

Quick Sort

116

2 4

less than greater than

Now this list has been sorted.
return to the previous function call.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

117

71042 8

5

less than greater than

Recursive call is done,
and our less than list

is now sorted!

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

118

71042 8

5

less than greater than

Time for recursive call
number two. Quick sort!

1. Choose a “pivot” element

Quick Sort

119

7108

1. Choose a “pivot” element

Quick Sort

120

7108

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

121

7108

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

122

7108

less than greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

123

7

10

8

less than greater than

2. Group your elements into three groups:
a. Less than pivot
b. Equal to pivot
c. Greater than pivot

Quick Sort

124

7 10

8

less than greater than

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

125

7 10

8

less than greater than

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

126

7 10

8

less than greater than

👥 What happens next?

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

127

7 10

8

less than greater than

👥 What happens next?

Recurse again
quick sort this list

Quick Sort

128

7

A list of length 1 is trivially sorted,
base case! Let’s return.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

129

7 10

8

less than greater than

Our less than list is
sorted now.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

130

7 10

8

less than greater than

We recurse again to
quick sort this list

Quick Sort

131

10

A list of length 1 is trivially sorted,
base case! Let’s return.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

132

7 10

8

less than greater than

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

133

7 10

8

less than greater than

🤔 Less than and greater
than lists are sorted… what

happens next?

4. Concatenate the three sorted groups back together again

Quick Sort

134

7 10

8

less than greater than

4. Concatenate the three sorted groups back together again

Quick Sort

135

7

10

8

less than greater than

4. Concatenate the three sorted groups back together again

Quick Sort

136

7 108

less than greater than

Now this list has been sorted.
return to the previous function call.

3. Recursively sort (quick sort) the less than and greater than groups

Quick Sort

137

10842 7

less than greater than

Here’s where we left off.
Less than and greater than
are sorted… home stretch!

5

4. Concatenate the three sorted groups back together again

Quick Sort

138

10842 7

less than greater than

5

4. Concatenate the three sorted groups back together again

Quick Sort

139

108

42

7

5

less than greater than

4. Concatenate the three sorted groups back together again

Quick Sort

140

10842 75

less than greater than

Quick Sort

141

10842 75

That’s quick sort!
Let’s look at these recursive

calls from a high level.

Quick Sort

142

7102485

Quick Sort

143

710248

5 Select a pivot

Quick Sort

144

71024 8

5 Split into groups

Quick Sort

145

71024 8

5

Recursive call:
quick sort

Quick Sort

146

71024 8

5

Select a pivot

Quick Sort

147

710

2

4 8

5

Split into groups

Quick Sort

148

710

2

4 8

5

Hit base case:
Sorted!

Quick Sort

149

710

2

4 8

42

5

Concatenate
sorted lists

Quick Sort

150

710

2

4 8

42

5

Recursive call:
quick sort

Quick Sort

151

710

2

4 8

42

5

Select a pivot

Quick Sort

152

7 102

4 8

42

5

Split into groups

Quick Sort

153

7 102

4 8

42

5

Hit base case:
Sorted!

Quick Sort

154

7 102

4 8

42 1087

5

Concatenate
sorted lists

Quick Sort

155

7 102

4 8

5

42 1087

42 10875

Concatenate
sorted lists

Quick Sort Pseudocode

void quickSort(Vector<int>& vec) {

// base case

if vector length <= 1, return

// recursive case

choose a pivot element

partition into less, greater, equal vectors

quickSort(less)

quickSort(greater)

concatenate less, equal, and greater

}

156

Quick Sort Runtime

void quickSort(Vector<int>& vec) {

// base case

if vector length <= 1, return

// recursive case

choose a pivot element

partition into less, greater, equal vectors

quickSort(less)

quickSort(greater)

concatenate less, equal, and greater

}

157

O(n) operation

O(n) operation

Quick Sort Runtime

• At each level, we do O(n) work

• How many levels are there?

158

Quick Sort Runtime

• At each level, we do O(n) work

• How many levels are there?
• In an average case, we split the list in half at each level: O(log n)
• In the worst case, we choose a “bad” pivot and have O(n) levels

159

Quick Sort Runtime

• At each level, we do O(n) work

• How many levels are there?
• In an average case, we split the list in half at each level: O(log n)
• In the worst case, we choose a “bad” pivot and have O(n) levels

• Average case runtime: O(n log n)
• Worst case runtime: O(n2)

160

Quick Sort Recap

• Split into less, equal, and greater groups, recursively sort less and

greater, then concatenate less + equal + greater

• Divide step: hard (partition into three groups)

• Conquer step: easy (concatenate)

• On average, O(n log n) sorting algorithm

161

71024 8
5

Quick Sort Recap

• Split into less, equal, and greater groups, recursively sort less and

greater, then concatenate less + equal + greater

• Divide step: hard (partition into three groups)

• Conquer step: easy (concatenate)

• On average, O(n log n) sorting algorithm

162

71024 8
5

Can we do better?

The Fundamental Limit of
Sorting Algorithms
Turns out, we can’t do better

163

How quickly can we sort?

• There’s a fundamental limit on the efficiency of sorting algorithms

• It’s provable that it is not possible to guarantee a list has been

sorted unless you do O(n log n) comparisons
• Take CS161, Design and Analysis of Algorithms, to write this proof

164

How quickly can we sort?

• There’s a fundamental limit on the efficiency of sorting algorithms

• It’s provable that it is not possible to guarantee a list has been

sorted unless you do O(n log n) comparisons
• Take CS161, Design and Analysis of Algorithms, to write this proof

• Thus, we can’t do better than Merge Sort and Quick Sort, at least in

terms of Big-O runtime

165

Recap

• Intro to sorting: selection sort

• Divide-and-conquer algorithms
• Merge sort

• Quick sort

• Fundamental limit of sorting algorithms

166

4 102 7 8

Enjoy your weekend! ☀

167

