Sorting

Elyse Cornwall
August 3, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

* Assignment 5: Linked Lists is out, due next Wednesday
* This is the penultimate assignment &

* Change of grading basis deadline is tomorrow at 5pm

Stanford University

Recap: Trees

Stanford University

Uses

* Trees are useful in other ways besides visualizing recursion and

* Describe hierarchies
/

@@

/

%@ 0\ Cf>
? @
&= (X ’ N

Stanford University

modeling priority

New Tree Terminology

° N nodes in a tree
° Stanford University

New Tree Terminology

° root
G Stanford University

New Tree Terminology

, ., 0, L, and - are
the children of A

° Stanford University

New Tree Terminology
is the parent
° ofB,C,D, E, and F
° Stanford University

New Tree Terminology
has no children,
° so it’s a leaf node
° Stanford University

10

New Tree Terminology
V4 V4 7 7 V4 V4 7 and
° are all leaf nodes
° Stanford University

11

New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

wnt (5 (o) 0 T
s @00 &
depth: 3 a

Stanford University

12

Tree Properties

* Any node in a tree can only have one parent

\/®
o
/N
O G

Stanford University

®\®/® Not trees! CTj/

13

Binary Trees

* Today, we’ve seen that nodes in a tree can have a variable amount

of children (subtrees)

* Previously, we've worked with binary trees

Most common trees in CS u
Every node has either 0, 1, or 2 children 0

y 4 R N
No node may have more than 2 children @ %
Children are referred to as left child and right child X 7 1
3

8 10

7

Stanford University

Building Binary Trees

A binary tree is composed of nodes

Each node is a struct that contains:

A piece of data (like an int, or string)
A pointer to the left child
A pointer to the right child

14

struct TreeNode {
int data;
TreeNode* left;
TreeNodex*x right;

}s

Stanford University

Tree Traversal Recap

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589

15

Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985
Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

16

Building Abstractions

Memory
Management

Linked

Advanced
Data Algorithms
Structures
Recursion

Stanford University

17

SO
=4

#Hal

— = .m..,

Motivating sorting algorithms

Stanford University

18

Sorting

* Goal: given some data points, arrange those data points into

ascending/descending order by some quantity
e E.g.sort cards by face value or suit

‘v |} ZQ*Q T 1
a%s || o | o
XTI

'Y I

<

<
* & o
4 € 1> 1>
4 4 1> >

D «

L 2R
v

=}
o+

»~
~
w» O

adh b 4 ¢

<« > »
»
P
L
< <>
»
< >

(=>%]

v ’
fiv 009

» O
4 € 1> 1>
4 € 1> >

D«

7
b & uﬂ? R &
L 3K J & ¢ yvey &
™ ¥ ¢ ™
“V iil

Stanford University

19

Sorting

* Sorted data is often easier to work with
e Sorted data can allow for faster insert/retrieval/deletion

Stanford University

20

Sorting

* Today we’ll investigate and compare different sorting algorithms

* Motivating questions:
 What are the different ways we can sort data”?
 What’s the “best” strategy?

Stanford University

21

Selection Sort

Our first sorting algorithm

Stanford University

Selection Sort

22

Let’s say we have the following elements, that we’d like to sort in

ascending numerical order

10

7

Stanford University

23

Selection Sort

* I|dea: find the smallest element, put it in front of other elements

4 8 > 10 7

Stanford University

24

Selection Sort

* I|dea: find the smallest element, put it in front of other elements

4 8 > 10 7

Stanford University

Selection Sort

25

Idea: find the smallest element, put it in front of other elements

Wed like the 2 to go at the
beginning, so let’s swap it with the
element currently in that place.

10

7

Stanford University

26

Selection Sort

* I|dea: find the smallest element, put it in front of other elements

5 8 4 10 7

Stanford University

Selection Sort

27

* I|dea: find the smallest element, put it in front of other elements

Everything on
this side of the

line is sorted...

10

7

Stanford University

Selection Sort

28

* I|dea: find the smallest element, put it in front of other elements

Everything on
this side of the

line is sorted...

...and
everything over
here has yet to be
sorted.

10

7

Stanford University

29

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted Unsorted

> 1| 8 4 10 7

Stanford University

30

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted Unsorted

> 1| 8 4 10 7

Stanford University

Selection Sort

31

Idea: find the smallest element, put it in front of other elements

Repeat, putting the next smallest element in the next smallest spot

Sorted

Unsorted

10

7

Stanford University

Selection Sort

32

Idea: find the smallest element, put it in front of other elements

Repeat, putting the next smallest element in the next smallest spot

Sorted

Unsorted

10

7

Stanford University

Selection Sort

33

Idea: find the smallest element, put it in front of other elements

Repeat, putting the next smallest element in the next smallest spot

Sorted

Unsorted

10

7

Stanford University

Selection Sort

34

* I|dea: find the smallest element, put it in front of other elements

* Repeat, putting the next smallest element in the next smallest spot

Sorted

10

Unsorted

3

Stanford University

Selection Sort

35

* I|dea: find the smallest element, put it in front of other elements

* Repeat, putting the next smallest element in the next smallest spot

Sorted

10

Unsorted

3

Stanford University

Selection Sort

36

* I|dea: find the smallest element, put it in front of other elements

* Repeat, putting the next smallest element in the next smallest spot

Sorted

10

Unsorted

3

Stanford University

37

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted

2 4 7 8 || 10

Stanford University

38

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted

2 4 7 8 || 10

Stanford University

39

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted

2 4 7 8 || 10

Stanford University

40

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted

2 4 7 3 10

Stanford University

41

Selection Sort

* I|dea: find the smallest element, put it in front of other elements
* Repeat, putting the next smallest element in the next smallest spot

Sorted

2 4 7 3 10

Stanford University

42

Demo: Selection Sort

Stanford University

Selection Sort Code

void selectionSort(Vector<int>& elems) {
for (int index = 0; index < elems.size(); index++) {
int smallestIndex = indexOfSmallest(elems, 1index);
swap(elems, index, smallestIndex);

}

int indexOfSmallest(const Vector<int>& elems, int startPoint) {
int smallestIndex = startPoint;
for (int i = startPoint + 1; i < elems.size(); i++) {
if (elems[i] < elems[smallestIndex]) {
smallestIndex = 1;
3
+

return smallestIndex;

Stanford University

44

Selection Sort Runtime

O (n) operation
void selectionSort(Vector<int>& elems) { ‘(//
for (int index = 0; index < elems.size(); index++) {
int smallestIndex = indexOfSmallest(elems, 1index);
swap(elems, index, smallestIndex);

}

int indexOfSmallest(const Vector<int>& elems, int startPoint) {
int smallestIndex = startPoint;
for (int i = startPoint + 1; i < elems.size(); i++) {

if (elems[i] < elems[smallestIndex]) {
smallestIndex = 1;
3
+

return smallestIndex; O(n) operation

Stanford University

45

Selection Sort Recap

* Selection sort repeatedly takes the smallest of the remaining
elements and places it in front of those remaining elements
« 0(n?) sorting algorithm
* We can do better! Unsorted

Sorted

Stanford University

46

Divide-and-Conquer Algorithms

Problem solving strategy to achieve better than 0 (n?) sorting

Stanford University

Why Divide-and-Conquer?

Let’s say selection sort on a vector with 400 elements takes x ms

How long would selection sort take on a vector with 200 elements?

16

54

13

47

19

16

54

13

47

19

2

47

Stanford University

Why Divide-and-Conquer?

e Let’s say selection sort on a vector with 400 elements takes X ms
 How long would selection sort take on a vector with 200 elements?

Quadratic O(n?)
Linear O(n)
X/4 ms.
_ For a quadratic function,
Runtime h [) i)
Logarithmic O(log n) alving input 5/'ze quarters
2 the runtime.
\ Constant O(1)

Input size (n) Stanford University

Why Divide-and-Conquer?

Let’s say selection sort on a vector with 400 elements takes x ms

Sorting two vectors with 200 elements each takes x/4 + x/4

X /2 ms... sorting smaller arrays speeds us up!

4

16

-2

54

13

47

19

16

54

13

47

19

2

49

Stanford University

Why Divide-and-Conquer?

Let’s say selection sort on a vector with 400 elements takes x ms

Sorting two vectors with 200 elements each takes x/4 + x/4

X /2 ms... sorting smaller arrays speeds us up!

4

16

16

Divide-and-conquer algorithms take
advantage of the fact that smaller
inputs can be sorted much faster.

19

- 0

=4

19

2

50

Stanford University

51

Merge Sort

You saw this on Assignment 3!

Recursive sorting algorithm:

* Base case:
 An empty or length-1 list is already sorted

e Recursive case:

* Break each list in half and recursively sort (merge sort) each half
* Merge them back into a single sorted list

Stanford University

Merge Sort

4

16

13

47

Split list in half

52

Stanford University

Merge Sort

4

16

13

47

Split list in half

53

54

13

47

Stanford University

Merge Sort

4

13

47

16

54

54

13

47

54

13

Split list in half

47

Stanford University

55

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6

4 16 2 -2 54 | 13 47 | 6

4 16 2 -2 54 13 47 6

Base case: size 0 and 1 lists are
already sorted

Stanford University

56

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6

Repeatedly merge sorted lists

Stanford University

57

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

-2 2 4 16 6 13 | 47 | 54

Stanford University

58

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

-2 2 4 16 6 13 | 47 | 54

Stanford University

59

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

2 4 16 6 13 | 47 | 54

Stanford University

60

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

2 4 16 6 13 | 47 | 54

Stanford University

61

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

4 16 6 13 | 47 | 54

Stanford University

62

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

4 16 6 13 | 47 | 54

Stanford University

63

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

16 6 13 | 47 | 54

Stanford University

64

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

16 6 13 | 47 | 54

Stanford University

65

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

16 13 | 47 | 54

Stanford University

66

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

16 13 | 47 | 54

Stanford University

67

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

16 47 | 54

Stanford University

68

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

16 47 | 54

Stanford University

69

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list

47 | 54

Stanford University

70

Merging Sorted Sequences

* Look at the first element of both sorted lists, take the smaller one
and put it into the result list
* If one list becomes empty, add the other list to the end of result

Stanford University

71

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6

Let’s merge some sorted lists!

Stanford University

72

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6

4 16 | 2 -2 54 1 13 | 47 | 6
4 16 2 -2 54 | 13 47 | 6
4 16 2 -2 54 13 47 6
4 16

Let’s merge some sorted lists!

Stanford University

73

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6

4 16 | 2 -2 54 1 13 | 47 | 6
4 16 2 -2 54 | 13 47 | 6
4 16 2 -2 54 13 47 6
4 16 -2 2

Let’s merge some sorted lists!

Stanford University

74

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6

4 16 | 2 -2 54 1 13 | 47 | 6
4 16 2 -2 54 | 13 47 | 6
4 16 2 -2 54 13 47 6
4 16 -2 2 13 | 54

Let’s merge some sorted lists!

Stanford University

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6
4 16 | 2 -2 54 1 13 | 47 | 6
4 16 2 -2 54 | 13 47 | 6
4 16 2 -2 54 13 47 6
4 16 -2 2 13 | 54 6 | 47

75

Stanford University

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6
4 16 | 2 -2 54 1 13 | 47 | 6
4 16 2 -2 54 | 13 47 | 6
4 16 2 -2 54 13 47 6
4 16 -2 2 13 | 54 6 | 47
-2 2 4 | 16

76

Stanford University

Merge Sort

4 16 | 2 -2 | 54|13 |47 | 6
4 16 | 2 -2 54 1 13 | 47 | 6
4 16 2 -2 54 | 13 47 | 6
4 16 2 -2 54 13 47 6
4 16 -2 2 13 | 54 6 | 47
-2 2 4 | 16 6 13 | 47 | 54

77

Stanford University

Merge Sort

78

4 16| 2| 2]54]|13(47]6
4 16 2 -2 54 | 13 | 47 6
4 16 2 -2 54 | 13 47 6
4 16 2 -2 54 13 47 6
4 16 -2 2 13 | 54 6 47
-2 2 4 16 6 13 | 47 | 54
-2 2 4 6 | 13 |16 | 47 | 54 Stanford University

79

Demo: Merge Sort

Stanford University

80

Merge Sort Code

void mergeSort(Vector<int>& vec) {
// Base case: vector is size 0 or 1, return
if (vec.size() <= 1) return;

// Split the list into two, equally sized halves
Vector<int> left, right;
split(vec, left, right);

// Recursively sort the two halves
mergeSort(left);
mergeSort(right);

// Fill vec with two sorted halves

vec.clear(); // our merge expects an empty vector
merge(vec, left, right);

Stanford University

81

Merge Sort Code

void mergeSort(Vector<int>& vec) {
// Base case: vector is size 0 or 1, return
if (vec.size() <= 1) return;

// Split the list into two, equally sized halves
Vector<int> left, right;

split(vec, left, right); \

// Recursively sort the two halves
mergeSort(left);
mergeSort(right);

O(n) operation

// Fill vec with two sorted halves
vec.clear(); // our merge expects an empty vector
merge(vec, left, right); g

~ 0(n) operation

Stanford University

82

Merge Sort Runtime

* Ateach level, we do O(n) work
* How many levels are there?

4 16 2 -2 54 13 47 6

Stanford University

83

Merge Sort Runtime

* Ateach level, we do O(n) work
* How many levels are there?

4 16 | 2 -2 | 54 113 147] 6

O(log,n) levels, splitting
input in half at each level.

4 16 2 -2 54 | 1 47 | 6

13 | 47 | 6

4 16 2 -2 54 13 47 6

Stanford University

84

Merge Sort Runtime

* Ateach level, we do O(n) work, and we have O (log n) levels

4 16 2 -2 54 13 47 6

Stanford University

85

Merge Sort Runtime

* Ateach level, we do O(n) work, and we have O (log n) levels
« Merge sort runtime is0(n log n), which is better than 0 (n?)

4 16 | 2 -2 | 54|13 |47 | 6

4 16 | 2 -2 54 | 13 | 47 | 6

4 16 2 -2 54 | 13 47 | 6

4 16 2 -2 54 13 47 6

Stanford University

86

Merge Sort Runtime

* Ateach level, we do O(n) work, and we have O (log n) levels
« Merge sort runtime is0(n log n), which is better than 0 (n?)

Quadratic O(n?) O(n log n)

/ | Linear O(n)
Runtime
Logarithmic O(log n)
L=
\ » =T .
\ / Constant O(1)

ARRRRRRARES

Input size (n) Stanford University

87

Merge Sort Runtime

@ mergeSortisarecursive

void mergeSort(Vector<int>& vec) { fUI’)CtIOI’), but these O(n) hEIper

// Base case: vector is size 0 or 1, functions were iterative. Why?
if (vec.size() <= 1) return;

// Split the list into two, equally sized halves
Vector<int> left, right;

Sp-l'-it(vec) -Left) r-lght); \

// Recursively sort the two halves
mergeSort(left);
mergeSort(right);

O(n) operation

// Fill vec with two sorted halves
vec = {}; // our merge expects an empty vector
merge(vec, left, right); g

~ 0(n) operation

Stanford University

88

Me rge Sort Runtime Think about the stack frames! We

don’t want to do O (n) operations
void mergeSort(Vector<int>& vec) { .
// Base case: vector is size 0 or 1, rECUf'SIVE‘/y, but we can make
if (vec.size() <= 1) return; O(log n) recursive calls.

// Split the list into two, equally sized halves
Vector<int> left, right;

split(vec, left, right); \

// Recursively sort the two halves
mergeSort(left);
mergeSort(right);

O(n) operation

// Fill vec with two sorted halves
vec = {}; // our merge expects an empty vector
merge(vec, left, right); g

~ 0(n) operation

Stanford University

89

Merge Sort Recap

* Recursively sort left and right half of input, then merge result back
into one sorted sequence
* Divide step: easy (just split in half and recurse)
 Conquer step: hard (merge sorted sequences)
* O(n log n) sorting algorithm
* This is better than Selection Sort!

4 16 | 2 -2 | 54|13 |47 | 6

4 16 | 2 -2 54 113 | 47| 6

Stanford University

90

Quick Sort

You will see this on Assignment 5!

1. Choose a “pivot” element

2. Group your elements into three groups:
a. Lessthan pivot

b. Equal to pivot
C. Greater than pivot

3. Recursively sort (quick sort) the less than and greater than groups
4. Concatenate the three sorted groups back together again

Stanford University

Quick Sort

10

91

Stanford University

Quick Sort

1.

Choose a “pivot” element

10

92

Stanford University

93

Quick Sort

1. Choose a “pivot” element

We’ll just choose the first element

5 3 4 2 | {10] 7

Stanford University

94

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

5 3 4 2 | {10] 7

Stanford University

Quick Sort

2. Group your elements into three groups:

a.
b.
C.

Less than pivot
Equal to pivot

Greater than pivot

5

3

10

less than

greater than

95

Stanford University

96

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

5 4 2 | {10] 7

less than greater than

Stanford University

97

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

5 2 10| 7
4 3
less than greater than

Stanford University

Quick Sort

2. Group your elements into three groups:

a.
b.
C.

Less than pivot
Equal to pivot

Greater than pivot

10

5
4 2
less than

greater than

98

Stanford University

Quick Sort

2. Group your elements into three groups:

a.
b.
C.

Less than pivot
Equal to pivot

Greater than pivot

5
4 2
less than

10

greater than

99

Stanford University

Quick Sort

2. Group your elements into three groups:

a.
b.
C.

Less than pivot
Equal to pivot

Greater than pivot

5
4 2
less than

10

greater than

100

Stanford University

Quick Sort

101

3. Recursively sort (quick sort) the less than and greater than groups

5
4 2
less than

10

greater than

Stanford University

Quick Sort

102

3. Recursively sort (quick sort) the less than and greater than groups

10

5 Let’s recurse and
Quick Sort this list
4 2 8
less than

greater than

Stanford University

103

Quick Sort

1. Choose a “pivot” element

Stanford University

104

Quick Sort

1. Choose a “pivot” element

Stanford University

105

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

Stanford University

106

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

less than greater than

Stanford University

107

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

2

less than greater than

Stanford University

108

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

A

Let’s recurse again
Quick Sort this list

greater than

Stanford University

109

Quick Sort

2

A list of length 1 is trivially sorted,
base case! Let’s return.

Stanford University

110

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

The less than list is now sorted.
Let’s sort the greater than group.

greater than

Stanford University

111

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

Recurse!

2

less than greater than

Stanford University

112

Quick Sort

A list of length O is trivially sorted,
base case! Let’s return.

Stanford University

113

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

4
We’ve returned our sorted lists,
so we’re ready for step 4.
2
less than greater than

Stanford University

114

Quick Sort

4. Concatenate the three sorted groups back together again

2

less than greater than

Stanford University

115

Quick Sort

4. Concatenate the three sorted groups back together again

less than greater than

Stanford University

116

Quick Sort

4. Concatenate the three sorted groups back together again

Now this list has been sorted.
return to the previous function call.

less than greater than

Stanford University

117

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

Recursive call is done,
5 and our less than list
is now sorted!

2 4 3 10 | 7

less than greater than

Stanford University

118

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

Time for recursive call

5 number two. Quick sort!
2 4 3 10 7/
less than greater than

Stanford University

Quick Sort

1.

Choose a “pivot” element

10

119

Stanford University

Quick Sort

1.

Choose a “pivot” element

10

120

Stanford University

121

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

Stanford University

Quick Sort

2. Group your elements into three groups:

a.
b.
C.

Less than pivot
Equal to pivot
Greater than pivot

10

less than

greater than

122

Stanford University

123

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

10

less than greater than

Stanford University

124

Quick Sort

2. Group your elements into three groups:

a. Lessthan pivot
b. Equal to pivot
C. Greater than pivot

7 10

less than greater than

Stanford University

125

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

7 10

less than greater than

Stanford University

126

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

@ What happens next?

7 10

less than greater than

Stanford University

127

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

@ What happens next?

Recurse again
quick sort this list

10

greater than

Stanford University

128

Quick Sort

7

A list of length 1 is trivially sorted,
base case! Let’s return.

Stanford University

129

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

Our less than list is
sorted now.

10

greater than

Stanford University

Quick Sort

130

3. Recursively sort (quick sort) the less than and greater than groups

7

less than

10

greater than

We recurse again to

quick sort this list

Stanford University

131

Quick Sort

10

A list of length 1 is trivially sorted,
base case! Let’s return.

Stanford University

Quick Sort

132

3. Recursively sort (quick sort) the less than and greater than groups

7

less than

10

greater than

Stanford University

133

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

= Less than and greater
than lists are sorted... what

8 happens next?
7/ 10
less than greater than

Stanford University

134

Quick Sort

4. Concatenate the three sorted groups back together again

7 10

less than greater than

Stanford University

135

Quick Sort

4. Concatenate the three sorted groups back together again

10

less than greater than

Stanford University

136

Quick Sort

4. Concatenate the three sorted groups back together again

7 8 | |10

Now this list has been sorted.
return to the previous function call.

less than greater than

Stanford University

137

Quick Sort

3. Recursively sort (quick sort) the less than and greater than groups

Here’s where we left off.
5 Less than and greater than
are sorted... home stretch!

2 4 7/ 3 10

less than greater than

Stanford University

138

Quick Sort

4. Concatenate the three sorted groups back together again

2 4 7/ 3 10

less than greater than

Stanford University

139

Quick Sort

4. Concatenate the three sorted groups back together again

7/ 3 10

less than greater than

Stanford University

140

Quick Sort

4. Concatenate the three sorted groups back together again

less than greater than

Stanford University

141

Quick Sort

That’s quick sort!
Let’s look at these recursive
calls from a high level.

2 4 5 7/ 3 10

Stanford University

Quick Sort

5

10

142

Stanford University

Quick Sort

Select a pivot

10

7/

143

Stanford University

Quick Sort

A

144

Split into groups

10

7

Stanford University

145

Quick Sort 5

4 2 8 |[[10(| 7

Recursive call:
quick sort

Stanford University

Quick Sort

4 2

146

10

Select a pivot

Stanford University

147

Quick Sort 5

4 8 |[[10(| 7

2

Split into groups

Stanford University

148

Quick Sort 5

4 8 |[[10(| 7

2

Hit base case:
Sorted!

Stanford University

149

Quick Sort 5

4 8 |[[10(| 7

2 4

Concatenate
sorted lists

Stanford University

150

Quick Sort 5

4 8 |[[10(| 7

) Recursive call:
quick sort

Stanford University

151

Quick Sort 5

4 8 |[10(| 7

p) Select a pivot

Stanford University

152

Quick Sort 5

4 3

) 7 10

Split into groups

Stanford University

Quick Sort

A

7

10

Hit base case:

Sorted!

153

Stanford University

154

Quick Sort 5

4 3
) 7 10
2 4 7/ 3 10
Concatenate

sorted lists

Stanford University

155

Quick Sort 5

4 3

2 4 Concatenate 7 S 10

sorted lists

2 4 5 7/ 3 10

Stanford University

156

Quick Sort Pseudocode

void quickSort(Vector<int>& vec) {
// base case

if vector length <= 1, return

// recursive case

choose a pivot element

partition into less, greater, equal vectors
quickSort(less)

quickSort(greater)

concatenate less, equal, and greater

Stanford University

157

Quick Sort Runtime

void quickSort(Vector<int>& vec) {
// base case
if vector length <= 1, return

O (n) operation

// recursive case
choose a pivot element
partition into less, greater, equal vectors
quickSort(less) /
quickSort(greater)

concatenate less, equal, and greater

O(n) operation

Stanford University

158

Quick Sort Runtime

* Ateach level, we do O(n) work
* How many levels are there?

Stanford University

159

Quick Sort Runtime

* Ateach level, we do O(n) work

* How many levels are there?
* Inan average case, we split the list in half at each level: 0 (log n)
* Inthe worst case, we choose a “bad” pivot and have O (n) levels

Stanford University

160

Quick Sort Runtime

At each level, we do O (n) work

* How many levels are there?
* Inan average case, we split the list in half at each level: 0 (log n)
* Inthe worst case, we choose a “bad” pivot and have O (n) levels

* Average case runtime: 0(n log n)

Worst case runtime: 0 (n?)

Stanford University

Quick Sort Recap

161

e Splitinto less, equal, and greater groups, recursively sort less and

greater, then concatenate less + equal + greater
* Divide step: hard (partition into three groups)
 Conquer step: easy (concatenate)
* Onaverage, 0(n log n) sorting algorithm

5

10

Stanford University

162

Quick Sort Recap

e Splitinto less, equal, and greater groups, recursively sort less and
greater, then concatenate less + equal + greater

* Divide step: har
° Conquer Step: e Can We dO b@tter?

° Onaverage,O(n COg TT) SOTUTTg argorT oI

5

Stanford University

163

The Fundamental Limit of
Sorting Algorithms

Turns out, we can’t do better

Stanford University

164

How quickly can we sort?

* There’s a fundamental limit on the efficiency of sorting algorithms
* It’s provable that it is not possible to guarantee a list has been

sorted unless youdo O(n log n) comparisons
* Take CS161, Design and Analysis of Algorithms, to write this proof

Stanford University

165

How quickly can we sort?

* There’s a fundamental limit on the efficiency of sorting algorithms
* It’s provable that it is not possible to guarantee a list has been

sorted unless youdo O(n log n) comparisons
* Take CS161, Design and Analysis of Algorithms, to write this proof

 Thus, we can’t do better than Merge Sort and Quick Sort, at least in
terms of Big-O runtime

Stanford University

166

Recap

* Intro to sorting: selection sort

e Divide-and-conquer algorithms
* Merge sort
e Quick sort

* Fundamental limit of sorting algorithms

2 4 7/ 3 10

Stanford University

167

Enjoy your weekend!

Stanford University

