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Announcements

* Assignment 4 due tonight at 11:59pm
* Assignment 5 released today
* YEAH Hours from 3-4pm with Bryant
* Change of grading basis deadline is this Friday at 5pm PT

 Come chat with us (or check out this resource) if you’re considering whether

to take for letter grade or credit/no credit

Stanford University



https://summer.stanford.edu/unit-and-course-load

Recap: LinkedLists
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What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on
the heap
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Redefining Linked Lists

A linked list is either:
An empty list (nullptr)

Or a single node that points to another linked list
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Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

1 0] 6 4 I 2

nullptr
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Linked Lists, Structurally

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s
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Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
list->data = 6;
list->next = nullptr;

Dereference AND access the
field for struct pointers using ->

data: 6

list: Oxfca20b006 >

n e X t : nullptr

Lives at Oxfca20b00 on the heap
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Freeing a Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr
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Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
* Append-0(n)  Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n)  Delete-0(n)
* Traverse-0(n) * Traverse-0(n)
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Passing Pointers by Value

* Unless specified otherwise, parameters in C++ are passed by value
— this includes pointers!

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, 1int data) {
Node* newNode = new Node; head: nullptr
newNode->data = data; data: 5
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Nodex newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: ?

}

next: ?

int main() {
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node* newNode = new Node; head: nullptr

newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5
¥ next: ?

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

} Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head:
newNode->data = data; data: ;\\\5“
newNode->next = head; newNode : ——pp»
head = newNode; data: 5
} next: nullptr
int main() { .
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3); Note: this was a copy of the original head,
return 0; so head from main doesn’t get changed!

} Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points
void prependTo(Nodex head, int data
Node* newNode = new Node; [ MEMORY LEAK ]
newNode->data data;

newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University




Passing Pointers by Reference

23

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University



Passing Pointers by Reference
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* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

head: nullptr
.~ data: 5

}

int main() {

Node* head = nullptr; head: nullptr

prependTo(head, 5); Note: we didn’t make a copy of head,
Egiﬁfgdg?(head > 3)5 prependTo gets access to the head
1 ’ variable from back in main!

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Nodex newNode = new Node;

newNode->data data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —-[ ~ "0
int main() { . next: 2
Nodex head = nullptr; head: nullptr

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;

newNode->data = data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —p-[ T
int main() { . next: 2
head: nullptr

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head; head: nullptr

head = newNode; -~ data: 5
¥  newNode: —p

data: 5

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

next: nullptr

head: nullptr

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;

newNode->next head; ..zzigf ;\\\\ﬁ‘k

head = newNode; 7 newNode:
} ; : I data: 5

int main() { h: d / next: nullptr
ead:

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Nodex head = head:

= nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where

the origin
void prel When you want a helper function to

Nodel  modify the address a pointer points to,

newN .
newN you should pass it by reference.
head
} data: 5
int main() { . / next: nullptr
Nodex head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University




Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

32

Building Abstractions

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion
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Throwback

 We've already seen trees before in this class

Stanford University
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Terminology Recap
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Terminology Recap

8 10
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Terminology Recap

grandchild ‘ M grandchild

8 10
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Terminology Recap
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Uses

* Trees are useful in other ways besides visualizing recursion and

* Describe hierarchies
/

@@

/

%@ 0\ Cf>
? @
&= (X ’ N

Stanford University

modeling priority
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Uses

Trees are useful in other ways besides visualizing recursion and
modeling priority

e Describe hierarchies )\;} (| il L,{) ¢ /
VY =V (1 \E
* Model the structure of websites YN V’ AY ) :
\t « div tabl
. ul K P
N * pmq d
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Uses

* Trees are useful in other ways besides visualizing recursion and

modeling priority
* Describe hierarchies
e Model the structure of websites

WAHIN
o

* Describe syntax structure of programs U m while
. @
def run() { if/else” M
move();
while (notFinished()) {
if (isPathClear()) { isPathClear _—~ \
move();
} else { \
turnLeft(); @ move Dtu rnLeft
}
move();
}
}

Stanford University
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Uses

* Trees are useful in other ways besides visualizing recursion and
modeling priority
e Describe hierarchies
* Model the structure of websites
* Describe syntax structure of programs

* Distance from each element to the top of the

structure is small, even if there are many elements

Stanford University
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Uses

* Trees are useful in other ways besides visualizing recursion and
modeling priority
e Describe hierarchies
* Model the structure of websites
* Describe syntax structure of programs

* Distance from each element to the top of the
structure is small, even if there are many elements

* Really good for working with recursive problems, because trees are
inherently defined recursively!

Stanford University



What is a tree?

/

o

tree

a hierarchical data organization structure
composed of a root value linked to zero or
more non-empty subtrees

N

/

43
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What is a tree?

A tree is either:

* An empty data structure, or

* Asingle node with zero or ’
more non-empty subtrees

Stanford University
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New Tree Terminology

Stanford University
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New Tree Terminology

G Stanford University
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New Tree Terminology

° node
G Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University




50

New Tree Terminology

node with zero or more
non-empty subtrees

Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology

node with zero or more
non-empty subtrees

° Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University
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New Tree Terminology

° N nodes in a tree
° Stanford University
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New Tree Terminology

° root
G Stanford University
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New Tree Terminology

, ., 0, L, and - are
the children of A

° Stanford University
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New Tree Terminology
is the parent
° ofB,C,D, E, and F
° Stanford University
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New Tree Terminology
has no children,
° so it’s a leaf node
° Stanford University
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New Tree Terminology
V4 V4 7 7 V4 V4 7 and
° are all leaf nodes
° Stanford University




65

New Tree Terminology
, 1, and ! all have the same
parent, which makes them siblings
° Stanford University
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New Tree Terminology

edge

TE o 0
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New Tree Terminology

@ N-1 edges in a tree
ONORONONO
OO © 6

)
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New Tree Terminology

We can define a path through the
tree between two nodes

° Stanford University
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New Tree Terminology

The path from / to

E%@

OO0 @
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New Tree Terminology

° The path from [ to 4 is ?
a Stanford University
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New Tree Terminology

The path from L to A does not exist

Stanford University
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New Tree Terminology

The length of a path is the number
of edges it contains

° Stanford University
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New Tree Terminology

The path from / to
has length ?

E%@

OO0 @
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New Tree Terminology

The path from / to
has length 3

E%@

ONOXOREN _
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New Tree Terminology

The depth of a node is the
length of its path to the root

° Stanford University
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New Tree Terminology

The depth of | is 3

E%@

OO0 @
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New Tree Terminology

The depth of " is ?

TE o e
GO0
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New Tree Terminology

The depth of " is 1

TE o e
GO0
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New Tree Terminology

° The depth of /' is ?
° Stanford University
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New Tree Terminology

° The depth of / is O
° Stanford University
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New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

° Stanford University
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New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

° Stanford University
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New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

wnt (5 (o) 0 T
w: @O® O @
° Stanford University
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New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

wnt (5 (o) 0 T
s @00 &
depth: 3 a
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New Tree Terminology

The height of a node is
the length of the longest path
from the node to a leaf

° Stanford University
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New Tree Terminology

° The height of | is 1
@ Stanford University
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New Tree Terminology

° The height of all leaf nodes is O

a Stanford University




88

New Tree Terminology

° The height of  is ?
° Stanford University
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New Tree Terminology

° The height of I is 2
ONONONON
@ Stanford University
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New Tree Terminology

° The height of the nodes is O

a Stanford University
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New Tree Terminology

The height of the nodes is 0
° The height of the blue nodes is 1

0 Stanford University
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New Tree Terminology
The height of the nodes is 0

The height of the blue nodes is 1
° The height of the green nodes is 2

0 Stanford University
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New Tree Terminol O8Y The height of the nodes is 0

The height of the blue nodes is 1
The height of the green nodes is 2
The height of the orange nodes is 3

0 Stanford University
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New Tree Terminology
The height of a tree is

° the height of the root
° Stanford University




95

New Tree Terminology

The height of the tree is 3

E%@

OO0 @

Stanford University
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Tree Terminology Summary

Can be defined recursively as either
* An empty data structure
* Asingle node with zero or more non-empty subtrees
Every non-empty tree has a root node that defines the “top” of the tree
Every node has zero or more children nodes
* Nodes with no children are called leaf nodes
Every node in the tree has exactly one parent node (except for the root)
A path through the tree traverses edges between parents and their children
The depth of a node is the length of the path between the root and that node
The height of a tree is the number of nodes in the longest path through the tree

Stanford University
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Tree Properties

Stanford University
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Tree Properties

* Any node in a tree can only have one parent

\/®
o
/N
O G

Stanford University

®\®/® Not trees! CTj/




99

Tree Properties

* Any node in a tree can only have one parent

/@\
JoRlo
O

Not a tree!
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Tree Properties

* Any node in a tree can only have one parent
* Atree cannot have cycles or loops

v @\.
JolRo

Not a tree!

Stanford University
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Which of these are trees?

Stanford University
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Binary Trees

* Today, we’ve seen that nodes in a tree can have a variable amount
of children (subtrees)
* Previously, we've worked with binary trees

L
RN
o W
y Sy y &1
& 0
8 10 3

Stanford University
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Binary Trees

* Today, we’ve seen that nodes in a tree can have a variable amount

of children (subtrees)

* Previously, we've worked with binary trees

Most common trees in CS u
Every node has either 0, 1, or 2 children 0

y 4 R N
No node may have more than 2 children @ %
Children are referred to as left child and right child X 7 1
3

8 10

7

Stanford University
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Binary Tree?

Not a binary tree!

Stanford University
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Binary Tree?

Not a binary tree!
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Binary Tree?

A binary tree!

Stanford University
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Building Binary Trees

Stanford University
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Building Linked Lists (Recap)

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Stanford University




Building Binary Trees

A binary tree is composed of nodes

Each node is a struct that contains:

A piece of data (like an int, or string)
A pointer to the left child
A pointer to the right child

109

struct TreeNode {
int data;
TreeNode* left;
TreeNodex*x right;

}s

Stanford University



Building Ternary Trees

* Aternary tree is composed of nodes

e Each node is a struct that contains:

» A piece of data (like an int, or string)

e A pointer to the left child

e A pointer to the middle child

* A pointer to the right child struct TernaryTreeNode {
int data;
TernaryTreeNodex* left;
TernaryTreeNode* middle;
TernaryTreeNodex right;

6

JANNAN

/v N b
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Building N-ary Trees

* An N-ary tree is composed of nodes

* Each node is a struct that contains:
» A piece of data (like an int, or string)
* A vector of pointers to the children

struct NAryTreeNode {
int data;
Vector<NAryTreeNodex> children;

AR N

/v O\

Stanford University




112
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University




116
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };
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struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
F };

Stanford University
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What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap
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* A way we can use pointers to organize non-contiguous memory on
the heap
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What are Trees?

* A way we can use pointers to organize non-contiguous memory on
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What are Trees?

* A way we can use pointers to organize non-contiguous memory on
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What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap
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What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University
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Let’s Code It Up!

Stanford University
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Building a Tree Takeaways

e Building a tree is very similar to building a linked list
* We create new nodes by dynamically allocating memory
 We integrate new nodes into the tree by rewiring the pointers of

the existing nodes in the tree

Stanford University
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Tree Traversals

Stanford University
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Tree Traversals

* If we want to “do something” with each node in the tree, we need
to do so by traversing the tree
* More involved than traversing a linked list because of the branching

 Three main ways to traverse a tree:
* Pre-order traversal
* In-order traversal
* Post-order traversal

 Due to the recursive nature of trees, these algorithms are most
easily defined recursively

Stanford University
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Pre-Order Traversal

* The algorithm for a pre-order traversal is as follows:
1. “Do something” with the current node
2. Traverse the left subtree
3. Traverse the right subtree

* For our example, let's make the "do something" part print the data
at a particular node, which will allow us to print the whole tree

Stanford University
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Pre-Order Traversal

void preOrderTraversal(TreeNode* tree) {
if(tree == nullptr) {
return;
}
cout<< tree->data <<" ";
preOrderTraversal(tree->left);

preOrderTraversal(tree->right);

Stanford University




135

In-Order Traversal

* The algorithm for a in-order traversal is as follows:
1. Traverse the left subtree
2. “Do something” with the current node
3. Traverse the right subtree

Stanford University
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In-Order Traversal

void inOrderTraversal(TreeNode* tree) {
if(tree == nullptr) {
return;
}
inOrderTraversal(tree->left);
cout<< tree->data <<" ";

inOrderTraversal(tree->right);

Stanford University
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Post-Order Traversal

* The algorithm for a post-order traversal is as follows:
1. Traverse the left subtree
2. Traverse the right subtree
3. “Do something” with the current node

Stanford University
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Post-Order Traversal

void postOrderTraversal(TreeNode* tree) {
if(tree == nullptr) {
return;
}
postOrderTraversal(tree->left);
postOrderTraversal(tree->right);

cout<< tree->data <<" ";

Stanford University




Tree Traversal Recap

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589
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Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985
Stanford University
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Trees Recap

* Allow us to organize information in a linked data structure such
that the distance to any element is short, even if there are many
elements

* Added branching, which is so powerful!

* Organize nodes hierarchically, where each element contains
connections to child nodes that exist “lower” in the tree

 Three main ways to traverse a tree, and each way visits the nodes
in a distinctly different order
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