Trees

Amrita Kaur
August 2, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

* Assignment 4 due tonight at 11:59pm
* Assignment 5 released today
* YEAH Hours from 3-4pm with Bryant
* Change of grading basis deadline is this Friday at 5pm PT

 Come chat with us (or check out this resource) if you’re considering whether

to take for letter grade or credit/no credit

Stanford University

https://summer.stanford.edu/unit-and-course-load

Recap: LinkedLists

Stanford University

What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

Redefining Linked Lists

A linked list is either:
An empty list (nullptr)

Or a single node that points to another linked list

Stanford University

Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

1 0] 6 4 I 2

nullptr

Stanford University

Linked Lists, Structurally

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Stanford University

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
list->data = 6;
list->next = nullptr;

Dereference AND access the
field for struct pointers using ->

data: 6

list: Oxfca20b006 >

n e X t : nullptr

Lives at Oxfca20b00 on the heap

Stanford University

Freeing a Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University

10

Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
* Append-0(n) Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n) Delete-0(n)
* Traverse-0(n) * Traverse-0(n)

Stanford University

11

Passing Pointers by Value

* Unless specified otherwise, parameters in C++ are passed by value
— this includes pointers!

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

Stanford University

12

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

13

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

14

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

15

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, 1int data) {
Node* newNode = new Node; head: nullptr
newNode->data = data; data: 5
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

16

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Nodex newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: ?

}

next: ?

int main() {
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

17

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node* newNode = new Node; head: nullptr

newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5
¥ next: ?

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

} Stanford University

18

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

19

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head:
newNode->data = data; data: ;\\\5“
newNode->next = head; newNode : ——pp»
head = newNode; data: 5
} next: nullptr
int main() { .
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3); Note: this was a copy of the original head,
return 0; so head from main doesn’t get changed!

} Stanford University

20

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

21

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points
void prependTo(Nodex head, int data
Node* newNode = new Node; [MEMORY LEAK]
newNode->data data;

newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

22

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

Passing Pointers by Reference

23

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University

Passing Pointers by Reference

24

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University

25

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

head: nullptr
.~ data: 5

}

int main() {

Node* head = nullptr; head: nullptr

prependTo(head, 5); Note: we didn’t make a copy of head,
Egiﬁfgdg?(head > 3)5 prependTo gets access to the head
1 ’ variable from back in main!

Stanford University

26

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Nodex newNode = new Node;

newNode->data data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —-[~ "0
int main() { . next: 2
Nodex head = nullptr; head: nullptr

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

27

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;

newNode->data = data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —p-[T
int main() { . next: 2
head: nullptr

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University

28

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head; head: nullptr

head = newNode; -~ data: 5
¥ newNode: —p

data: 5

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

next: nullptr

head: nullptr

Stanford University

29

Passing Pointers by Reference

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;

newNode->next head; ..zzigf ;\\\\ﬁ‘k

head = newNode; 7 newNode:
} ; : I data: 5

int main() { h: d / next: nullptr
ead:

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University

30

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Nodex head = head:

= nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

31

Passing Pointers by Reference

* When passed by reference, the callee function can change where

the origin
void prel When you want a helper function to

Nodel modify the address a pointer points to,

newN .
newN you should pass it by reference.
head
} data: 5
int main() { . / next: nullptr
Nodex head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

32

Building Abstractions

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

33

Throwback

 We've already seen trees before in this class

Stanford University

34

Terminology Recap

Stanford University

35

Terminology Recap

8 10

Stanford University

36

Terminology Recap

grandchild ‘ M grandchild

8 10

Stanford University

37

Terminology Recap

Stanford University

38

Uses

* Trees are useful in other ways besides visualizing recursion and

* Describe hierarchies
/

@@

/

%@ 0\ Cf>
? @
&= (X ’ N

Stanford University

modeling priority

39

Uses

Trees are useful in other ways besides visualizing recursion and
modeling priority

e Describe hierarchies)\;} (| il L,{) ¢ /
VY =V (1 \E
* Model the structure of websites YN V’ AY) :
\t « div tabl
. ul K P
N * pmq d

Stanford University

40

Uses

* Trees are useful in other ways besides visualizing recursion and

modeling priority
* Describe hierarchies
e Model the structure of websites

WAHIN
o

* Describe syntax structure of programs U m while
. @
def run() { if/else” M
move();
while (notFinished()) {
if (isPathClear()) { isPathClear _—~ \
move();
} else { \
turnLeft(); @ move Dtu rnLeft
}
move();
}
}

Stanford University

41

Uses

* Trees are useful in other ways besides visualizing recursion and
modeling priority
e Describe hierarchies
* Model the structure of websites
* Describe syntax structure of programs

* Distance from each element to the top of the

structure is small, even if there are many elements

Stanford University

42

Uses

* Trees are useful in other ways besides visualizing recursion and
modeling priority
e Describe hierarchies
* Model the structure of websites
* Describe syntax structure of programs

* Distance from each element to the top of the
structure is small, even if there are many elements

* Really good for working with recursive problems, because trees are
inherently defined recursively!

Stanford University

What is a tree?

/

o

tree

a hierarchical data organization structure
composed of a root value linked to zero or
more non-empty subtrees

N

/

43

Stanford University

44

What is a tree?

A tree is either:

* An empty data structure, or

* Asingle node with zero or ’
more non-empty subtrees

Stanford University

45

New Tree Terminology

Stanford University

46

New Tree Terminology

G Stanford University

47

New Tree Terminology

° node
G Stanford University

48

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

49

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

50

New Tree Terminology

node with zero or more
non-empty subtrees

Stanford University

51

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

52

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

53

New Tree Terminology

node with zero or more
non-empty subtrees

° Stanford University

54

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

55

New Tree Terminology
° node with zero or more
non-empty subtrees

Stanford University

56

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

57

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

58

New Tree Terminology
° node with zero or more
non-empty subtrees
° Stanford University

59

New Tree Terminology

° N nodes in a tree
° Stanford University

60

New Tree Terminology

° root
G Stanford University

61

New Tree Terminology

, ., 0, L, and - are
the children of A

° Stanford University

62

New Tree Terminology
is the parent
° ofB,C,D, E, and F
° Stanford University

63

New Tree Terminology
has no children,
° so it’s a leaf node
° Stanford University

64

New Tree Terminology
V4 V4 7 7 V4 V4 7 and
° are all leaf nodes
° Stanford University

65

New Tree Terminology
, 1, and ! all have the same
parent, which makes them siblings
° Stanford University

66

New Tree Terminology

edge

TE o 0

Stanford University

New Tree Terminology

@ N-1 edges in a tree
ONORONONO
OO © 6

)

68

New Tree Terminology

We can define a path through the
tree between two nodes

° Stanford University

69

New Tree Terminology

The path from / to

E%@

OO0 @

Stanford University

70

New Tree Terminology

° The path from [to 4 is ?
a Stanford University

71

New Tree Terminology

The path from L to A does not exist

Stanford University

72

New Tree Terminology

The length of a path is the number
of edges it contains

° Stanford University

73

New Tree Terminology

The path from / to
has length ?

E%@

OO0 @

Stanford University

74

New Tree Terminology

The path from / to
has length 3

E%@

ONOXOREN _

Stanford University

75

New Tree Terminology

The depth of a node is the
length of its path to the root

° Stanford University

76

New Tree Terminology

The depth of | is 3

E%@

OO0 @

Stanford University

77

New Tree Terminology

The depth of " is ?

TE o e
GO0

Stanford University

78

New Tree Terminology

The depth of " is 1

TE o e
GO0

Stanford University

79

New Tree Terminology

° The depth of /' is ?
° Stanford University

80

New Tree Terminology

° The depth of / is O
° Stanford University

81

New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

° Stanford University

82

New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

° Stanford University

83

New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

wnt (5 (o) 0 T
w: @O® O @
° Stanford University

84

New Tree Terminology

, The depth of a node is the
depth: 0 ° length of its path to the root

wnt (5 (o) 0 T
s @00 &
depth: 3 a

Stanford University

85

New Tree Terminology

The height of a node is
the length of the longest path
from the node to a leaf

° Stanford University

86

New Tree Terminology

° The height of | is 1
@ Stanford University

87

New Tree Terminology

° The height of all leaf nodes is O

a Stanford University

88

New Tree Terminology

° The height of is ?
° Stanford University

89

New Tree Terminology

° The height of I is 2
ONONONON
@ Stanford University

90

New Tree Terminology

° The height of the nodes is O

a Stanford University

91

New Tree Terminology

The height of the nodes is 0
° The height of the blue nodes is 1

0 Stanford University

92

New Tree Terminology
The height of the nodes is 0

The height of the blue nodes is 1
° The height of the green nodes is 2

0 Stanford University

93

New Tree Terminol O8Y The height of the nodes is 0

The height of the blue nodes is 1
The height of the green nodes is 2
The height of the orange nodes is 3

0 Stanford University

94

New Tree Terminology
The height of a tree is

° the height of the root
° Stanford University

95

New Tree Terminology

The height of the tree is 3

E%@

OO0 @

Stanford University

96

Tree Terminology Summary

Can be defined recursively as either
* An empty data structure
* Asingle node with zero or more non-empty subtrees
Every non-empty tree has a root node that defines the “top” of the tree
Every node has zero or more children nodes
* Nodes with no children are called leaf nodes
Every node in the tree has exactly one parent node (except for the root)
A path through the tree traverses edges between parents and their children
The depth of a node is the length of the path between the root and that node
The height of a tree is the number of nodes in the longest path through the tree

Stanford University

97

Tree Properties

Stanford University

98

Tree Properties

* Any node in a tree can only have one parent

\/®
o
/N
O G

Stanford University

®\®/® Not trees! CTj/

99

Tree Properties

* Any node in a tree can only have one parent

/@\
JoRlo
O

Not a tree!

Stanford University

100

Tree Properties

* Any node in a tree can only have one parent
* Atree cannot have cycles or loops

v @\.
JolRo

Not a tree!

Stanford University

101

Which of these are trees?

Stanford University

102

Binary Trees

* Today, we’ve seen that nodes in a tree can have a variable amount
of children (subtrees)
* Previously, we've worked with binary trees

L
RN
o W
y Sy y &1
& 0
8 10 3

Stanford University

103

Binary Trees

* Today, we’ve seen that nodes in a tree can have a variable amount

of children (subtrees)

* Previously, we've worked with binary trees

Most common trees in CS u
Every node has either 0, 1, or 2 children 0

y 4 R N
No node may have more than 2 children @ %
Children are referred to as left child and right child X 7 1
3

8 10

7

Stanford University

104

Binary Tree?

Not a binary tree!

Stanford University

105

Binary Tree?

Not a binary tree!

Stanford University

106

Binary Tree?

A binary tree!

Stanford University

107

Building Binary Trees

Stanford University

108

Building Linked Lists (Recap)

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Stanford University

Building Binary Trees

A binary tree is composed of nodes

Each node is a struct that contains:

A piece of data (like an int, or string)
A pointer to the left child
A pointer to the right child

109

struct TreeNode {
int data;
TreeNode* left;
TreeNodex*x right;

}s

Stanford University

Building Ternary Trees

* Aternary tree is composed of nodes

e Each node is a struct that contains:

» A piece of data (like an int, or string)

e A pointer to the left child

e A pointer to the middle child

* A pointer to the right child struct TernaryTreeNode {
int data;
TernaryTreeNodex* left;
TernaryTreeNode* middle;
TernaryTreeNodex right;

6

JANNAN

/v N b

Stanford University

Building N-ary Trees

* An N-ary tree is composed of nodes

* Each node is a struct that contains:
» A piece of data (like an int, or string)
* A vector of pointers to the children

struct NAryTreeNode {
int data;
Vector<NAryTreeNodex> children;

AR N

/v O\

Stanford University

112
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University

113
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University

114
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University

115
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University

116
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University

117
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
33

Stanford University

118
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };

Stanford University

119
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };

Stanford University

120
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };

Stanford University

121
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
"(/!lIIIIIIIIIIIIIIIIlIl!\\~A };

Stanford University

122
struct TreeNode {

string data;

Building Binary Tree TreeNodes left;

TreeNodex right;
F };

Stanford University

123

What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

124

What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

125

What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

126

What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

127

What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

128

What are Trees?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

129

Let’s Code It Up!

Stanford University

130

Building a Tree Takeaways

e Building a tree is very similar to building a linked list
* We create new nodes by dynamically allocating memory
 We integrate new nodes into the tree by rewiring the pointers of

the existing nodes in the tree

Stanford University

131

Tree Traversals

Stanford University

132

Tree Traversals

* If we want to “do something” with each node in the tree, we need
to do so by traversing the tree
* More involved than traversing a linked list because of the branching

 Three main ways to traverse a tree:
* Pre-order traversal
* In-order traversal
* Post-order traversal

 Due to the recursive nature of trees, these algorithms are most
easily defined recursively

Stanford University

133

Pre-Order Traversal

* The algorithm for a pre-order traversal is as follows:
1. “Do something” with the current node
2. Traverse the left subtree
3. Traverse the right subtree

* For our example, let's make the "do something" part print the data
at a particular node, which will allow us to print the whole tree

Stanford University

134

Pre-Order Traversal

void preOrderTraversal(TreeNode* tree) {
if(tree == nullptr) {
return;
}
cout<< tree->data <<" ";
preOrderTraversal(tree->left);

preOrderTraversal(tree->right);

Stanford University

135

In-Order Traversal

* The algorithm for a in-order traversal is as follows:
1. Traverse the left subtree
2. “Do something” with the current node
3. Traverse the right subtree

Stanford University

136

In-Order Traversal

void inOrderTraversal(TreeNode* tree) {
if(tree == nullptr) {
return;
}
inOrderTraversal(tree->left);
cout<< tree->data <<" ";

inOrderTraversal(tree->right);

Stanford University

137

Post-Order Traversal

* The algorithm for a post-order traversal is as follows:
1. Traverse the left subtree
2. Traverse the right subtree
3. “Do something” with the current node

Stanford University

138

Post-Order Traversal

void postOrderTraversal(TreeNode* tree) {
if(tree == nullptr) {
return;
}
postOrderTraversal(tree->left);
postOrderTraversal(tree->right);

cout<< tree->data <<" ";

Stanford University

Tree Traversal Recap

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589

139

Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985
Stanford University

140

Trees Recap

* Allow us to organize information in a linked data structure such
that the distance to any element is short, even if there are many
elements

* Added branching, which is so powerful!

* Organize nodes hierarchically, where each element contains
connections to child nodes that exist “lower” in the tree

 Three main ways to traverse a tree, and each way visits the nodes
in a distinctly different order

Stanford University

