
Trees
Amrita Kaur

August 2, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 4 due tonight at 11:59pm

• Assignment 5 released today
• YEAH Hours from 3-4pm with Bryant

• Change of grading basis deadline is this Friday at 5pm PT
• Come chat with us (or check out this resource) if you’re considering whether

to take for letter grade or credit/no credit

2

https://summer.stanford.edu/unit-and-course-load

Recap: LinkedLists

3

What are Linked Lists?

• A way we can use pointers to organize non-contiguous memory on

the heap

4

Redefining Linked Lists

A linked list is either:

An empty list (nullptr)

Or a single node that points to another linked list

5

• Easily resizable

• Efficient to insert elements at the beginning

Benefits of Linked Lists

6

6 2

nullptr

7401

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

7

6
struct Node {

int data;
Node* next;

};

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

8

Node* list = new Node;
list->data = 6;
list->next = nullptr;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: nullptr

Dereference AND access the
field for struct pointers using ->

Freeing a Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

9

1 6 4

nullptr

head temp

Linked Lists vs. Arrays, Big-O

Linked Lists

• Prepend - O(1)
• Append - O(n)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

Arrays

• Prepend - O(n)
• Append - O(1)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

10

Passing Pointers by Value

• Unless specified otherwise, parameters in C++ are passed by value

– this includes pointers!

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

11

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

12

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

13

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

14

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

15

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

16

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5
newNode:

data: ?

next: ?

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

17

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5
newNode:

data: 5

next: ?

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

18

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5
newNode:

data: 5

next: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

19

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head:
data: 5
newNode:

data: 5

next: nullptr

Note: this was a copy of the original head,
so head from main doesn’t get changed!

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

20

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

data: 5

next: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

21

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

data: 5

next: nullptr

MEMORY LEAK 👎

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

22

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

23

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

24

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

25

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5

head: nullptr

Note: we didn’t make a copy of head,
prependTo gets access to the head
variable from back in main!

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

26

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5
newNode:

head: nullptr

data: ?

next: ?

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

27

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5
newNode:

head: nullptr

data: 5

next: ?

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

28

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5
newNode:

head: nullptr

data: 5

next: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

29

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:
data: 5
newNode:

head:

data: 5

next: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

30

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

31

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

When you want a helper function to
modify the address a pointer points to,

you should pass it by reference.

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures Advanced

Algorithms

32

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Throwback

• We’ve already seen trees before in this class

33

8

7 1

0

10 3

Terminology Recap

34

8

7 3

1

10

parent

childchild

Terminology Recap

35

8

7 3

1

10

parent

childchild

Terminology Recap

36

8

7 3

1

10

grandchildgrandchild

grandparent

Terminology Recap

37

8

7 3

1

10

root

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

38

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

• Model the structure of websites

39

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

• Model the structure of websites

• Describe syntax structure of programs

40

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

• Model the structure of websites

• Describe syntax structure of programs

• Distance from each element to the top of the

structure is small, even if there are many elements

41

Uses

• Trees are useful in other ways besides visualizing recursion and

modeling priority
• Describe hierarchies

• Model the structure of websites

• Describe syntax structure of programs

• Distance from each element to the top of the

structure is small, even if there are many elements

• Really good for working with recursive problems, because trees are

inherently defined recursively!

42

43

tree
a hierarchical data organization structure

composed of a root value linked to zero or
more non-empty subtrees

What is a tree?

What is a tree?

A tree is either:

• An empty data structure, or

• A single node with zero or

more non-empty subtrees

44

? ? ?

New Tree Terminology

45

New Tree Terminology

46

A

D

J

L

C E FB

KH IG

New Tree Terminology

47

A

D

J

L

C E FB

KH IG

node

New Tree Terminology

48

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

49

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

50

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

51

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

52

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

53

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

54

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

55

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

56

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

57

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

58

A

D

J

L

C E FB

KH IG

node with zero or more
non-empty subtrees

New Tree Terminology

59

A

D

J

L

C E FB

KH IG

N nodes in a tree

New Tree Terminology

60

A

D

J

L

C E FB

KH IG

root

New Tree Terminology

61

A

D

J

L

C E FB

KH IG

B, C, D, E, and F are
the children of A

New Tree Terminology

62

A

D

J

L

C E FB

KH IG

A is the parent
of B, C, D, E, and F

New Tree Terminology

63

A

D

J

L

C E FB

KH IG

B has no children,
so it’s a leaf node

New Tree Terminology

64

A

D

J

L

C E FB

KH IG

B, G, H, I, D, E, L, and K
are all leaf nodes

New Tree Terminology

65

A

D

J

L

C E FB

KH IG

G, H, and I all have the same
parent, which makes them siblings

New Tree Terminology

66

A

D

J

L

C E FB

KH IG

edge

New Tree Terminology

67

A

D

J

L

C E FB

KH IG

N-1 edges in a tree

New Tree Terminology

68

A

D

J

L

C E FB

KH IG

We can define a path through the
tree between two nodes

New Tree Terminology

69

A

D

J

L

C E FB

KH IG

The path from A to L
is A→F→J→L

New Tree Terminology

70

A

D

J

L

C E FB

KH IG

The path from L to A is ?

New Tree Terminology

71

A

D

J

L

C E FB

KH IG

The path from L to A does not exist

New Tree Terminology

72

A

D

J

L

C E FB

KH IG

The length of a path is the number
of edges it contains

New Tree Terminology

73

A

D

J

L

C E FB

KH IG

The path from A to L
has length ?

New Tree Terminology

74

A

D

J

L

C E FB

KH IG

The path from A to L
has length 3

New Tree Terminology

75

A

D

J

L

C E FB

KH IG

The depth of a node is the
length of its path to the root

New Tree Terminology

76

A

D

J

L

C E FB

KH IG

The depth of L is 3

New Tree Terminology

77

A

D

J

L

C E FB

KH IG

The depth of F is ?

New Tree Terminology

78

A

D

J

L

C E FB

KH IG

The depth of F is 1

New Tree Terminology

79

A

D

J

L

C E FB

KH IG

The depth of A is ?

New Tree Terminology

80

A

D

J

L

C E FB

KH IG

The depth of A is 0

New Tree Terminology

81

A

D

J

L

C E FB

KH IG

The depth of a node is the
length of its path to the root

depth: 0

New Tree Terminology

82

A

D

J

L

C E FB

KH IG

The depth of a node is the
length of its path to the root

depth: 0

depth: 1

New Tree Terminology

83

A

D

J

L

C E FB

KH IG

The depth of a node is the
length of its path to the root

depth: 0

depth: 1

depth: 2

New Tree Terminology

84

A

D

J

L

C E FB

KH IG

The depth of a node is the
length of its path to the root

depth: 0

depth: 1

depth: 2

depth: 3

New Tree Terminology

85

A

D

J

L

C E FB

KH IG

The height of a node is
the length of the longest path
from the node to a leaf

New Tree Terminology

86

A

D

J

L

C E FB

KH IG

The height of J is 1

New Tree Terminology

87

A

D

J

L

C E FB

KH IG

The height of all leaf nodes is 0

New Tree Terminology

88

A

D

J

L

C E FB

KH IG

The height of F is ?

New Tree Terminology

89

A

D

J

L

C E FB

KH IG

The height of F is 2

New Tree Terminology

90

A

D

J

L

C E FB

KH IG

The height of the yellow nodes is 0

New Tree Terminology

91

A

D

J

L

C E FB

KH IG

The height of the yellow nodes is 0
The height of the blue nodes is 1

New Tree Terminology

92

A

D

J

L

C E FB

KH IG

The height of the yellow nodes is 0
The height of the blue nodes is 1
The height of the green nodes is 2

New Tree Terminology

93

A

D

J

L

C E FB

KH IG

The height of the yellow nodes is 0
The height of the blue nodes is 1
The height of the green nodes is 2
The height of the orange nodes is 3

New Tree Terminology

94

A

D

J

L

C E FB

KH IG

The height of a tree is
the height of the root

New Tree Terminology

95

A

D

J

L

C E FB

KH IG

The height of the tree is 3

Tree Terminology Summary

• Can be defined recursively as either
• An empty data structure
• A single node with zero or more non-empty subtrees

• Every non-empty tree has a root node that defines the “top” of the tree
• Every node has zero or more children nodes

• Nodes with no children are called leaf nodes
• Every node in the tree has exactly one parent node (except for the root)
• A path through the tree traverses edges between parents and their children
• The depth of a node is the length of the path between the root and that node
• The height of a tree is the number of nodes in the longest path through the tree

96

Tree Properties

97

Tree Properties

• Any node in a tree can only have one parent

98

Not trees!

Tree Properties

• Any node in a tree can only have one parent

99

Not a tree!

Tree Properties

• Any node in a tree can only have one parent

• A tree cannot have cycles or loops

100

Not a tree!

Which of these are trees?

101

A. 2

51

B. 4

29

C. 7

D. 1

32

4

E.

8 36

Binary Trees

• Today, we’ve seen that nodes in a tree can have a variable amount

of children (subtrees)

• Previously, we’ve worked with binary trees

102

8

7 1

0

10 3

Binary Trees

• Today, we’ve seen that nodes in a tree can have a variable amount

of children (subtrees)

• Previously, we’ve worked with binary trees
• Most common trees in CS

• Every node has either 0, 1, or 2 children

• No node may have more than 2 children

• Children are referred to as left child and right child

103

8

7 1

0

10 3

Binary Tree?

104

A

D

J

L

C E FB

KH IG

Not a binary tree!

Binary Tree?

105

Not a binary tree!

8 36

Binary Tree?

106

A binary tree!

4

29

7

Building Binary Trees

107

Building Linked Lists (Recap)

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

108

6
struct Node {

int data;
Node* next;

};

Building Binary Trees

• A binary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the right child

109

6

struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

};

Building Ternary Trees

• A ternary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the left child

• A pointer to the middle child

• A pointer to the right child

110

6

struct TernaryTreeNode {
int data;
TernaryTreeNode* left;
TernaryTreeNode* middle;
TernaryTreeNode* right;

};

Building N-ary Trees

• An N-ary tree is composed of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A vector of pointers to the children

111

6

...

struct NAryTreeNode {
int data;
Vector<NAryTreeNode*> children;

};

Building Binary Tree

112struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cheesecake”

Building Binary Tree

113struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cheesecake”

nullptr nullptr

Building Binary Tree

114struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cheesecake”

Building Binary Tree

115struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cheesecake”

Building Binary Tree

116struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cream cheese”

“cheesecake”

Building Binary Tree

117struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cream cheese”

“cheesecake”

Building Binary Tree

118struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cream cheese” “graham cracker”

“cheesecake”

Building Binary Tree

119struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cream cheese” “graham cracker”

“flour”

“cheesecake”

Building Binary Tree

120struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cream cheese” “graham cracker”

“flour”“cream”

“cheesecake”

Building Binary Tree

121struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cream cheese” “graham cracker”

“flour”“cream” “milk”

“cheesecake”

Building Binary Tree

122struct TreeNode {
 string data;

TreeNode* left;
TreeNode* right;

};

“cake”

“flour” “butter”

What are Trees?

• A way we can use pointers to organize non-contiguous memory on

the heap

123

What are Trees?

• A way we can use pointers to organize non-contiguous memory on

the heap

124

What are Trees?

• A way we can use pointers to organize non-contiguous memory on

the heap

125

What are Trees?

• A way we can use pointers to organize non-contiguous memory on

the heap

126

What are Trees?

• A way we can use pointers to organize non-contiguous memory on

the heap

127

What are Trees?

• A way we can use pointers to organize non-contiguous memory on

the heap

128

Let’s Code It Up!

129

Building a Tree Takeaways

• Building a tree is very similar to building a linked list

• We create new nodes by dynamically allocating memory

• We integrate new nodes into the tree by rewiring the pointers of

the existing nodes in the tree

130

Tree Traversals

131

Tree Traversals

• If we want to “do something” with each node in the tree, we need

to do so by traversing the tree
• More involved than traversing a linked list because of the branching

• Three main ways to traverse a tree:
• Pre-order traversal

• In-order traversal

• Post-order traversal

• Due to the recursive nature of trees, these algorithms are most

easily defined recursively

132

Pre-Order Traversal

• The algorithm for a pre-order traversal is as follows:

1. “Do something” with the current node

2. Traverse the left subtree

3. Traverse the right subtree

• For our example, let's make the "do something" part print the data

at a particular node, which will allow us to print the whole tree

133

Pre-Order Traversal

void preOrderTraversal(TreeNode* tree) {

 if(tree == nullptr) {

return;

}

 cout<< tree->data <<" ";

 preOrderTraversal(tree->left);

 preOrderTraversal(tree->right);

}

134

In-Order Traversal

• The algorithm for a in-order traversal is as follows:

1. Traverse the left subtree

2. “Do something” with the current node

3. Traverse the right subtree

135

In-Order Traversal

void inOrderTraversal(TreeNode* tree) {

 if(tree == nullptr) {

return;

}

 inOrderTraversal(tree->left);

 cout<< tree->data <<" ";

 inOrderTraversal(tree->right);

}

136

Post-Order Traversal

• The algorithm for a post-order traversal is as follows:

1. Traverse the left subtree

2. Traverse the right subtree

3. “Do something” with the current node

137

��

Post-Order Traversal

void postOrderTraversal(TreeNode* tree) {

 if(tree == nullptr) {

return;

}

 postOrderTraversal(tree->left);

 postOrderTraversal(tree->right);

 cout<< tree->data <<" ";

}

138

Tree Traversal Recap

139

Trees Recap

• Allow us to organize information in a linked data structure such

that the distance to any element is short, even if there are many

elements
• Added branching, which is so powerful!

• Organize nodes hierarchically, where each element contains

connections to child nodes that exist “lower” in the tree

• Three main ways to traverse a tree, and each way visits the nodes

in a distinctly different order

140

