Linked Lists 2

Elyse Cornwall
August 1, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

* Change of grading basis deadline is this Friday at 5pm PT

 Come chat with us (or check out this resource) if you’re considering whether

to take for letter grade or credit/no credit

Stanford University

https://summer.stanford.edu/unit-and-course-load

Feedback

Rate the pace of lecture
60 responses

~

@® Way too slow
® A little too slow
@ Perfect

@ A little too fast
@ Way too fast

Stanford University

Feedback

Things you liked:

“I really like the drawings on the board as it provides a different, more visual
method of learning”

“Going through the code slower is helping a lot”

“office hours!”

“The explanations that are done in a very step-by-step way, with each slide
incrementing one change has helped make concepts very clear.”

“The provided code during lecture helps a lot to start the assighnments”

Stanford University

Feedback

Places we can improve:

“it's helpful to recap multiple times in between what bigger picture it fits into... (as
opposed to one big recap in the end)”

“I think it would be helpful to have more interactive stuff during lecture (trying to
code on our own, answering practice questions, discussing with others)”

“When there is 5m of class left, not to quickly rush through the last slides”

“I spent a bunch of time doing merge recursively and when | got to the bottom of
the page | noticed it said to do it iteratively so that was a bit annoying.”

Stanford University

Feedback

We hear you...

“I like the stanford libraries but it would also be nice to see how coding
is done in outside settings” Moving forward, we will :)

“I liked LalR but | wish we didn't have to fill in a form to talk to one of
the SLs.” Come to office hours if you like a more relaxed setting!

Stanford University

Feedback

Anything else you would like us to know:

“It’s a char (as in charcoal) not a car. An array of cars is a parking lot, an
array of chats is a string” Controversial!l

“I am really considering CS for a major but | do not know what it would
entail in the next few years.” Come chat with us :)

“I'm honestly not very fond of recursion, however | was able to
appreciate the elegance of some solutions.” Respect!

Stanford University

https://www.youtube.com/watch?v=f6wEtOPtZEE

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

Building Abstractions

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

Recap: Linked Lists

Stanford University

10

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

Stanford University

11

Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

1 0] 6 4 I 2

nullptr

Stanford University

12

What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

13

Linked Lists, Structurally

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Stanford University

14

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
list->data = 6;
list->next = nullptr;

Dereference AND access the
field for struct pointers using ->

data: 6

list: Oxfca20b006 >

n e X t : nullptr

Lives at Oxfca20b00 on the heap

Stanford University

15

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head
temp = temp->next;
delete head;
head = temp;
¥ 1 6 4
} — — nullptr

Stanford University

16

Review: Free Linked List

void freeList(Nodex head) {
Node*x temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University

17

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {
head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University

18

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; \\\
head = temp;
1

6 4

nullptr

Stanford University

19

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; \\\
head = temp;
227 6 4

} 2722 ol

nullptr

Stanford University

20

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; \~\‘
head = temp;

¥ 299 6 4

2?27 — nullptr

Stanford University

21

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \~\‘
head = temp;
¥ 222 6 4
: 222 — nullptr

Stanford University

22

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\\\\\x
head = temp;
¥ 222 6 4
: 222 — nullptr

Stanford University

23

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\\\\\x
head = temp;
¥ 2272 222 4
) 2727 27272 nullptr

Stanford University

24

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head;
head = temp;
¥ 2272 222 4
) 227 27272 nullptr

Stanford University

25

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head;
head = temp;
¥ 2272 222 4
) 227 2272 nullptr

Stanford University

26

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) { head temp:
temp = temp->next; nullptr
delete head;
head = temp;

¥ 2272 222 4

277 2?77 nullptr

Stanford University

27

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) { head temp:
temp = temp->next; nullptr
delete head;
head = temp;

} 227 227 227

227? 227? 227?

Stanford University

28

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head: temp:
temp = temp->next; nullptr nullptr
delete head;
head = temp;
} 227 227 227
I 222 222 222

Stanford University

29

Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != nullptr
white (utlptr) { head: temp:

temp = temp->next; nullptr nullptr
delete head;

head = temp;

} 227 227 227

227? 227? 227?

Stanford University

30

Review: Free Linked List

void freelList(Nodex head) { [HAPPY TIMES }
Nodex temp = head;

hi'l head != 1llpt
while (hea nutlptr) { head: temp:

temp = temp->next; nullptr nullptr
delete head;

head = temp;

} 227 227 227

227? 227? 227?

Stanford University

31

Linked Lists vs. Arrays

Linked Lists Arrays
Chain of nodes, not - Contiguous chunk of memory
contiguous in heap memory on the heap

Access nodes starting at head, - Access elements by index
following the -> next pointer

Good for implementing other

Same!
data structures
Has no member functions like
.size() or .add () + Same!

Stanford University

32

Linked Lists and Recursion

Stanford University

33

Redefining Linked Lists

e Recall that the structure of a linked list Node is recursive:

struct Node {
string data;
Node*x next;

}s

Stanford University

34

Redefining Linked Lists

e Recall that the structure of a linked list Node is recursive:

struct Node {
string data;
Node*x next;

}s

On another level, we can define a linked list recursively...

Stanford University

35

Redefining Linked Lists

A linked list is either:
An empty list (nullptr)

Or a single node that points to another linked list

Stanford University

36

Redefining Linked Lists

A linked list is either:
An empty list (nullptr)

Or a single node that points to another linked list

We can define linked lists recursively, so can we implement linked list
operations recursively?

Stanford University

37

Redefining Linked List Traversal

Last time:

void printList(Nodex list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

Stanford University

38

Redefining Linked List Traversal

Last time: Recursive approach:
void printList(Nodex list) { void printListRec(Node*x list) {
while (list != nullptr) { // Base case
cout << list->data << endl; // Recursive case
list = list->next; }
}
}

Stanford University

39

Redefining Linked List Traversal

Last time: Recursive approach:

void printList(Nodex list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

void printListRec(Node*x list) {
// Base case
if (list == nullptr) {
return;

}

// Recursive case

Stanford University

40

Redefining Linked List Traversal

Last time: Recursive approach:
void printList(Nodex list) { void printListRec(Node*x list) {
while (list != nullptr) { // Base case
cout << list->data << endl; if (list == nullptr) {
list = list->next; return;
} }
} // Recursive case

cout << list->data << endl;
printListRec(list->next);

Stanford University

41

Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...

Stanford University

42

Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...

* However, note that the recursive solution generates one recursive
call for every element in the list - a linked list with n elements
would require n stack frames

Stanford University

43

Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...

* However, note that the recursive solution generates one recursive
call for every element in the list - a linked list with n elements
would require n stack frames

* For most computers, the stack frame limit is somewhere in the
range of 16-64K - we can’t traverse lists with more than 64K
elements recursively!

Stanford University

44

Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...
* Howey ' ' ' —

ecursive
call fol On Assignment 5, avoid doing list traversals |ents
would recursively! Today, we’ll see that which
e Form operations entail some kind of traversal. he

range of 16-64K - we can’t traverse lists with more than 64K
elements recursively!

Stanford University

Big-O of Linked List Operations

Stanford Universit

46

Linked List Operations

* Prepend
 Append
* Insert

* Delete

* Traverse

Stanford University

47

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: Oxfca20b0o > P P

next: — next: —

Stanford University

48

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0xfca20b0o > P P

next: — next: —

Nodex newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Stanford University

49

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0Oxfca20b00 > > |
next: —] next: —
Node*x newFront = new Node;

—_ = ® d t : ?
newFront->data 1; newEront . ata
newFront->next = head; 0x1234abef t: 2
head = newFront; X abe next: ¢

Stanford University

50

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0xfca20b0o > P P
next: —] next: —
Nodex newFront = new Node;

- = 13 data: 1
newFront->data 13 newFront: . ata
newFront->next = head; 0x1234abef £ 2
head = newFront; X abe next.

Stanford University

51

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0xfca20b0o > P P
next: = next: —
Nodex newFront = new Node;

- = 1; 1
newFront->data 1; newEront : . data
newFront->next = head; 0x1234abef =
head = newFront; X abe nEXt:

Stanford University

52

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0x1234abef P P

next: — next: —

Nodex newFront = new Node;
newFront->data = 1; d

newFront: ata: 1
newFront->next = head; 0%1234 b.'F > \t
head = newFront; X ape next:

Stanford University

53

Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

head: | data: 1 data: 6 data: 4
Ox1234abef next: 1 next: —1 next: —1

Nodex newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Stanford University

54

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o next: —

N e X t : nullptr

Stanford University

55

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o . next: —

N e X t : nullptr

Node*x cur = head;
while (cur != nullptr &&
cur->next != nullptr) {
Cur = cur->next;

} Stanford University

56

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muper
Node* cur = head; “§‘-\‘-~\\§\§\
while (cur != nullptr && cur:
cur->next != nullptr) { Ox1234abef

Cur = cur->next;

} Stanford University

57

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muwer
Node* cur = head; ‘K\\\\\\\
while (cur != nullptr && cur:
cur->next != nullptr) { (addresses of
cur = cur->next; other nodes)

} Stanford University

58

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = T next: =] next: miwer
Node*x cur = head; k\
while (cur != nullptr && cur:
cur->next != nullptr) { Oxb94da30f

cur = cur->next;

} Stanford University

59

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o next: —

N e X t : nullptr

Node* cur = head; //,/’///"

while (cur != nullptr && cur:
cur->next != nullptr) { Ox943ca39e
cur = cur->next;

} Stanford University

Linked List Append

60

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head data: 1

Ox1234abef mEsere o

-V

Node*x newEnd = new Node;

newEnd->data = 10;
newEnd->next = nullpt
cur->next = newEnd;

s

data: 6

data: 4

next: =

N e X t : nullptr

\

cur:
Ox943ca39e

Stanford University

Linked List Append

61

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
: _—V _»

Ox1234abef next: next: next: nuptr
Nodex newEnd = new Node; \
newEnd->data = 10; End - data: ? cur:
newEnd->next = nullptr; 8??8;6&ezg’> 0x943ca39e
cur->next = newEnd; next: ?

Stanford University

62

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

) data: 1 data: 6 data: 4
head: | P P
Ox1234abef next: o next: =] next: mwper
Node*x newEnd = new Node; \
newEnd->data = 10; End: data: 10 | cur:
newEnd->next = nullptr; 8??8;6&ezg’> 0x943ca39e
cur->next = newEnd; next: ?

Stanford University

63

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

. data: 1 data: 6 data: 4
head: | P P
Ox1234abef next: next: next: nuptr
Node*x newEnd = new Node; \
newEnd->data = 10; End - data: 10 | cur:
newEnd->next = nullptr; givl\ISgGéIeg» 0x943ca39e
cur—->next = newEnd; Next: nuper

Stanford University

64

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4

e _ ad
Ox1234abef next: el next: — next:

=y

Node*x newEnd = new Node;

newEnd->data = 10; End - data: 10 | cur:
newEnd->next = nullptr; 8??8;6&ezg’> 0x943ca39e
cur->next = newEnd; nNext: muper

Stanford University

65

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4 data: 10
Ox1234abef

next: ~1 next: -~ next: - next: muptr

Node*x newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

Stanford University

66

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4 data: 10

>
Ly v v
0x1234abef next: -1 next: -] next: -

N e X t : nullptr

Node*x cur = head;
while (cur != nullptr & @ Why did we have this

cur->next != nullptr) { |condition in our traversal loop?

cur = cur->next;

} Stanford University

67

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = next: =" next: muper
Nodex cur = head; \
while (cur != nullptr) { cur:
Cur = cur->next; Ox1234abef
}

Stanford University

68

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muper
Node*x cur = head; ‘K\\\\\\\
while (cur != nullptr) { cur:
cur = cur->next; (addresses of
} other nodes)

Stanford University

69

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muper
Node*x cur = head; k\
while (cur != nullptr) { cur:
Cur = cur->next; Oxb94da3of
}

Stanford University

70

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o . next: —

N e X t : nullptr

Node* cur = head; ’/,/”’/)"

while (cur != nullptr) { cur:
cur = cur->next; Ox943ca39e

}

Stanford University

71

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
) —> v v
Ox1234abef mEsere o “e next: —

N e X t : nullptr

Node*x cur = head;
while (cur != nullptr) { cur:
Cur = cur->next; nullptr

}

Stanford University

72

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> | v
0x1234abef next: = next: =" next: muwtr
Node*x cur = head;
while (cur != nullptr) { To avoid “falling off” the
cur = cur->next; end of our linked list!
}

Stanford University

73

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head: data: 1 data: 6 data: 4

>
b 4
Ox1234abef next: -1 N

- -~

next: next:

Stanford University

74

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
Ly B 4 B 4
0x1234abef next: - I P next: -1
Insert 5 after 6

Stanford University

75

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head: data: 1 data: 6 data: 4

>
b 4
Ox1234abef next: -1 N

- -~

next: next:

Node* cur = head;
while (cur != nullptr && cur->data != 6) {
cCur = cur->next;

}

Stanford University

76

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

h) data: 1 data: 6 data: 4
ead: >
r 4 .4 .4
0x1234abef next: - R next: “
Node*x cur = head;
while (cur != nullptr && cur->data != 6) { cur:
cCur = cur—->next; Ox1234abef
}

Stanford University

77

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
r 4 .4 .4

0x1234abef next: =] next: - next: -1

Node* cur = head;

while (cur != nullptr && cur->data != 6) { cur:

cur = cur->next; (addresses of
} other nodes)

Stanford University

78

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
E 4 LY 4
0x1234abef next: =] next: - next: -1
Node* cur = head; ‘K\\\\\
while (cur != nullptr && cur->data != 6) { cur:
cur = cur->next; Oxb94da30f
}

Stanford University

79

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
b 4 B 4 s 4
0x1234abef next: - I P next: -1
Node*x toInsert = new Node; ‘K\\\\\
toInsert->data = 5; cur:
toInsert->next = ?7?? Oxb94da36f

cur->next = 2?2?72
Stanford University

80

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head : data: 1 data: 6 data: 4
b 4 b 4 LY
0x1234abef next: -] Y| hext: - next: -
Nodex toInsert = new Node; ‘K\\\\\
toInsert->data = 5; ? cur:
toInsert->next = 2?? tolnsert: data: : Oxb94da30f
cur->next = 777 Ox2734a81a SEsEe P
Stanford University

81

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
Ly b 4 > 4
0x1234abef next: -] next: - next: “
Node*x toInsert = new Node; ‘K\\\\\
toInsert->data = 53 cur:
toInsert->next = 22?2 toInsert: data: 5 oxb94da3ef
cur->next = 72?7 Ox2734a8la SEsEe P
Stanford University

82

°)

-
°

Linked List Insert = How do we link in

this new node?

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
Ly b 4 > 4
0x1234abef next: -] next: - next: “
Nodex toInsert = new Node; ‘K\\\\\
toInsert->data = 5; cur:
toInsert->next = 22?2 tolInsert: data: 5 oxb94da3ef
cur->next = 72?7 Ox2734a8la SEsEe P
Stanford University

83

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

i data: 1 data: 6 data: 4
head: >
" 4 >4 Ly
0x1234abef next: -] Y next: A next: 1
Nodex toInsert = new Node; V\/A\
toInsert->data = 5; cur:
toInsert->next = cur->next; data: E/ Oxb94da30f
cur->next = 72?7 toInsert: next:l
Ox2734a81la Stanford University

84

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

i data: 1 data: 6 data: 4
head: >
" 4 Ly
0x1234abef next: -] T next: , next: 1
Node* toInsert = new Node; lv\/A\
toInsert->data = 5; cur:
toInsert->next = cur->next; data: E/ Oxb94da30f
cur->next = toInsert; toInsert: next: !
Ox2734a81la Stanford University

85

Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head : data: 1 data: 6 data: 5 data: 4

-
cd ~ L
Ox1234abef next: | °° next: - next: - next:

Node*x toInsert = new Node;
toInsert->data = 5;
tolnsert->next = cur->next;

cur—->next = tolnsert;
Stanford University

86

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -

Stanford University

87

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -

Node* cur = head;
while (cur != nullptr && cur->data != 5) {
cCur = cur->next;

}

Stanford University

88

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -

Node*x cur = head;
while (cur != nullptr && cur->data != 5) { cur:
cCur = cur—->next; Ox1234abef

}

Stanford University

89

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

« Again, 0(n), since it involves linked list traversal this 5 node.
head > data: 1 data: 6 data: 5 data: 4
>4 L 4 L 4 .
Ox1234abef next: “ next: - next: = next: -
o
Node* cur = head;
while (cur != nullptr && cur->data != 5) { cur:
cur = cur->next; (addresses of
} other nodes)

Stanford University

90

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

« Again, 0(n), since it involves linked list traversal this 5 node.
head > data: 1 data: 6 data: 5 data: 4
g v v 5
0x1234abef next: “ next: - next: = next: -
Node* cur = head; \
while (cur != nullptr && cur->data != 5) { cur:
cur = cur->next; Oxb94da30f

}

Stanford University

91

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

« Again, 0(n), since it involves linked list traversal this 5 node.
head > data: 1 data: 6 data: 5 data: 4
g v v 5
0x1234abef next: “ next: - next: = next: -
Nodex cur = head; \
while (cur != nullptr && cur->data != 5) { cur:
cur = cur->next; Ox2734a8la

}

Stanford University

92

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -
delete cur; \
227 cur:
Ox2734a81a

Stanford University

93

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
. 5 « 9 5
head : data: 1 data: 6 data: * data: 4
> - -)
Ox1234abef next: | next: - next: ? next: -
delete cur; \
227 cur:
Ox2734a81a

Stanford University

94

Linked List Delete

* Traverse to node we want to delete, free AND rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head:
ox1234abef V... od -
next: - next: next: ? next: -
delete cur; ‘K\\\\\
22? What went wrong? cur:
We need to rewire the 6 node, but we 0x2734a8la

don’t have a pointer to it.

Stanford University

95

Linked List Delete

* Traverse to node we want to delete, fr ire
* Again, 0(n), since it involves linked li§ MEMORY LEAK]

i data: 1 data: 6 data: ? data: 4
head:
o0x1234abef ... v -
next: - next: - next: ? next: -
delete cur; ‘K\\\\\
22? Another issue... cur:
We have no pointer to the 4 node! Ox2734a81a

Stanford University

96

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head:
@x1234abef* ad v g
next: | 7 next: next: ? next:
Let’s try again... ‘K\\\\Eur:
Ox2734a81a

Stanford University

97

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
v v

next: =7 next:

Nodex prev = nullptr;

Node* cur = head;

while (cur != nullptr && cur->data !=5) {
prev = cur;
cur = cur->next;

Stanford University

98

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
v v

next: =7 next: =

Nodex prev = nullptr;

Node* cur = head;

while (cur != nullptr && cur->data !=5) {
prev = cur; prev:
cur = cur->next;

) nullptr

Stanford University

99

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
L rd A .
0x1234abef next: - next: -7 next: next: -
-
Nodex prev = nullptr;
Node*x cur = head; —
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Ox1234abef
cur = cur->next; nullptr

Stanford University

100

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
LY L ~ b
0x1234abef next: -1 " next: -7 next: =7 next: -
$
Nodex prev = nullptr;
Node* cur = head;

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: Ox1234abef
cur = cur->next;

nullptr

Stanford University

101

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
v v

next: =7 next:

Node* prev = nullptr;
Node* cur = head; —
while (cur != nullptr && cur->data != 5) { cur-.
prev = cur; prev: Ox1234abef
cur = cur->next;

Ox1234abef

Stanford University

102

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

>
L A od v g
OX1234abef neXt: e nex-t: ~ next: - next:
Nodex prev = nullptr;

Nodex cur = head; \

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: (addresses of

cur = cur->next; Ox1234abef ©Other nodes)

Stanford University

103

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

>
L A od v g
OX1234abef neXt: e nex-t: ~ next: - next:
Nodex prev = nullptr;

Nodex cur = head; \

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: (addresses of

cur = cur->next; Ox1234abef other nodes)

Stanford University

104

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

>
L A od v g
OX1234abef neXt: e nex-t: ~ next: - next:
Nodex prev = nullptr;

Nodex cur = head; \

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: (addresses of

cur = cur->next; (addresses other nodes)
}

of other nodes)Stanford University

105

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

) data: 1 data: 6 data: 5 data: 4
head: >
L rd A .
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; (addresses
}

of other nodes)Stanford University

106

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

) data: 1 data: 6 data: 5 data: 4
head: >
L L A .
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data != 5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; (addresses
}

of other nodes)Stanford University

107

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
v v v ;
0x1234abef next: =~ next: = next: next: -
Node* prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data != 5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; Oxb94da30f

Stanford University

108

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
E A v L 4 ’
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; 0xb94da30f

Stanford University

109

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

) data: 1 data: 6 data: 5 data: 4
head: >
E A v L 4 ’
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data != 5) { cur.
prev = cur; . prev: Oxb94da30f
cur = cur->next; Oxb94da30f

Stanford University

110

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
E A v L 4 ’
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; O0xb94da30f

Stanford University

Linked List Delete

111

* Traverse to node before the one we want to delete, free and rewire

* Again, 0(n), since it involves linked list traversal

head data: 1

>
B4
Ox1234abef ~oyeto — MR

-

~ Give it a try! Rewire
and delete the 5 node!

)

data: 6 data: 5 data: 4
L 4 B
next: = next: =~ next: -
cur:
prev: Oxb94da306f
Oxb94da306f

Stanford University

112

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
LY

next: =7 next:

Node* next = cur->next;
delete cur;

prev->next = next; prev: cur:®

Oxb94da30f 0Oxb94da30f

Stanford University

113

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
E 4 4 L 4 _
Ox1234abef next: | °° next: - next: - next:
Node*x next = cur->next; f
delete cur; next:

prev->next = next; Ox943ca39e

prev: cur:
Oxb94da30f Oxb94da30f

Stanford University

114

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head:
@x1234abef* ad v g
next: | 7 next: next: ? next:
Node* next = cur->next; f
delete cur; next:

prev->next = next; Ox943ca39e

prev: cur:
Oxb94da30f Oxb94da30f

Stanford University

115

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head: >
 d — 1> .
Ox1234abef next: -1 next: next: ? next: -
Node* next = cur->next; f
delete cur; next:
prev->next = next; prev: cur: Ox943ca39e

Oxb94da30f 0Oxb94da30f

Stanford University

116

Linked List Delete { HAPPY TIMES J

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 4

head: >

rd —> L
0x1234abef next: -1 next: next: -]
Node* next = cur->next; f
delete cur; next:
prev->next = next; prev: Ox943ca39e

Oxb94da30f

Stanford University

117

Demo: deleteNode

Implement delete as described in previous slides

Stanford University

118

Solution

void deleteNode(Node*& list, int value) {

// traverse to node before value to delete

Node* prev = nullptr;

Node* cur = list;

while (cur != nullptr && cur->data != value) {
prev = cur;
cCur = cur—->next;

}

// delete and rewire

Node* next = cur->next;

delete cur;

if (prev != nullptr) { // added this
prev->next = next;

} else {
list = next; // and this

}

Stanford University

119

Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
* Append-0(n) Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n) Delete-0(n)
* Traverse-0(n) * Traverse-0(n)

Stanford University

120

Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
« Append-0(n) Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n) Delete-0(n)
* Traverse-0(n) * Traverse-0(n)

This isn’t great...
Could we store a pointer to the tail of our list?

Stanford University

121

Demo: createlLi1st

Create a linked list from user input

Stanford University

122

Solution O(n?)

Nodex createlListWithAppend() {
Nodex list = nullptr;
while (true) {
int value = getInteger("Next value: ");
if (value == 0) break;
appendTo(list, value);
}

return list;

Stanford University

123

Solution O(n)

Nodex createlListWithTailPtr() {
Node*x head = nullptr;
Node* tail = head;
while (true) {
int value = getInteger("Next value: ");
if (value == 0) break;
if (head == nullptr) {
head = new Node(value, nullptr);
tail head;
} else {
Nodex nextNode = new Node(value, nullptr);
tail->next = nextNode;
tail = nextNode;

}
}

return head;

Stanford University

124

Passing Pointers by Value

* Unless specified otherwise, parameters in C++ are passed by value
— this includes pointers!

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

Stanford University

125

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

126

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

127

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

128

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, 1int data) {
Node* newNode = new Node; head: nullptr
newNode->data = data; data: 5
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

129

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Nodex newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: ?

}

next: ?

int main() {
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

130

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node* newNode = new Node; head: nullptr

newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5
¥ next: ?

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

} Stanford University

131

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

132

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head:
newNode->data = data; data: ;\\\5“
newNode->next = head; newNode : ——pp»
head = newNode; data: 5
} next: nullptr
int main() { .
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3); Note: this was a copy of the original head,
return 0; so head from main doesn’t get changed!

} Stanford University

133

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

134

Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points
void prependTo(Nodex head, int data
Node* newNode = new Node; [MEMORY LEAK]
newNode->data data;

newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University

135

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

Passing Pointers by Reference

136

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University

Passing Pointers by Reference

137

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University

138

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

head: nullptr
.~ data: 5

}

int main() {

Node* head = nullptr; head: nullptr

prependTo(head, 5); Note: we didn’t make a copy of head,
Egiﬁfgdg?(head > 3)5 prependTo gets access to the head
1 ’ variable from back in main!

Stanford University

139

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Nodex newNode = new Node;

newNode->data data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —-[~ "0
int main() { . next: 2
Nodex head = nullptr; head: nullptr

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

140

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;

newNode->data = data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —p-[T
int main() { . next: 2
head: nullptr

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University

141

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head; head: nullptr

head = newNode; -~ data: 5
¥ newNode: —p

data: 5

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

next: nullptr

head: nullptr

Stanford University

142

Passing Pointers by Reference

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;

newNode->next head; ..zzigf ;\\\\ﬁ‘k

head = newNode; 7 newNode:
} ; : I data: 5

int main() { h: d / next: nullptr
ead:

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University

143

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Nodex head = head:

= nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

144

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Node* head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3); .
return 0; @ Trace the next function

} call with a neighbor!

Stanford University

145

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Nodex head = head:

= nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

146

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data; newNode:
newNode->next = head; /
head = newNode; data: ?
} 5 data: 5

prependTo(head, 5);
prependTo(head, 3);
return 0;

next: 7
int main() { . / next: nullptr
Node* head = nullptr; head:

Stanford University

147

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data; newNode:
newNode->next = head; /
head = newNode; data: 3
J next: ? data: 5
int main() { . / next: nullptr
Node* head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University

148

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data; newNode:
newNode->next = head; /
head = newNode; data: 3
¥ A — data: 5
int main() { . / next: nullptr
Node* head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University

149

Passing Pointers by Reference

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Nodex& head, int data) { head:

Node* newNode = new Node; / data: 3

newNode->data = data; newNode:

newNode->next = head; /

head = newNode; data: 3
} T — data: 5
int main() { next: nullptr

Node* head = nullptr; f

prependTo(head, 5);

head:

prependTo(head, 3);
return 0;
Stanford University

150

Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;

head = newNode; data: 3
} T —p data: 5
int main() { next: nullptr
Nodex head = nullptr; f
prependTo(head, 5);
prependTo(head, 3); head:
return 0;

Stanford University

151

Passing Pointers by Reference

* When passed by reference, the callee function can change where

the origin
void prel When you want a helper function to

Nodel modify the address a pointer points to,

newN .

newN you should pass it by reference.

head
¥ | ——— —p data: 5
int main() { next: nullptr

Nodex head = nullptr; f

prependTo(head, 5);

prependTo(head, 3); head:

return 0;

Stanford University

152

data: 5 data: 3 data: 9

next: =————t—_- next: =——t—-=> | next: nullptr

prev: nullptr | <@—p— prev: ¢4——p— prev:

Doubly Linked Lists

Stanford University

153

Doubly Linked Lists

e Variation of linked lists that store a pointer to the next AND
previous element in the list
* Allows us to traverse in both directions

struct Node {

data: 3 int data;
next: > Node* next;
¢——— prev: NOde* prev;
+s

Stanford University

Doubly Linked Lists

154

e Variation of linked lists that store a pointer to the next AND

previous e
e Allowsus @ Discuss potential pros and cons of
doubly linked lists compared to singly

linked lists. {

next: > Node* next;

<4—— prev: Nodex prev,
s

Stanford University

155

Recap

* Linked list recursion

 We don’t traverse linked lists recursively!
* Big-O runtimes of linked list operations
* createlListdemo
* Pointers by reference
* Doubly linked lists

Stanford University

156

Thank youl!

Stanford University

