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Announcements

* Change of grading basis deadline is this Friday at 5pm PT

 Come chat with us (or check out this resource) if you’re considering whether

to take for letter grade or credit/no credit

Stanford University



https://summer.stanford.edu/unit-and-course-load

Feedback

Rate the pace of lecture
60 responses

~

@® Way too slow
® A little too slow
@ Perfect

@ A little too fast
@ Way too fast

Stanford University



Feedback

Things you liked:

“I really like the drawings on the board as it provides a different, more visual
method of learning”

“Going through the code slower is helping a lot”

“office hours!”

“The explanations that are done in a very step-by-step way, with each slide
incrementing one change has helped make concepts very clear.”

“The provided code during lecture helps a lot to start the assighnments”

Stanford University




Feedback

Places we can improve:

“it's helpful to recap multiple times in between what bigger picture it fits into... (as
opposed to one big recap in the end)”

“I think it would be helpful to have more interactive stuff during lecture (trying to
code on our own, answering practice questions, discussing with others)”

“When there is 5m of class left, not to quickly rush through the last slides”

“I spent a bunch of time doing merge recursively and when | got to the bottom of
the page | noticed it said to do it iteratively so that was a bit annoying.”

Stanford University




Feedback

We hear you...

“I like the stanford libraries but it would also be nice to see how coding
is done in outside settings” Moving forward, we will :)

“I liked LalR but | wish we didn't have to fill in a form to talk to one of
the SLs.” Come to office hours if you like a more relaxed setting!

Stanford University



Feedback

Anything else you would like us to know:

“It’s a char (as in charcoal) not a car. An array of cars is a parking lot, an
array of chats is a string” Controversial!l

“I am really considering CS for a major but | do not know what it would
entail in the next few years.” Come chat with us :)

“I'm honestly not very fond of recursion, however | was able to
appreciate the elegance of some solutions.” Respect!

Stanford University



https://www.youtube.com/watch?v=f6wEtOPtZEE

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

++
- Analysis

Building Abstractions

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion
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Recap: Linked Lists

Stanford University
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Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

Stanford University
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Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

1 0] 6 4 I 2

nullptr

Stanford University
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What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University
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Linked Lists, Structurally

e Alinked list is a chain of nodes

 Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Stanford University
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Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
list->data = 6;
list->next = nullptr;

Dereference AND access the
field for struct pointers using ->

data: 6

list: Oxfca20b006 >

n e X t : nullptr

Lives at Oxfca20b00 on the heap

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head
temp = temp->next;
delete head;
head = temp;
¥ 1 6 4
} — — nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Node*x temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {
head temp
temp = temp->next;

delete head; /
head = temp;
1

6 4

nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; \\\
head = temp;
1

6 4

nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; \\\
head = temp;
227 6 4

} 2722 ol

nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != Llpt
while (hea nullptr) { head temp
temp = temp->next;

delete head; \~\‘
head = temp;

¥ 299 6 4

2?27 — nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \~\‘
head = temp;
¥ 222 6 4
: 222 — nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\\\\\x
head = temp;
¥ 222 6 4
: 222 — nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head; \\\\\\\x
head = temp;
¥ 2272 222 4
) 2727 27272 nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head;
head = temp;
¥ 2272 222 4
) 227 27272 nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head temp
temp = temp->next;
delete head;
head = temp;
¥ 2272 222 4
) 227 2272 nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) { head temp:
temp = temp->next; nullptr
delete head;
head = temp;

¥ 2272 222 4

277 2?77 nullptr

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) { head temp:
temp = temp->next; nullptr
delete head;
head = temp;

} 227 227 227

227? 227? 227?

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
while (head != nullptr) {

head: temp:
temp = temp->next; nullptr nullptr
delete head;
head = temp;
} 227 227 227
I 222 222 222

Stanford University
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Review: Free Linked List

void freeList(Nodex head) {
Nodex temp = head;
hil head != nullptr
white ( utlptr) { head: temp:

temp = temp->next; nullptr nullptr
delete head;

head = temp;

} 227 227 227

227? 227? 227?

Stanford University
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Review: Free Linked List

void freelList(Nodex head) { [ HAPPY TIMES }
Nodex temp = head;

hi'l head != 1llpt
while (hea nutlptr) { head: temp:

temp = temp->next; nullptr nullptr
delete head;

head = temp;

} 227 227 227

227? 227? 227?

Stanford University
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Linked Lists vs. Arrays

Linked Lists Arrays
Chain of nodes, not - Contiguous chunk of memory
contiguous in heap memory on the heap

Access nodes starting at head, - Access elements by index
following the -> next pointer

Good for implementing other

Same!
data structures
Has no member functions like
.size() or .add () + Same!

Stanford University
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Linked Lists and Recursion

Stanford University
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Redefining Linked Lists

e Recall that the structure of a linked list Node is recursive:

struct Node {
string data;
Node*x next;

}s

Stanford University
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Redefining Linked Lists

e Recall that the structure of a linked list Node is recursive:

struct Node {
string data;
Node*x next;

}s

On another level, we can define a linked list recursively...

Stanford University




35

Redefining Linked Lists

A linked list is either:
An empty list (nullptr)

Or a single node that points to another linked list

Stanford University
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Redefining Linked Lists

A linked list is either:
An empty list (nullptr)

Or a single node that points to another linked list

We can define linked lists recursively, so can we implement linked list
operations recursively?

Stanford University
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Redefining Linked List Traversal

Last time:

void printList(Nodex list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

Stanford University
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Redefining Linked List Traversal

Last time: Recursive approach:
void printList(Nodex list) { void printListRec(Node*x list) {
while (list != nullptr) { // Base case
cout << list->data << endl; // Recursive case
list = list->next; }
}
}

Stanford University
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Redefining Linked List Traversal

Last time: Recursive approach:

void printList(Nodex list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

void printListRec(Node*x list) {
// Base case
if (list == nullptr) {
return;

}

// Recursive case

Stanford University
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Redefining Linked List Traversal

Last time: Recursive approach:
void printList(Nodex list) { void printListRec(Node*x list) {
while (list != nullptr) { // Base case
cout << list->data << endl; if (list == nullptr) {
list = list->next; return;
} }
} // Recursive case

cout << list->data << endl;
printListRec(list->next);

Stanford University
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Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...

Stanford University
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Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...

* However, note that the recursive solution generates one recursive
call for every element in the list - a linked list with n elements
would require n stack frames

Stanford University
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Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...

* However, note that the recursive solution generates one recursive
call for every element in the list - a linked list with n elements
would require n stack frames

* For most computers, the stack frame limit is somewhere in the
range of 16-64K - we can’t traverse lists with more than 64K
elements recursively!

Stanford University




44

Pitfalls of Recursive List Traversal

* This recursive solution looks pretty elegant...
* Howey ' ' ' —

ecursive
call fol On Assignment 5, avoid doing list traversals |ents
would recursively! Today, we’ll see that which
e Form operations entail some kind of traversal.  he

range of 16-64K - we can’t traverse lists with more than 64K
elements recursively!

Stanford University



Big-O of Linked List Operations

Stanford Universit
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Linked List Operations

* Prepend
 Append
* Insert

* Delete

* Traverse

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: Oxfca20b0o > P P

next: — next: —

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0xfca20b0o > P P

next: — next: —

Nodex newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0Oxfca20b00 > > |
next: —] next: —
Node*x newFront = new Node;

—_ = ® d t : ?
newFront->data 1; newEront . ata
newFront->next = head; 0x1234abef t: 2
head = newFront; X abe next: ¢

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0xfca20b0o > P P
next: —] next: —
Nodex newFront = new Node;

- = 13 data: 1
newFront->data 13 newFront: . ata
newFront->next = head; 0x1234abef £ 2
head = newFront; X abe next.

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0xfca20b0o > P P
next: = next: —
Nodex newFront = new Node;

- = 1; 1
newFront->data 1; newEront : . data
newFront->next = head; 0x1234abef =
head = newFront; X abe nEXt:

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

data: 6 data: 4
head: 0x1234abef P P

next: — next: —

Nodex newFront = new Node;
newFront->data = 1; d

newFront: ata: 1
newFront->next = head; 0%1234 b.'F > \t
head = newFront; X ape next:

Stanford University
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Linked List Prepend

* Create a node, and make this the new head of the list
* 0(1) - norelation to the length of our list n

head: | data: 1 data: 6 data: 4
Ox1234abef next: 1 next: —1 next: —1

Nodex newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o next: —

N e X t : nullptr

Stanford University




55

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o . next: —

N e X t : nullptr

Node*x cur = head;
while (cur != nullptr &&
cur->next != nullptr) {
Cur = cur->next;

} Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muper
Node* cur = head; “§‘-\‘-~\\§\§\
while (cur != nullptr && cur:
cur->next != nullptr) { Ox1234abef

Cur = cur->next;

} Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muwer
Node* cur = head; ‘K\\\\\\\
while (cur != nullptr && cur:
cur->next != nullptr) { (addresses of
cur = cur->next; other nodes)

} Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = T next: =] next: miwer
Node*x cur = head; k\
while (cur != nullptr && cur:
cur->next != nullptr) { Oxb94da30f

cur = cur->next;

} Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o next: —

N e X t : nullptr

Node* cur = head; //,/’///"

while (cur != nullptr && cur:
cur->next != nullptr) { Ox943ca39e
cur = cur->next;

} Stanford University



Linked List Append

60

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head data: 1

Ox1234abef mEsere o

-V

Node*x newEnd = new Node;

newEnd->data = 10;
newEnd->next = nullpt
cur->next = newEnd;

s

data: 6

data: 4

next: =

N e X t : nullptr

\

cur:
Ox943ca39e

Stanford University



Linked List Append
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* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
: _—V _»

Ox1234abef next: next: next: nuptr
Nodex newEnd = new Node; \
newEnd->data = 10; End - data: ? cur:
newEnd->next = nullptr; 8??8;6&ezg’> 0x943ca39e
cur->next = newEnd; next: ?

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

) data: 1 data: 6 data: 4
head: | P P
Ox1234abef next: o next: =] next: mwper
Node*x newEnd = new Node; \
newEnd->data = 10; End: data: 10 | cur:
newEnd->next = nullptr; 8??8;6&ezg’> 0x943ca39e
cur->next = newEnd; next: ?

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

. data: 1 data: 6 data: 4
head: | P P
Ox1234abef next: next: next: nuptr
Node*x newEnd = new Node; \
newEnd->data = 10; End - data: 10 | cur:
newEnd->next = nullptr; givl\ISgGéIeg» 0x943ca39e
cur—->next = newEnd; Next: nuper

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4

e _ ad
Ox1234abef next: el next: — next:

=y

Node*x newEnd = new Node;

newEnd->data = 10; End - data: 10 | cur:
newEnd->next = nullptr; 8??8;6&ezg’> 0x943ca39e
cur->next = newEnd; nNext: muper

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4 data: 10
Ox1234abef

next: ~1 next: -~ next: - next: muptr

Node*x newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4 data: 10

>
Ly v v
0x1234abef next: -1 next: -] next: -

N e X t : nullptr

Node*x cur = head;
while (cur != nullptr & @ Why did we have this

cur->next != nullptr) { |condition in our traversal loop?

cur = cur->next;

} Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = next: =" next: muper
Nodex cur = head; \
while (cur != nullptr) { cur:
Cur = cur->next; Ox1234abef
}

Stanford University



68

Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muper
Node*x cur = head; ‘K\\\\\\\
while (cur != nullptr) { cur:
cur = cur->next; (addresses of
} other nodes)

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
: —> v v
0x1234abef next: = . next: =" next: muper
Node*x cur = head; k\
while (cur != nullptr) { cur:
Cur = cur->next; Oxb94da3of
}

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> v v
Ox1234abef mEsere o . next: —

N e X t : nullptr

Node* cur = head; ’/,/”’/)"

while (cur != nullptr) { cur:
cur = cur->next; Ox943ca39e

}

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head: data: 1 data: 6 data: 4
) —> v v
Ox1234abef mEsere o “e next: —

N e X t : nullptr

Node*x cur = head;
while (cur != nullptr) { cur:
Cur = cur->next; nullptr

}

Stanford University
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Linked List Append

* Traverse to the end of our list, create and link in new node
* 0(n) - we have to visit n other nodes before reaching the end

head : data: 1 data: 6 data: 4
i —> | v
0x1234abef next: = next: =" next: muwtr
Node*x cur = head;
while (cur != nullptr) { To avoid “falling off” the
cur = cur->next; end of our linked list!
}

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head: data: 1 data: 6 data: 4

>
b 4
Ox1234abef next: -1 N

- -~

next: next:

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
Ly B 4 B 4
0x1234abef next: - I P next: -1
Insert 5 after 6

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head: data: 1 data: 6 data: 4

>
b 4
Ox1234abef next: -1 N

- -~

next: next:

Node* cur = head;
while (cur != nullptr && cur->data != 6) {
cCur = cur->next;

}

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

h ) data: 1 data: 6 data: 4
ead: >
r 4 .4 .4
0x1234abef next: - R next: “
Node*x cur = head;
while (cur != nullptr && cur->data != 6) { cur:
cCur = cur—->next; Ox1234abef
}

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
r 4 .4 .4

0x1234abef next: = ] next: - next: -1

Node* cur = head;

while (cur != nullptr && cur->data != 6) { cur:

cur = cur->next; (addresses of
} other nodes)

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
E 4 LY 4
0x1234abef next: = ] next: - next: -1
Node* cur = head; ‘K\\\\\
while (cur != nullptr && cur->data != 6) { cur:
cur = cur->next; Oxb94da30f
}

Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
b 4 B 4 s 4
0x1234abef next: - I P next: -1
Node*x toInsert = new Node; ‘K\\\\\
toInsert->data = 5; cur:
toInsert->next = ?7?? Oxb94da36f

cur->next = 2?2?72
Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head : data: 1 data: 6 data: 4
b 4 b 4 LY
0x1234abef next: -] Y| hext: - next: -
Nodex toInsert = new Node; ‘K\\\\\
toInsert->data = 5; ? cur:
toInsert->next = 2??  tolnsert: data: : Oxb94da30f
cur->next = 777 Ox2734a81a SEsEe P
Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
Ly b 4 > 4
0x1234abef next: - ] next: - next: “
Node*x toInsert = new Node; ‘K\\\\\
toInsert->data = 53 cur:
toInsert->next = 22?2  toInsert: data: 5 oxb94da3ef
cur->next = 72?7 Ox2734a8la SEsEe P
Stanford University
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°)

-
°

Linked List Insert = How do we link in

this new node?

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

. data: 1 data: 6 data: 4
head: >
Ly b 4 > 4
0x1234abef next: - ] next: - next: “
Nodex toInsert = new Node; ‘K\\\\\
toInsert->data = 5; cur:
toInsert->next = 22?2  tolInsert: data: 5 oxb94da3ef
cur->next = 72?7 Ox2734a8la SEsEe P
Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

i data: 1 data: 6 data: 4
head: >
" 4 >4 Ly
0x1234abef next: -] Y next: A next: 1
Nodex toInsert = new Node; V\/A\
toInsert->data = 5; cur:
toInsert->next = cur->next; data: E/ Oxb94da30f
cur->next = 72?7 toInsert: next:l
Ox2734a81la Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

i data: 1 data: 6 data: 4
head: >
" 4 Ly
0x1234abef next: -] T next: , next: 1
Node* toInsert = new Node; lv\/A\
toInsert->data = 5; cur:
toInsert->next = cur->next; data: E/ Oxb94da30f
cur->next = toInsert; toInsert: next: !
Ox2734a81la Stanford University
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Linked List Insert

* Traverse to some location, create and link in new node
* 0O(n) -we have to visit 0 (n) other nodes before reaching location

head : data: 1 data: 6 data: 5 data: 4

-
cd ~ L
Ox1234abef next: | °° next: - next: - next:

Node*x toInsert = new Node;
toInsert->data = 5;
tolnsert->next = cur->next;

cur—->next = tolnsert;
Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire  Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -

Stanford University




87

Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -

Node* cur = head;
while (cur != nullptr && cur->data != 5) {
cCur = cur->next;

}

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -

Node*x cur = head;
while (cur != nullptr && cur->data != 5) { cur:
cCur = cur—->next; Ox1234abef

}

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

« Again, 0(n), since it involves linked list traversal this 5 node.
head > data: 1 data: 6 data: 5 data: 4
>4 L 4 L 4 .
Ox1234abef next: “ next: - next: = next: -
o
Node* cur = head;
while (cur != nullptr && cur->data != 5) { cur:
cur = cur->next; (addresses of
} other nodes)

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

« Again, 0(n), since it involves linked list traversal this 5 node.
head > data: 1 data: 6 data: 5 data: 4
g v v 5
0x1234abef next: “ next: - next: = next: -
Node* cur = head; \
while (cur != nullptr && cur->data != 5) { cur:
cur = cur->next; Oxb94da30f

}

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

« Again, 0(n), since it involves linked list traversal this 5 node.
head > data: 1 data: 6 data: 5 data: 4
g v v 5
0x1234abef next: “ next: - next: = next: -
Nodex cur = head; \
while (cur != nullptr && cur->data != 5) { cur:
cur = cur->next; Ox2734a8la

}

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
head: > data: 1 data: 6 data: 5 data: 4
4 v v 5
0x1234abef next: -1 next: -7 next: = next: -
delete cur; \
227 cur:
Ox2734a81a

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire Let’s delete

* Again, 0(n), since it involves linked list traversal this 5 node.
. 5 « 9 5
head : data: 1 data: 6 data: * data: 4
> - - )
Ox1234abef next: | next: - next: ? next: -
delete cur; \
227 cur:
Ox2734a81a

Stanford University
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Linked List Delete

* Traverse to node we want to delete, free AND rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head:
ox1234abef V... od -
next: - next: next: ? next: -
delete cur; ‘K\\\\\
22? What went wrong? cur:
We need to rewire the 6 node, but we 0x2734a8la

don’t have a pointer to it.

Stanford University
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Linked List Delete

* Traverse to node we want to delete, fr ire
* Again, 0(n), since it involves linked li§ MEMORY LEAK ]

i data: 1 data: 6 data: ? data: 4
head:
o0x1234abef ... v -
next: - next: - next: ? next: -
delete cur; ‘K\\\\\
22? Another issue... cur:
We have no pointer to the 4 node! Ox2734a81a

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head:
@x1234abef* ad v g
next: | 7 next: next: ? next:
Let’s try again... ‘K\\\\Eur:
Ox2734a81a

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
v v

next: =7 next:

Nodex prev = nullptr;

Node* cur = head;

while (cur != nullptr && cur->data !=5) {
prev = cur;
cur = cur->next;

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
v v

next: =7 next: =

Nodex prev = nullptr;

Node* cur = head;

while (cur != nullptr && cur->data !=5) {
prev = cur; prev:
cur = cur->next;

) nullptr

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
L rd A .
0x1234abef next: - next: -7 next: next: -
-
Nodex prev = nullptr;
Node*x cur = head; —
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Ox1234abef
cur = cur->next; nullptr

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
LY L ~ b
0x1234abef next: -1 " next: -7 next: =7 next: -
$
Nodex prev = nullptr;
Node* cur = head;

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: Ox1234abef
cur = cur->next;

nullptr

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
v v

next: =7 next:

Node* prev = nullptr;
Node* cur = head; —
while (cur != nullptr && cur->data != 5) { cur-.
prev = cur; prev: Ox1234abef
cur = cur->next;

Ox1234abef

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

>
L A od v g
OX1234abef neXt: e nex-t: ~ next: - next:
Nodex prev = nullptr;

Nodex cur = head; \

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: (addresses of

cur = cur->next; Ox1234abef ©Other nodes)

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

>
L A od v g
OX1234abef neXt: e nex-t: ~ next: - next:
Nodex prev = nullptr;

Nodex cur = head; \

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: (addresses of

cur = cur->next; Ox1234abef other nodes)

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

>
L A od v g
OX1234abef neXt: e nex-t: ~ next: - next:
Nodex prev = nullptr;

Nodex cur = head; \

while (cur != nullptr && cur->data != 5) { cur:
prev = cur; prev: (addresses of

cur = cur->next; (addresses other nodes)
}

of other nodes )Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

) data: 1 data: 6 data: 5 data: 4
head: >
L rd A .
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; (addresses
}

of other nodes )Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

) data: 1 data: 6 data: 5 data: 4
head: >
L L A .
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data != 5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; (addresses
}

of other nodes )Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
v v v ;
0x1234abef next: =~ next: = next: next: -
Node* prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data != 5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; Oxb94da30f

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
E A v L 4 ’
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; 0xb94da30f

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

) data: 1 data: 6 data: 5 data: 4
head: >
E A v L 4 ’
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data != 5) { cur.
prev = cur; . prev: Oxb94da30f
cur = cur->next; Oxb94da30f

Stanford University




110

Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
E A v L 4 ’
0x1234abef next: - next: -7 next: next: -
Nodex prev = nullptr; \
Node* cur = head; .
while (cur != nullptr && cur->data !=5) { cur.
prev = cur; prev: Oxb94da30f
cur = cur->next; O0xb94da30f

Stanford University
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* Traverse to node before the one we want to delete, free and rewire

* Again, 0(n), since it involves linked list traversal

head data: 1

>
B4
Ox1234abef ~oyeto — MR

-

~ Give it a try! Rewire
and delete the 5 node!

)

data: 6 data: 5 data: 4
L 4 B
next: = next: =~ next: -
cur:
prev: Oxb94da306f
Oxb94da306f

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

head: data: 1 data: 6 data: 5 data: 4

-
LY

next: =7 next:

Node* next = cur->next;
delete cur;

prev->next = next; prev: cur:®

Oxb94da30f 0Oxb94da30f

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 5 data: 4
head: >
E 4 4 L 4 _
Ox1234abef next: | °° next: - next: - next:
Node*x next = cur->next; f
delete cur; next:

prev->next = next; Ox943ca39e

prev: cur:
Oxb94da30f Oxb94da30f

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head:
@x1234abef* ad v g
next: | 7 next: next: ? next:
Node* next = cur->next; f
delete cur; next:

prev->next = next; Ox943ca39e

prev: cur:
Oxb94da30f Oxb94da30f

Stanford University
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Linked List Delete

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: ? data: 4
head: >
 d — 1> .
Ox1234abef next: -1 next: next: ? next: -
Node* next = cur->next; f
delete cur; next:
prev->next = next; prev: cur: Ox943ca39e

Oxb94da30f 0Oxb94da30f

Stanford University
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Linked List Delete { HAPPY TIMES J

* Traverse to node before the one we want to delete, free and rewire
* Again, 0(n), since it involves linked list traversal

. data: 1 data: 6 data: 4

head: >

rd —> L
0x1234abef next: -1 next: next: -]
Node* next = cur->next; f
delete cur; next:
prev->next = next; prev: Ox943ca39e

Oxb94da30f

Stanford University
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Demo: deleteNode

Implement delete as described in previous slides

Stanford University
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Solution

void deleteNode(Node*& list, int value) {

// traverse to node before value to delete

Node* prev = nullptr;

Node* cur = list;

while (cur != nullptr && cur->data != value) {
prev = cur;
cCur = cur—->next;

}

// delete and rewire

Node* next = cur->next;

delete cur;

if (prev != nullptr) { // added this
prev->next = next;

} else {
list = next; // and this

}

Stanford University
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Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
* Append-0(n)  Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n)  Delete-0(n)
* Traverse-0(n) * Traverse-0(n)

Stanford University
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Linked Lists vs. Arrays, Big-O

Linked Lists Arrays
* Prepend-0(1) * Prepend-0(n)
« Append-0(n)  Append-0(1)
* Insert-0(n) * Insert-0(n)
 Delete-0(n)  Delete-0(n)
* Traverse-0(n) * Traverse-0(n)

This isn’t great...
Could we store a pointer to the tail of our list?

Stanford University
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Demo: createlLi1st

Create a linked list from user input

Stanford University
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Solution O(n?)

Nodex createlListWithAppend() {
Nodex list = nullptr;
while (true) {
int value = getInteger("Next value: ");
if (value == 0) break;
appendTo(list, value);
}

return list;

Stanford University
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Solution O(n)

Nodex createlListWithTailPtr() {
Node*x head = nullptr;
Node* tail = head;
while (true) {
int value = getInteger("Next value: ");
if (value == 0) break;
if (head == nullptr) {
head = new Node(value, nullptr);
tail head;
} else {
Nodex nextNode = new Node(value, nullptr);
tail->next = nextNode;
tail = nextNode;

}
}

return head;

Stanford University
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Passing Pointers by Value

* Unless specified otherwise, parameters in C++ are passed by value
— this includes pointers!

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, 1int data) {
Node* newNode = new Node; head: nullptr
newNode->data = data; data: 5
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Nodex newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: ?

}

next: ?

int main() {
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node* newNode = new Node; head: nullptr

newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5
¥ next: ?

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

} Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head: nullptr
newNode->data = data; data: 5

newNode->next = head; newNode : ——pp»

head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {

Node*x newNode = new Node; head:
newNode->data = data; data: ;\\\5“
newNode->next = head; newNode : ——pp»
head = newNode; data: 5
} next: nullptr
int main() { .
Node* head = nullptr; head: nullptr
prependTo(head, 5);
prependTo(head, 3); Note: this was a copy of the original head,
return 0; so head from main doesn’t get changed!

} Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points

void prependTo(Nodex head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Value

 When passed by value, callee function gets a copy of the pointer;
it cannot change where the original pointer points
void prependTo(Nodex head, int data
Node* newNode = new Node; [ MEMORY LEAK ]
newNode->data data;

newNode->next = head;
head = newNode; data: 5

}

next: nullptr

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head: nullptr

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Nodex head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University
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* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

int main() {
Node* head = nullptr;
prependTo(head, 5)3
prependTo(head, 3);
return 0;

head:

nullptr

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

head: nullptr
.~ data: 5

}

int main() {

Node* head = nullptr; head: nullptr

prependTo(head, 5); Note: we didn’t make a copy of head,
Egiﬁfgdg?(head > 3)5 prependTo gets access to the head
1 ’ variable from back in main!

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Nodex newNode = new Node;

newNode->data data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —-[ ~ "0
int main() { . next: 2
Nodex head = nullptr; head: nullptr

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;

newNode->data = data;
newNode->next = head; “head: nullptr
head = newNode; .; data: 5.
b newNode: —p-[ T
int main() { . next: 2
head: nullptr

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head; head: nullptr

head = newNode; -~ data: 5
¥  newNode: —p

data: 5

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

next: nullptr

head: nullptr

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;

newNode->next head; ..zzigf ;\\\\ﬁ‘k

head = newNode; 7 newNode:
} ; : I data: 5

int main() { h: d / next: nullptr
ead:

Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Nodex head = head:

= nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Node* head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3); .
return 0; @ Trace the next function

} call with a neighbor!
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data;
newNode->next = head;
head = newNode;

} data: 5

int main() { . / next: nullptr
Nodex head = head:

= nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data; newNode:
newNode->next = head; /
head = newNode; data: ?
} 5 data: 5

prependTo(head, 5);
prependTo(head, 3);
return 0;

next: 7
int main() { . / next: nullptr
Node* head = nullptr; head:
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data; newNode:
newNode->next = head; /
head = newNode; data: 3
J next: ? data: 5
int main() { . / next: nullptr
Node* head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3);
return 0;

} Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Nodex& head, int data) { head:
Node* newNode = new Node; data: 3
newNode->data = data; newNode:
newNode->next = head; /
head = newNode; data: 3
¥ A — data: 5
int main() { . / next: nullptr
Node* head = nullptr; head:

prependTo(head, 5);
prependTo(head, 3);
return 0;

Stanford University




149

Passing Pointers by Reference

* When passed by reference, the callee function can change where

the original pointer points

void prependTo(Nodex& head, int data) { head:

Node* newNode = new Node; / data: 3

newNode->data = data; newNode:

newNode->next = head; /

head = newNode; data: 3
} T — data: 5
int main() { next: nullptr

Node* head = nullptr; f

prependTo(head, 5);

head:

prependTo(head, 3);
return 0;
Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where
the original pointer points

void prependTo(Node*& head, int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;

head = newNode; data: 3
} T —p data: 5
int main() { next: nullptr
Nodex head = nullptr; f
prependTo(head, 5);
prependTo(head, 3); head:
return 0;

Stanford University
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Passing Pointers by Reference

* When passed by reference, the callee function can change where

the origin
void prel When you want a helper function to

Nodel  modify the address a pointer points to,

newN .

newN you should pass it by reference.

head
¥ | ——— —p data: 5
int main() { next: nullptr

Nodex head = nullptr; f

prependTo(head, 5);

prependTo(head, 3); head:

return 0;
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data: 5 data: 3 data: 9

next: =————t—_- next: =——t—-=> | next: nullptr

prev: nullptr | <@—p— prev: ¢4——p— prev:

Doubly Linked Lists

Stanford University
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Doubly Linked Lists

e Variation of linked lists that store a pointer to the next AND
previous element in the list
* Allows us to traverse in both directions

struct Node {

data: 3 int data;
next: > Node* next;
¢——— prev: NOde* prev;
+s

Stanford University
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e Variation of linked lists that store a pointer to the next AND

previous e
e Allowsus @ Discuss potential pros and cons of
doubly linked lists compared to singly

linked lists. {

next: > Node* next;

<4—— prev: Nodex prev,
s

Stanford University



155

Recap

* Linked list recursion

 We don’t traverse linked lists recursively!
* Big-O runtimes of linked list operations
* createlListdemo
* Pointers by reference
* Doubly linked lists
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Thank youl!
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