
Linked Lists 2
Elyse Cornwall

August 1, 2023

Contributions made from previous CS106B Instructors

Announcements

• Change of grading basis deadline is this Friday at 5pm PT
• Come chat with us (or check out this resource) if you’re considering whether

to take for letter grade or credit/no credit

2

https://summer.stanford.edu/unit-and-course-load

Feedback

3

Feedback

Things you liked:

“I really like the drawings on the board as it provides a different, more visual

method of learning”

“Going through the code slower is helping a lot”

“office hours!”

“The explanations that are done in a very step-by-step way, with each slide

incrementing one change has helped make concepts very clear.”

“The provided code during lecture helps a lot to start the assignments”

4

Feedback

Places we can improve:

“it's helpful to recap multiple times in between what bigger picture it fits into… (as

opposed to one big recap in the end)”

“I think it would be helpful to have more interactive stuff during lecture (trying to

code on our own, answering practice questions, discussing with others)”

“When there is 5m of class left, not to quickly rush through the last slides”

“I spent a bunch of time doing merge recursively and when I got to the bottom of

the page I noticed it said to do it iteratively so that was a bit annoying.”

5

Feedback

We hear you…

“I like the stanford libraries but it would also be nice to see how coding

is done in outside settings” Moving forward, we will :)

“I liked LaIR but I wish we didn't have to fill in a form to talk to one of

the SLs.” Come to office hours if you like a more relaxed setting!

6

Feedback

Anything else you would like us to know:

“It’s a char (as in charcoal) not a car. An array of cars is a parking lot, an
array of chats is a string” Controversial!

“I am really considering CS for a major but I do not know what it would
entail in the next few years.” Come chat with us :)

“I'm honestly not very fond of recursion, however I was able to
appreciate the elegance of some solutions.” Respect!

7

https://www.youtube.com/watch?v=f6wEtOPtZEE

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures Advanced

Algorithms

8

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Recap: Linked Lists

9

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

10

1 0 6 4 7 2

0 1 2 3 4 5

• Easily resizable

• Efficient to insert elements at the beginning

Benefits of Linked Lists

11

6 2

nullptr

7401

What are Linked Lists?

• A way we can use pointers to organize non-contiguous memory on

the heap

12

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

13

6
struct Node {

int data;
Node* next;

};

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

14

Node* list = new Node;
list->data = 6;
list->next = nullptr;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: nullptr

Dereference AND access the
field for struct pointers using ->

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

15

1 6 4

nullptr

head

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

16

1 6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

17

1 6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

18

1 6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

19

???

???

6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

20

???

???

6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

21

???

???

6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

22

???

???

6 4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

23

???

???

???

???

4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

24

???

???

???

???

4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

25

???

???

???

???

4

nullptr

head temp

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

26

???

???

???

???

4

nullptr

head temp:
nullptr

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

27

???

???

???

???

???

???

head temp:
nullptr

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

28

???

???

???

???

???

???

head:
nullptr

temp:
nullptr

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

29

???

???

???

???

???

???

head:
nullptr

temp:
nullptr

Review: Free Linked List

void freeList(Node* head) {
Node* temp = head;
while (head != nullptr) {

temp = temp->next;
delete head;
head = temp;

}
}

30

???

???

???

???

???

???

head:
nullptr

temp:
nullptr

HAPPY TIMES 👍

Linked Lists vs. Arrays

Linked Lists

• Chain of nodes, not
contiguous in heap memory

• Access nodes starting at head,
following the -> next pointer

• Good for implementing other
data structures

• Has no member functions like
.size() or .add()

Arrays

• Contiguous chunk of memory
on the heap

• Access elements by index

• Same!

• Same!

31

Linked Lists and Recursion

32

Redefining Linked Lists

• Recall that the structure of a linked list Node is recursive:

33

struct Node {
string data;
Node* next;

};

Redefining Linked Lists

• Recall that the structure of a linked list Node is recursive:

On another level, we can define a linked list recursively…

34

struct Node {
string data;
Node* next;

};

Redefining Linked Lists

A linked list is either:

An empty list (nullptr)

Or a single node that points to another linked list

35

Redefining Linked Lists

A linked list is either:

An empty list (nullptr)

Or a single node that points to another linked list

We can define linked lists recursively, so can we implement linked list

operations recursively?

36

Redefining Linked List Traversal

Last time:

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

37

Redefining Linked List Traversal

Last time:

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

38

Recursive approach:

void printListRec(Node* list) {
 // Base case

// Recursive case
}

Redefining Linked List Traversal

Last time:

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

39

Recursive approach:

void printListRec(Node* list) {
 // Base case

if (list == nullptr) {
return;

}
// Recursive case

}

Redefining Linked List Traversal

Last time:

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

40

Recursive approach:

void printListRec(Node* list) {
 // Base case

if (list == nullptr) {
return;

}
// Recursive case
cout << list->data << endl;
printListRec(list->next);

}

Pitfalls of Recursive List Traversal

• This recursive solution looks pretty elegant…

41

Pitfalls of Recursive List Traversal

• This recursive solution looks pretty elegant…
• However, note that the recursive solution generates one recursive

call for every element in the list - a linked list with n elements

would require n stack frames

42

Pitfalls of Recursive List Traversal

• This recursive solution looks pretty elegant…
• However, note that the recursive solution generates one recursive

call for every element in the list - a linked list with n elements

would require n stack frames

• For most computers, the stack frame limit is somewhere in the

range of 16-64K - we can’t traverse lists with more than 64K

elements recursively!

43

Pitfalls of Recursive List Traversal

• This recursive solution looks pretty elegant…
• However, note that the recursive solution generates one recursive

call for every element in the list - a linked list with n elements

would require n stack frames

• For most computers, the stack frame limit is somewhere in the

range of 16-64K - we can’t traverse lists with more than 64K

elements recursively!

44

On Assignment 5, avoid doing list traversals
recursively! Today, we’ll see that which

operations entail some kind of traversal.

Big-O of Linked List Operations

45

Linked List Operations

• Prepend

• Append

• Insert

• Delete

• Traverse

46

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

47

head: 0xfca20b00
data: 6

next:

data: 4

next:

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

48

head: 0xfca20b00
data: 6

next:

data: 4

next:

Node* newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

49

head: 0xfca20b00
data: 6

next:

data: 4

next:

newFront:
0x1234abef

data: ?

next: ?

Node* newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

50

head: 0xfca20b00
data: 6

next:

data: 4

next:

newFront:
0x1234abef

data: 1

next: ?

Node* newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

51

head: 0xfca20b00
data: 6

next:

data: 4

next:

newFront:
0x1234abef

data: 1

next:

Node* newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Node* newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

52

head: 0x1234abef
data: 6

next:

data: 4

next:

newFront:
0x1234abef

data: 1

next:

Linked List Prepend

• Create a node, and make this the new head of the list

• O(1) - no relation to the length of our list n

53

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next:

Node* newFront = new Node;
newFront->data = 1;
newFront->next = head;
head = newFront;

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

54

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

55

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

Node* cur = head;
while (cur != nullptr &&

cur->next != nullptr) {
cur = cur->next;

}

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

56

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* cur = head;
while (cur != nullptr &&

cur->next != nullptr) {
cur = cur->next;

}

…

cur:
0x1234abef

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

57

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* cur = head;
while (cur != nullptr &&

cur->next != nullptr) {
cur = cur->next;

}

…

cur:
(addresses of
other nodes)

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

58

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

cur:
0xb94da30f

Node* cur = head;
while (cur != nullptr &&

cur->next != nullptr) {
cur = cur->next;

}

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

59

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

cur:
0x943ca39e

Node* cur = head;
while (cur != nullptr &&

cur->next != nullptr) {
cur = cur->next;

}

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

60

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

…

cur:
0x943ca39e

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

61

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

…

cur:
0x943ca39e

data: ?

next: ?
newEnd:
0x1876deca

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

62

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

…

cur:
0x943ca39e

data: 10

next: ?
newEnd:
0x1876deca

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

63

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

…

cur:
0x943ca39e

data: 10

next: nullptr

newEnd:
0x1876deca

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

64

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next:

Node* newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

…

cur:
0x943ca39e

data: 10

next: nullptr

newEnd:
0x1876deca

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

65

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next:

Node* newEnd = new Node;
newEnd->data = 10;
newEnd->next = nullptr;
cur->next = newEnd;

…
data: 10

next: nullptr

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

66

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next:

Node* cur = head;
while (cur != nullptr &&

cur->next != nullptr) {
cur = cur->next;

}

…
data: 10

next: nullptr

👥 Why did we have this
condition in our traversal loop?

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

67

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* cur = head;
while (cur != nullptr) {

cur = cur->next;
}

…

cur:
0x1234abef

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

68

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* cur = head;
while (cur != nullptr) {

cur = cur->next;
}

…

cur:
(addresses of
other nodes)

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

69

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

cur:
0xb94da30f

Node* cur = head;
while (cur != nullptr) {

cur = cur->next;
}

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

70

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

cur:
0x943ca39e

Node* cur = head;
while (cur != nullptr) {

cur = cur->next;
}

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

71

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

cur:
nullptr

Node* cur = head;
while (cur != nullptr) {

cur = cur->next;
}

Linked List Append

• Traverse to the end of our list, create and link in new node

• O(n) - we have to visit n other nodes before reaching the end

72

head:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next: …

Node* cur = head;
while (cur != nullptr) {

cur = cur->next;
}

To avoid “falling off” the
end of our linked list!

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

73

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

74

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Insert 5 after 6

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

75

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* cur = head;
while (cur != nullptr && cur->data != 6) {

cur = cur->next;
}

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

76

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* cur = head;
while (cur != nullptr && cur->data != 6) {

cur = cur->next;
}

cur:
0x1234abef

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

77

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* cur = head;
while (cur != nullptr && cur->data != 6) {

cur = cur->next;
}

cur:
(addresses of
other nodes)

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

78

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* cur = head;
while (cur != nullptr && cur->data != 6) {

cur = cur->next;
}

cur:
0xb94da30f

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

79

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = ???
cur->next = ???

cur:
0xb94da30f

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

80

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = ???
cur->next = ???

cur:
0xb94da30fdata: ?

next: ?
toInsert:
0x2734a81a

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

81

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = ???
cur->next = ???

cur:
0xb94da30fdata: 5

next: ?
toInsert:
0x2734a81a

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

82

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = ???
cur->next = ???

cur:
0xb94da30fdata: 5

next: ?
toInsert:
0x2734a81a

🤔 How do we link in
this new node?

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

83

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = cur->next;
cur->next = ???

cur:
0xb94da30fdata: 5

next: toInsert:
0x2734a81a

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

84

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: … …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = cur->next;
cur->next = toInsert;

cur:
0xb94da30fdata: 5

next: toInsert:
0x2734a81a

Linked List Insert

• Traverse to some location, create and link in new node

• O(n) - we have to visit O(n) other nodes before reaching location

85

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

Node* toInsert = new Node;
toInsert->data = 5;
toInsert->next = cur->next;
cur->next = toInsert;

data: 5

next:

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

86

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Let’s delete
this 5 node.

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

87

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Let’s delete
this 5 node.

Node* cur = head;
while (cur != nullptr && cur->data != 5) {

cur = cur->next;
}

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

88

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Let’s delete
this 5 node.

cur:
0x1234abef

Node* cur = head;
while (cur != nullptr && cur->data != 5) {

cur = cur->next;
}

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

89

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Let’s delete
this 5 node.

cur:
(addresses of
other nodes)

Node* cur = head;
while (cur != nullptr && cur->data != 5) {

cur = cur->next;
}

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

90

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Let’s delete
this 5 node.

cur:
0xb94da30f

Node* cur = head;
while (cur != nullptr && cur->data != 5) {

cur = cur->next;
}

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

91

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Let’s delete
this 5 node.

cur:
0x2734a81a

Node* cur = head;
while (cur != nullptr && cur->data != 5) {

cur = cur->next;
}

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

92

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

Let’s delete
this 5 node.

cur:
0x2734a81a

data: 5

next:

delete cur;
???

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

93

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

Let’s delete
this 5 node.

cur:
0x2734a81a

data: ?

next: ?

delete cur;
???

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

94

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

cur:
0x2734a81a

What went wrong?
We need to rewire the 6 node, but we

don’t have a pointer to it.

delete cur;
???

data: ?

next: ?

Linked List Delete

• Traverse to node we want to delete, free AND rewire

• Again, O(n), since it involves linked list traversal

95

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

cur:
0x2734a81a

delete cur;
???

data: ?

next: ?

MEMORY LEAK 👎

Another issue…
We have no pointer to the 4 node!

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

96

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

cur:
0x2734a81a

Let’s try again…

data: ?

next: ?

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

97

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

98

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
nullptr

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

99

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0x1234abef

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
nullptr

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

100

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0x1234abef

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
nullptr

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

101

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0x1234abef

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0x1234abef

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

102

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
(addresses of
other nodes)

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0x1234abef

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

103

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
(addresses of
other nodes)

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0x1234abef

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

104

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
(addresses of
other nodes)

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
(addresses
of other nodes)

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

105

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30f

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
(addresses
of other nodes)

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

106

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30f

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
(addresses
of other nodes)

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

107

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30f

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0xb94da30f

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

108

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30f

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0xb94da30f

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

109

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30f

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0xb94da30f

Linked List Delete

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

110

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30f

Node* prev = nullptr;
Node* cur = head;
while (cur != nullptr && cur->data != 5) {

prev = cur;
cur = cur->next;

}

prev:
0xb94da30f

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

Linked List Delete

111

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

cur:
0xb94da30fprev:

0xb94da30f

🤔 Give it a try! Rewire
and delete the 5 node!

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

Linked List Delete

112

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Node* next = cur->next;
delete cur;
prev->next = next; prev:

0xb94da30f
cur:
0xb94da30f

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

Linked List Delete

113

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: 5

next:

Node* next = cur->next;
delete cur;
prev->next = next;

next:
0x943ca39eprev:

0xb94da30f
cur:
0xb94da30f

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

Linked List Delete

114

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: ?

next: ?

Node* next = cur->next;
delete cur;
prev->next = next;

next:
0x943ca39eprev:

0xb94da30f
cur:
0xb94da30f

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

Linked List Delete

115

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …
data: ?

next: ?

Node* next = cur->next;
delete cur;
prev->next = next;

next:
0x943ca39eprev:

0xb94da30f
cur:
0xb94da30f

• Traverse to node before the one we want to delete, free and rewire

• Again, O(n), since it involves linked list traversal

Linked List Delete

116

head:
0x1234abef

data: 6

next:

data: 4

next:

data: 1

next: …

Node* next = cur->next;
delete cur;
prev->next = next;

next:
0x943ca39eprev:

0xb94da30f

HAPPY TIMES 👍

Demo: deleteNode
Implement delete as described in previous slides

117

Solution

void deleteNode(Node*& list, int value) {
 // traverse to node before value to delete
 Node* prev = nullptr;
 Node* cur = list;
 while (cur != nullptr && cur->data != value) {
 prev = cur;
 cur = cur->next;
 }
 // delete and rewire
 Node* next = cur->next;
 delete cur;
 if (prev != nullptr) { // added this
 prev->next = next;
 } else {
 list = next; // and this
 }
}

118

Linked Lists vs. Arrays, Big-O

Linked Lists

• Prepend - O(1)
• Append - O(n)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

Arrays

• Prepend - O(n)
• Append - O(1)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

119

Linked Lists vs. Arrays, Big-O

Linked Lists

• Prepend - O(1)
• Append - O(n)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

Arrays

• Prepend - O(n)
• Append - O(1)
• Insert - O(n)
• Delete - O(n)
• Traverse - O(n)

120

This isn’t great…
Could we store a pointer to the tail of our list?

Demo: createList
Create a linked list from user input

121

Solution O(n2)

Node* createListWithAppend() {
 Node* list = nullptr;
 while (true) {
 int value = getInteger("Next value: ");
 if (value == 0) break;
 appendTo(list, value);
 }
 return list;
}

122

Solution O(n)

Node* createListWithTailPtr() {
 Node* head = nullptr;
 Node* tail = head;
 while (true) {
 int value = getInteger("Next value: ");
 if (value == 0) break;
 if (head == nullptr) {
 head = new Node(value, nullptr);
 tail = head;
 } else {
 Node* nextNode = new Node(value, nullptr);
 tail->next = nextNode;
 tail = nextNode;
 }
 }
 return head;
}

123

Passing Pointers by Value

• Unless specified otherwise, parameters in C++ are passed by value

– this includes pointers!

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

124

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

125

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

126

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

127

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

128

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

129

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5
newNode:

data: ?

next: ?

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

130

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5
newNode:

data: 5

next: ?

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

131

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head: nullptr
data: 5
newNode:

data: 5

next: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

132

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

head:
data: 5
newNode:

data: 5

next: nullptr

Note: this was a copy of the original head,
so head from main doesn’t get changed!

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

133

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

data: 5

next: nullptr

Passing Pointers by Value

• When passed by value, callee function gets a copy of the pointer;

it cannot change where the original pointer points

134

void prependTo(Node* head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

data: 5

next: nullptr

MEMORY LEAK 👎

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

135

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

136

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

137

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

138

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5

head: nullptr

Note: we didn’t make a copy of head,
prependTo gets access to the head
variable from back in main!

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

139

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5
newNode:

head: nullptr

data: ?

next: ?

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

140

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5
newNode:

head: nullptr

data: 5

next: ?

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

141

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head: nullptr
data: 5
newNode:

head: nullptr

data: 5

next: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

142

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:
data: 5
newNode:

head:

data: 5

next: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

143

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

144

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

👥 Trace the next function
call with a neighbor!

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

145

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

head:
data: 3

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

146

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

head:
data: 3
newNode:

data: ?

next: ?

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

147

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

head:
data: 3
newNode:

data: 3

next: ?

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

148

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

head:
data: 3
newNode:

data: 3

next:

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

149

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

head:
data: 3
newNode:

data: 3

next:

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

150

void prependTo(Node*& head, int data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

data: 3

next:

Passing Pointers by Reference

• When passed by reference, the callee function can change where

the original pointer points

151

void prependTo(Node*& head, string data) {
 Node* newNode = new Node;
 newNode->data = data;
 newNode->next = head;
 head = newNode;
}

int main() {
Node* head = nullptr;
prependTo(head, 5);
prependTo(head, 3);
return 0;

}

head:

data: 5

next: nullptr

data: 3

next:

When you want a helper function to
modify the address a pointer points to,

you should pass it by reference.

Doubly Linked Lists

152

data: 9

next: nullptr

prev:

data: 3

next:

prev:

data: 5

next:

prev: nullptr

Doubly Linked Lists

• Variation of linked lists that store a pointer to the next AND

previous element in the list

• Allows us to traverse in both directions

153

struct Node {
int data;
Node* next;
Node* prev;

};

data: 3

next:

prev:

Doubly Linked Lists

• Variation of linked lists that store a pointer to the next AND

previous element in the list

• Allows us to traverse in both directions

154

struct Node {
int data;
Node* next;
Node* prev;

};

data: 3

next:

prev:

👥 Discuss potential pros and cons of
doubly linked lists compared to singly

linked lists.

Recap

• Linked list recursion
• We don’t traverse linked lists recursively!

• Big-O runtimes of linked list operations

• createList demo

• Pointers by reference

• Doubly linked lists

155

Thank you!

156

