
Linked Lists 1
Elyse Cornwall

July 31, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 3 IGs this week
• IG attendance is part of section participation grade

• Assignment 4 due this Wednesday at 11:59pm
• Draws heavily from last week’s lectures

• Lecture 17 is a conceptual walkthrough of what you’ll be implementing

2

Recap: Pointers

3

How is computer memory organized?

• Memory in your computer is just a giant array!
• Can think of it as a long row of boxes, with each box having a value in it

and an associated index

4

…

0 1 2 3 4 5 6 7 8 9 10 …

• How can we communicate with the computer to find exactly which

box we want to access/store information in?
• We’ll give each box an associated numerical location, called a memory

address

What is a pointer?

5

A memory address!!

Pointer Syntax

• Pointers are necessary to store the value generated by the new

keyword (which is just a memory address on the heap)

int* oneElem = new int;

6

0x94bce8e4oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap

Pointer Syntax

• To read or modify the variable that a pointer points to, we use the

* (asterisk) operator (in a different way than before!)

• Known as dereferencing the pointer

• Follow the arrow to the memory location

7

0x94bce8e4oneElem:

0x3840c030

5

0x94bce8e4

Stack Heap

*oneElem = 5;

nullptr

• When we declare/initialize a pointer but don’t have anything to

point it at yet, that can be dangerous and unpredictable

• To ensure that we can tell if a pointer has a valid address or not, set

your declared pointer to nullptr, which means "no valid address"

8

string* showPtr = nullptr;

showPtr:

0x35efcdf8

Under the Hood

int* sixInts = new int[6];

9

Arrays are contiguous chunks of space in

the computer's memory

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

10

1 6 4 7 2 ?

0 1 2 3 4 5

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

11

1 6 4 7 2 ?

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

12

1 6 4 7 2 2

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

13

1 6 4 7 7 2

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

14

1 6 4 4 7 2

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

15

1 6 6 4 7 2

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

16

1 1 6 4 7 2

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

17

5 1 6 4 7 2

0 1 2 3 4 5

Insert 5 here, please!

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

18

5 1 6 4 7 2

0 1 2 3 4 5

Do you have room for a 9?

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

19

5 1 6 4 7 2

0 1 2 3 4 5

Do you have room for a 9?

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

20

5 1 6 4 7 2
0 1 2 3 4 5

? ? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

21

5 1 6 4 7 2
0 1 2 3 4 5

5 ? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

22

5 1 6 4 7 2
0 1 2 3 4 5

5 1 ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

23

5 1 6 4 7 2
0 1 2 3 4 5

5 1 6 ? ? ? ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

24

5 1 6 4 7 2
0 1 2 3 4 5

5 1 6 4 ? ? ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

25

5 1 6 4 7 2
0 1 2 3 4 5

5 1 6 4 7 ? ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

26

5 1 6 4 7 2
0 1 2 3 4 5

5 1 6 4 7 2 ? ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

27

5 1 6 4 7 2
0 1 2 3 4 5

5 1 6 4 7 2 9 ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

28

5 1 6 4 7 2 9 ? ?
0 1 2 3 4 5 6 7 8

🙄

Frustrations with Arrays

• Not easily resizable

• Not efficient to insert elements at the beginning

29

5 1 6 4 7 2 9 ? ?
0 1 2 3 4 5 6 7 8

Can we do better?
🙄

Linked Lists

30

What are Linked Lists?

• A way we can use pointers to organize non-contiguous memory on

the heap

31

What are Linked Lists?

• A way we can use pointers to organize non-contiguous memory on

the heap

32

What are Linked Lists?

• A way we can use pointers to organize non-contiguous memory on

the heap

33

Could we store 10 integers like this?

What are Linked Lists?

• A way we can use pointers to organize non-contiguous memory on

the heap

34

Or this?

Benefits of Linked Lists

35

1 4 7 26

Benefits of Linked Lists

36

1 4 7 26

Insert 5 here, please!

Benefits of Linked Lists

37

1 4 7 26

Insert 5 here, please!

5

Benefits of Linked Lists

38

1 4 7 26

Insert 5 here, please!

5

Benefits of Linked Lists

39

5 1 4 7 26

Benefits of Linked Lists

40

Do you have room for a 9?

5 1 4 7 26

Benefits of Linked Lists

41

Do you have room for a 9?

😎

5 1 4 7 26

Benefits of Linked Lists

42

Do you have room for a 9?

9

5 1 4 7 26

😎

Benefits of Linked Lists

43

Do you have room for a 9?

9

5 1 4 7 26

😎

Benefits of Linked Lists

44

95 1 4 7 26

• Easily resizable

• Efficient to insert elements at the beginning

😎

Benefits of Linked Lists

45

95 1 4 7 26

• Easily resizable

• Efficient to insert elements at the beginning

Okay, but what are these little boxes?

Benefits of Linked Lists

46

95 1 4 7 26

• Easily resizable

• Efficient to insert elements at the beginning

Okay, but what are these little boxes?Ints?

Benefits of Linked Lists

47

95 1 4 7 26

• Easily resizable

• Efficient to insert elements at the beginning

Okay, but what are these little boxes?Ints?

Length 1 arrays?

Linked Lists, Structurally

• A linked list is a chain of nodes

48

5 1 4 7 26

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A link to the next node

49

6

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A pointer to the next node

50

6
What are pointers again?

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A pointer to the next node

51

6

0xfca0b000

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A pointer to the next node

52

6 27415

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A pointer to the next node

53

6 27415

👥 What should the last
node point to?

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A pointer to the next node

54

6 2

nullptr

7415

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node contains:
• A piece of data (like an int, or string)

• A pointer to the next node

55

👥 How can we implement a node
in C++? How do we store two or
more pieces of data together?

6

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

56

6
struct Node {

// data
// pointer

};

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

57

6
struct Node {

int data;
// pointer

};

Linked Lists, Structurally

• A linked list is a chain of nodes

• Each node is a struct that contains:
• A piece of data (like an int, or string)

• A pointer to the next node

58

6
struct Node {

int data;
Node* next;

};
Yes, this recursive
definition is allowed!

Node*

• Each Node contains a pointer to another Node, or nullptr
• A pointer to a Node is of type Node*

59

struct Node {
int data;
Node* next;

};

6

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

60

Node* list = new Node;

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

61

Node* list = new Node;

data: ?

next: ?

Lives at 0xfca20b00 on the heap

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

62

Node* list = new Node;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00

Remember, pointers are
just memory addresses

data: ?

next: ?

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

63

Node* list = new Node;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00

How do we update the
values of the Node itself?

data: ?

next: ?

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

64

Node* list = new Node;
(*list).data = 6;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: ?

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

65

Node* list = new Node;
(*list).data = 6;
(*list).next = nullptr;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: nullptr

Dereference with *,
access field with .

Creating a Linked List

• Create a new Node on the heap and store a pointer to it

66

Node* list = new Node;
list->data = 6;
list->next = nullptr;

Lives at 0xfca20b00 on the heap

list: 0xfca20b00
data: 6

next: nullptr

Dereference AND access the
field for struct pointers using ->

Appending Nodes

• Create a new Node on the heap and store a pointer to it

67

Node* list = new Node;
list->data = 6;
list->next = nullptr;

list: 0xfca20b00
data: 6

next: nullptr

data: 4

next: nullptr

👥 How could we build a list
that looks like this?

Appending Nodes

• Create a new Node on the heap and store a pointer to it

68

Node* list = new Node;
list->data = 6;
list->next = nullptr;

list: 0xfca20b00
data: 6

next: nullptr

Appending Nodes

• Create a new Node on the heap and store a pointer to it

69

Node* list = new Node;
list->data = 6;
list->next = nullptr;
Node* second = new Node;
second->data = 4;
second->next = nullptr;

list: 0xfca20b00
data: 6

next: nullptr

data: 4

next: nullptr

second: 0x35efcdf8

Lives at 0x35efcdf8 on the heap

Appending Nodes

• Create a new Node on the heap and store a pointer to it

70

Node* list = new Node;
list->data = 6;
list->next = nullptr;
Node* second = new Node;
second->data = 4;
second->next = nullptr;
list->next = ???

list: 0xfca20b00
data: 6

next: nullptr

data: 4

next: nullptr

second: 0x35efcdf8

🤔 How do we link this list?

Appending Nodes

• Create a new Node on the heap and store a pointer to it

71

Node* list = new Node;
list->data = 6;
list->next = nullptr;
Node* second = new Node;
second->data = 4;
second->next = nullptr;
list->next = second;

list: 0xfca20b00
data: 6

next:

data: 4

next: nullptr

second: 0x35efcdf8

Appending Nodes

• Create a new Node on the heap and store a pointer to it

72

Node* list = new Node;
list->data = 6;
list->next = nullptr;
Node* second = new Node;
second->data = 4;
second->next = nullptr;
list->next = second;

list: 0xfca20b00
data: 6

next: 0x35efcdf8

data: 4

next: nullptr

second: 0x35efcdf8

Remember, pointers are
just memory addresses

Prepending Nodes

73

list: 0xfca20b00
data: 6

next:

data: 4

next: nullptr

How would we go from this…

Prepending Nodes

74

list: 0x1234abef
data: 6

next:

data: 4

next: nullptr

… to this?

data: 1

next:

Prepending Nodes

75

list: 0xfca20b00
data: 6

next:

data: 4

next: nullptr

Prepending Nodes

76

list: 0xfca20b00
data: 6

next:

data: 4

next: nullptr

Node* newFront = new Node;
newFront->data = 1;

data: 1

next: ?
newFront: 0x1234abef

Prepending Nodes

77

list: 0xfca20b00
data: 6

next:

data: 4

next: nullptr

Node* newFront = new Node;
newFront->data = 1;
newFront->next = ???

data: 1

next: ?
newFront: 0x1234abef

🤔 Help me out here…

Prepending Nodes

78

list: 0xfca20b00
data: 6

next:

data: 4

next: nullptr

Node* newFront = new Node;
newFront->data = 1;
newFront->next = list;

data: 1

next:
newFront: 0x1234abef

Prepending Nodes

79

list: 0x1234abef
data: 6

next:

data: 4

next: nullptr

Node* newFront = new Node;
newFront->data = 1;
newFront->next = list;
list = newFront;

data: 1

next:
newFront: 0x1234abef

We’re using list to refer to the
“head” of our linked list. It should
always point to the first node in

the list.

Prepending Nodes

80

list: 0x1234abef
newFront: 0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

Node* newFront = new Node;
newFront->data = 1;
newFront->next = list;
list = newFront;

Let’s Trace Some Code

Node* mystery = new Node;

mystery->data = 10;

mystery->next = list->next;

list->next = mystery;

81

list: 0x1234abef data: 6

next:

data: 4

next: nullptr

data: 1

next:

Let’s Trace Some Code

Node* mystery = new Node;

mystery->data = 10;

mystery->next = list->next;

list->next = mystery;

82

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Let’s Trace Some Code (Inserting Nodes)

Node* mystery = new Node;

mystery->data = 10;

mystery->next = list->next;

list->next = mystery;

83

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Deleting Nodes

84

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Deleting Nodes

85

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Let’s delete this node.

Deleting Nodes

86

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

tenNode:
0x90c5106b

Deleting Nodes

87

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

tenNode:
0x90c5106b

fourNode:
0x31753c07

Deleting Nodes

88

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

tenNode:
0x90c5106b

fourNode:
0x31753c07

In practice, we wouldn’t hard-code the
number of ->nexts like this…

We’ll see linked list traversal shortly!

Deleting Nodes

89

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

tenNode->next = fourNode;

tenNode:
0x90c5106b

fourNode:
0x31753c07

Deleting Nodes *BUGGY

90

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

tenNode->next = fourNode;

👥 What’s wrong with this approach?

Deleting Nodes *BUGGY

91

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

tenNode->next = fourNode;

Now, we have no way of referring to the node that contains 6!
We’d like to delete it, but we don’t have a pointer to it.

MEMORY LEAK 👎

Deleting Nodes

92

list:
0x1234abef

data: 6

next:

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

tenNode:
0x90c5106b

fourNode:
0x31753c07

Deleting Nodes

93

list:
0x1234abef

data: ?

next: ?

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

delete tenNode->next;

tenNode:
0x90c5106b

fourNode:
0x31753c07

Deleting Nodes

94

list:
0x1234abef

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

delete tenNode->next;

tenNode->next = fourNode;

tenNode:
0x90c5106b

fourNode:
0x31753c07

Deleting Nodes

95

list:
0x1234abef

data: 4

next: nullptr

data: 1

next:

data: 10

next:

Node* tenNode = list->next;

Node* fourNode = list->next->next->next;

delete tenNode->next;

tenNode->next = fourNode;

tenNode:
0x90c5106b

fourNode:
0x31753c07

When deleting a node, we
need to free its memory AND

rewire the other nodes.

Demo: Traversing a Linked List

96

🎟 Attendance ticket: applications of linked list
traversal

Solution: Traversing a Linked List

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

int measureList(Node* list) {
 int count = 0;
 while (list != nullptr) {
 count++;
 list = list->next;
 }
 return count;
}

97

void freeList(Node* list) {
 while (list != nullptr) {
 Node* temp = list->next;
 delete list;
 list = temp;
 }
}

Recap

• Downsides of arrays

• Benefits of linked lists

• Basic linked list operations
• Initializing nodes

• Adding nodes: Append / Prepend / Insert

• Deleting nodes

• Traversing a linked list

98

Thank you!

99

