Linked Lists 1

Elyse Cornwall
July 31, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

e Assignment 3 IGs this week
* |G attendance is part of section participation grade
e Assignment 4 due this Wednesday at 11:59pm

* Draws heavily from last week’s lectures
e Lecture 17 is a conceptual walkthrough of what you’ll be implementing

Stanford University

Recap: Pointers

Stanford University

How is computer memory organized?

* Memory in your computer is just a giant array!

* Can think of it as a long row of boxes, with each box having a value in it
and an associated index

0 1 2 3 4 5 6 7 8 9 10

 How can we communicate with the computer to find exactly which

box we want to access/store information in?

 We'll give each box an associated numerical location, called a memory
address

Stanford University

What is a pointer?

A memory address!!

Stanford University

Pointer Syntax

* Pointers are necessary to store the value generated by the new
keyword (which is just a memory address on the heap)

int* oneElem = new int;

Stack Heap
B
— A
oneElem: | O9x94bce8e4 227
Ox3840c030 Ox94bce8e4
Stanford University

Pointer Syntax

To read or modify the variable that a pointer points to, we use the
* (asterisk) operator (in a different way than before!)
* Known as dereferencing the pointer

: xoneElem = 5;
* Follow the arrow to the memory location

Stack Heap
N
— i
oneElem: | O9x94bce8e4 5
Ox3840c030 Ox94bce8e4

Stanford University

nullptr

 When we declare/initialize a pointer but don’t have anything to
point it at yet, that can be dangerous and unpredictable

* To ensure that we can tell if a pointer has a valid address or not, set
your declared pointer to nullptr, which means "no valid address"

stringx showPtr = nullptr;

[showPtr: J

Ox35efcdf8

Stanford University

U nder the HOOd Arrays are contiguous chunks of space in

the computer's memory

int* sixInts = new int[6];

O11(2(3[4]5]|6|7]8]9]10]11|12]13]|14]15

Ol]J]OIN]|—=]0O

Stanford University

10

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

Stanford University

11

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

rg
1 6 4 7 2 ?
0 1 2 3 4 5

Stanford University

12

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

Vg
1 6 4 ! 2 2
0 1 2 3 4 5

Stanford University

13

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

Vg
1 6 4 ! ! 2
0 1 2 3 4 5

Stanford University

14

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

Vg
1 6 4 4 ! 2
0 1 2 3 4 5

Stanford University

15

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

r g
1 6 6 4 ! 2
0 1 2 3 4 5

Stanford University

16

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

Vg
1 1 6 4 ! 2
0 1 2 3 4 5

Stanford University

17

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

/ Insert 5 here, please!

Vg
5 1 6 4 ! 2
0 1 2 3 4 5

Stanford University

18

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

Do you have room for a 9?

5 1 6 4 ! 2

Stanford University

19

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

Do you have room for a 9?

5 1 6 4 ! 2

Stanford University

20

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

©c 1 2 3 4 5
>l 22222227
@ 1 2 3 4 5 6

Stanford University

21

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

©c 1 2 3 4 5
s {22222 12]2]|¢?
@ 1 2 3 4 5 6

Stanford University

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

22

0 1 2 3 4 5
5 1 ? ? ? ? ? ?
0 1 2 3 4 5

Stanford University

23

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

0 1 2 3 4 5
5 1 6 ? ? ? ? ? ?
0 1 2 3 4 5 6

Stanford University

Frustrations with Arrays

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

24

Stanford University

25

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

Stanford University

26

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

Stanford University

27

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

5 1 6 4 ! 2

Stanford University

28

Frustrations with Arrays .

* Not easily resizable
* Not efficient to insert elements at the beginning

Stanford University

29

Frustrations with Arrays .

Can we do better?

* Not easily resizable

* Not efficient to insert elements at the beginning

Stanford University

30

Linked Lists

Stanford University

31

What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

32

What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on
the heap

Stanford University

33

What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on

the heap

Could we store 10 integers like this?

Al IN]|I—=]O

O11(2(3[4|5|6]|7]8]9]10]11|12]13]|14]15

Stanford University

34

What are Linked Lists?

* A way we can use pointers to organize non-contiguous memory on

the heap Or this?

Stanford University

35

Benefits of Linked Lists

Stanford University

36

Benefits of Linked Lists

/ Insert 5 here, please!

1 —> 6 (—> 4 —> 7 [—> 2

Stanford University

37

Benefits of Linked Lists

/ Insert 5 here, please!

1 —> 6 (—> 4 —> 7 [—> 2

Stanford University

38

Benefits of Linked Lists

/ Insert 5 here, please!

\l—>6—>4—>7—>2

N\
AN

Stanford University

39

Benefits of Linked Lists

Stanford University

40

Benefits of Linked Lists

Do you have room for a 9?7

N\

5 » 1 +» 6 F» 4 > 7 > 2

Stanford University

41

Benefits of Linked Lists o

Do you have room for a 9?7

Stanford University

42

Benefits of Linked Lists o

Do you have room for a 9?7

Stanford University

43

Benefits of Linked Lists o

=
Do you have room for a 9?7

N\

5—>l—>6—>4—>7—>2/

/
s

Stanford University

44

Benefits of Linked Lists o

* Easily resizable
* Efficient to insert elements at the beginning

Stanford University

45

Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

Okay, but what are these little boxes?

Stanford University

46

Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning

Ints? Okay, but what are these little boxes?

Stanford University

47

Benefits of Linked Lists

* Easily resizable
* Efficient to insert elements at the beginning Length 1 arrays?

Ints? Okay, but what are these little boxes?

Stanford University

48

Linked Lists, Structurally

 Alinked list is a chain of nodes

Stanford University

49

Linked Lists, Structurally

 Alinked list is a chain of nodes

e Each node contains:
» A piece of data (like an int, or string)
e Alink to the next node

Stanford University

50

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node contains:
» A piece of data (like an int, or string)
* A pointer to the next node

What are pointers again?

Stanford University

51

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node contains:
» A piece of data (like an int, or string)
* A pointer to the next node

6

Oxfca®booO

Stanford University

52

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node contains:
» A piece of data (like an int, or string)
* A pointer to the next node

Stanford University

53

Linked Lists, Structurally

e Alinked list is a chain of nodes
e Each node contains:

» A piece of data (like an int, or string) @ What should the last

* A pointer to the next node node point to?
5 1 6 4 7 2
//y //V //V //V //V //V

Stanford University

54

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node contains:
» A piece of data (like an int, or string)
* A pointer to the next node

5 1 6 4 I 2

nullptr

Stanford University

55

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node contains:
» A piece of data (like an int, or string)
* A pointer to the next node

@ How can we implement a node
> in C++? How do we store two or
more pieces of data together?

Stanford University

56

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {

6 // data
—_ 1 // pointer

}s

Stanford University

57

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
—_ 1 // pointer

}s

Stanford University

58

Linked Lists, Structurally

e Alinked list is a chain of nodes

* Each node is a struct that contains:
» A piece of data (like an int, or string)
* A pointer to the next node

struct Node {
6 int data;
P Nodex next;

}s

Yes, this recursive
definition is allowed!

Stanford University

59

Node*

e Each Node contains a pointer to another Node, or nullptr
* A pointer to a Node is of type Node*

struct Node {
6 int data;
1 Node* next;

}s

Stanford University

60

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;

Stanford University

61

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex list = new Node;

data: ?

next: ?

Lives at Oxfca20b00 on the heap

Stanford University

62

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node;

Remember, pointers are
just memory addresses

list: Oxfca20b006 >

data: ?

next: ?

Lives at Oxfca20b00 on the heap

Stanford University

63

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;

How do we update the
values of the Node itself?

list: Oxfca20b006 >

data: ?

next: ?

Lives at Oxfca20b00 on the heap

Stanford University

64

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
(xlist) .data = 6;

data: 6

list: Oxfca20boo >
next: ?

Lives at Oxfca20b00 on the heap

Stanford University

65

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node; Dereference with *,
(xlist).data = 6; access field with .
(*list) .next = nullptr;

data: 6

list: Oxfca20b006 >
next: nuptr

Lives at Oxfca20b00 on the heap

Stanford University

66

Creating a Linked List

* Create a new Node on the heap and store a pointer to it

Nodex 1list = new Node;
list->data = 6;
list->next = nullptr;

Dereference AND access the
field for struct pointers using ->

data: 6

list: Oxfca20b006 >

n e X t : nullptr

Lives at Oxfca20b00 on the heap

Stanford University

67

Appending Nodes

e Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node; @ How could we build a list

11:st—>data = 6, that looks like this?
list->next = nullptr;

data: 6 data: 4
list: Oxfca20bb0 > P

next: — next: nuptr

Stanford University

68

Appending Nodes

* Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node;
list->data = 6;
list->next = nullptr;
data: 6
list: Oxfca20b0oo >
next: nuptr

Stanford University

69

Appending Nodes

e Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node;
list->data = 6; second: Ox35efcdf8
list->next = nullptr; \
Nodex second = new Node;

second->data = 4;

second->next = nullptr; $
data: 6 data: 4
list: Oxfca20boo >
neXtZ nullptr neXtI nullptr

Lives at Ox35efcdf8 on the heap
Stanford University

70

Appending Nodes

e Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node;
list->data = 6; second: Ox35efcdf8
list->next = nullptr; |
gggg:dfigz: _ Z?W Node; = How do we link this list?
second->next = nullptr; *
list->next = 77?7

data: 6 data: 4

list: Oxfca20b0o >
nEXt: nullptr neXtI nullptr

Stanford University

71

Appending Nodes

e Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node;
list->data = 6; second: Ox35efcdf8
list->next = nullptr; \
Nodex second = new Node;
second->data = 4;
second->next = nullptr; $
list->next = second;

data: 6 data: 4

list: Oxfca20b0oo > P
next: —] next: nuper

Stanford University

72

Appending Nodes

e Create a new Node on the heap and store a pointer to it

Node*x 1list = new Node;
list->data = 6; second: Ox35efcdf8
list->next = nullptr; \
Nodex second = new Node;

second->data = 4; Remember, pointers are
second->next = nullptr; just memory addresses $
list->next = second;
data: 6 data: 4
list: Oxfca20b0oo >
Nnext: exssefcdfs / neXtI nullptr

Stanford University

Prepending Nodes

data: 6

list: Oxfca20b0oo > >

next: —

How would we go from this...

73

data:

4

next:

nullptr

Stanford University

Prepending Nodes

list:

Ox1234abef —»

data: 1

data: 6

74

next: =7

next: -

data:

4

... to this?

next:

nullptr

Stanford University

Prepending Nodes

data: 6

75

list: Oxfca20bo

>

next: —

data:

4

next:

nullptr

Stanford University

Prepending Nodes

list: Oxfca20bo >

Node*x newFront = new Node;
newFront->data = 1;

76

data:

4

next:

nullptr

newFront: 0Ox1234abef

data: 6
next: ’/'
data: 1
>
next: ?

Stanford University

77

Prepending Nodes

data: 6 data: 4
list: Oxfca20b0o > >

next: — next: atiptr

Node*x newFront = new Node;
newFront->data = 1;
newFront->next = 7?77

= Help me out here...

data: 1

newFront: 0x1234abef >
next: ?

Stanford University

78

Prepending Nodes

data: 6 data: 4
list: Oxfca20b0oo >\ et +—

N e X t : nullptr

Node*x newFront = new Node;
newFront->data = 1;
newFront->next = list;

newFront: 0Ox1234abef >

Stanford University

79

Prepending Nodes

data: 6 data: 4
‘K\ next: ——””)" next: nuptr

We’re using L 1St to refer to the

“head” of our linked list. It should

always point to the first node in
the list.

list: 0x1234abef

Node*x newFront = new Node
newFront->data = 1;
newFront->next = list;
list = newFront;

newFront: 0Ox1234abef >

Stanford University

80

Prepending Nodes

list: 0x1234abef —p data: 1 data: 6 data: 4

. — rad rad
newFront: 0x1234abef next: -~ next: - next: muwtr

Node*x newFront = new Node;
newFront->data = 1;
newFront->next = list;
list = newFront;

Stanford University

81

Let’s Trace Some Code

list: 0x1234abef —p data: 1 data: 6 data: 4

next: -7 next: -7 Nnext: ntwptr

Node*x mystery = new Node;

mystery->data = 10;

mystery->next list->next;

list->next = mystery;

Stanford University

82

Let’s Trace Some Code

list: data: 1 data: 10 data: 6 data: 4

B4
Ox1234abef next: — next: -~

neXtZ / neXtZ nullptr

Node*x mystery = new Node;

mystery->data = 10;

mystery->next list->next;

list->next = mystery;

Stanford University

83

Let’s Trace Some Code (Inserting Nodes)

list: data: 1 data: 10 data: 6 data: 4

B4
Ox1234abef next: — next: -~

neXtZ / neXtZ nullptr

Node*x mystery = new Node;

mystery->data = 10;

mystery->next list->next;

list->next = mystery;

Stanford University

Deleting Nodes

list:

data: 1

data: 10

84

Ox1234abef

next: —

next: =

data: 6

data: 4

next:

n e X t : nullptr

Stanford University

Deleting Nodes

list:

data: 1

data: 10

85

Let’s delete this node.

g

Ox1234abef

next: ~—"

next:

data: 6

data: 4

next: =

n e X t : nullptr

Stanford University

86

tenNode:

Deleting Nodes oxo0cs106b

list: data: 1 \ data: 10 data: 6 data: 4

B4
Ox1234abef next: — next: -~

neXtZ / neXtZ nullptr

Node* tenNode = list->next;

Stanford University

87

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: data: 1 \ data: 10 data: 6 \ data: 4
1st: >
Ox1234abef next: =" | next: =T | next: =T | next: mus

Node* tenNode = list->next;

Node*x fourNode = list->next->next->next;

Stanford University

88

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: data: 1 \ data: 10 data: 6 \ data: 4
1st: >
Ox1234abef next: =" | next: =T | next: =T | next: mus

Node* tenNode = list->next;

Node*x fourNode = list->next->next->next;

In practice, we wouldn’t hard-code the
number of —>nexts like this...
We’ll see linked list traversal shortly!

Stanford University

89

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: . data: 1 \ data: 10 data: 6 \ data: 4
Ox1234abef next: =17 | next: — next: — next: miwer

Node* tenNode = list->next;
Node*x fourNode = list->next->next->next;

tenNode->next = fourNode;

Stanford University

90

Deleting Nodes *BUGGY

list: data: 1 data: 10 data: 6 data: 4

>
rd
0x1234abef next: — next: — next:] nNext: nuper

Node* tenNode = list->next;
Node*x fourNode = list->next->next->next;

tenNode->next = fourNode;

@ What’s wrong with this approach?

Stanford University

91

Deleting Nodes *BUGGY

data: 1 data: 10 data: 6 data: 4

list:
i

Nodex tenNode = list->next; [MEMORY LEAK]

Nodex fourNode = list->next->next->next;

tenNode->next = fourNode;

Now, we have no way of referring to the node that contains 6!
We'd like to de Lete it, but we don’t have a pointer to it.

Stanford University

92

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: data: 1 \ data: 10 data: 6 \ data: 4
1st: >
Ox1234abef next: =" | next: =T | next: =T | next: mus

Node* tenNode = list->next;

Node*x fourNode = list->next->next->next;

Stanford University

93

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: . data: 1 \ data: 10 data: ? \ data: 4
Ox1234abef next: /’ next: /’ next: ? next: auptr

Node* tenNode = list->next;
Node*x fourNode = list->next->next->next;

delete tenNode->next;

Stanford University

94

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: . data: 1 \ data: 10 \ data: 4
Ox1234abef next: /" next: — next: miptr

Node* tenNode = list->next;
Node*x fourNode = list->next->next->next;
delete tenNode->next;

tenNode->next = fourNode;

Stanford University

95

tenNode: fourNode:

Deleting Nodes oxs0cs106b 0x31753¢07
list: . data: 1 \ data: 10 \ data: 4
Ox1234abef next: /" next: — next: miptr

Node* tenNode = list->next;

Node*x fourNode = list->next->next->next;

delete tenNode->next;
’ When deleting a node, we

tenNode->next = fourNodej; need to free its memory AND
rewire the other nodes.

Stanford University

96

Demo: Traversing a Linked List

#& Attendance ticket: applications of linked list
traversal

Stanford University

97

Solution: Traversing a Linked List

void printList(Node*x list) { void freelList(Node* list) {
while (list != nullptr) { while (list != nullptr) {
cout << list->data << endl; Nodex temp = list->next;

. SN .
. list list->next; delete list;

! list = temp;

int measurelList(Nodex 1list) { }
int count = 0;
while (list != nullptr) {
count++;
list = list->next;
}

return count;

Stanford University

98

Recap

 Downsides of arrays

* Benefits of linked lists

* Basic linked list operations
e |Initializing nodes
* Adding nodes: Append / Prepend / Insert
* Deleting nodes

* Traversing a linked list

Stanford University

99

Thank youl!

Stanford University

