
Priority Queues and Heaps
Elyse Cornwall

July 26, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 3 is due tonight at 11:59pm

• Assignment 4 will be released this afternoon
• YEAH Hours today from 3-4pm at this zoom link

• For parts of the assignment you’ll need tomorrow’s lecture on pointers

• Midterm regrades must be submitted by tonight at 11:59pm
• All regrade requests will be handled by the weekend

2

https://stanford.zoom.us/j/5416618770?pwd=dC84V1VqbmRvQXMvN1FSOFNIU2dNdz09

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures Linked

Data
Structures

Advanced
Algorithms

3

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Recap: Implementing Classes

4

Designing OurVector

5

OurVector Header File

class OurVector {
public:

OurVector();
~OurVector();
void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
int* elements;
int allocatedCapacity;
int numItems;

};

6

Arrays

• Lower-level and more limited than Vectors (no member functions!)

• Chunk of space in the computer's memory, split into slots, each of

which can contain one piece of information
• Have a specific type which dictates what information can be held in each slot

• Each slot has an "index" by which we can refer to it

• Don’t dynamically resize like the Vector ADT we’re used to

• We’ll create arrays on the heap, so they persist until we delete them

7

0 1 2 3 4

Adding Elements

8

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Adding Elements

void OurVector::add(int value){

if (numItems == allocatedCapacity) {

expand();

}

elements[numItems] = value;

numItems++;

}

9

Adding Elements

void OurVector::add(int value){

if (numItems == allocatedCapacity) {

expand();

}

elements[numItems] = value;

numItems++;

}

10

11

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)
elements

allocated
Capacity

numItems

1250

4

4

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

12

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

elements

allocated
Capacity

numItems

1250

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

13

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

elements

allocated
Capacity

numItems

1250

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

14

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

4. Point the old array variable to the new

array

elements

allocated
Capacity

numItems

3500

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x3500

15

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

4. Point the old array variable to the new

array

5. Update the associated capacity variable

for the array

elements

allocated
Capacity

numItems

3500

8

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x3500

Priority Queues

16

What’s a Priority Queue?

• A queue that sorts its elements based on their priority

• Like regular queues, you can only access the element at the front
• No indices

• Good way to model ER waiting rooms, organ matches, vaccine

availability

17

Priority Queue Uses

• ER waiting rooms, organ matches, vaccine availability

• Airplane boarding groups

• Social media feed

• College admissions

• Welfare allocation

18

What do we prioritize?
Based on slides by Katie Creel and Diana Acosta-Navas

19

Priority Queues in Action: LA CES

20

An electronic registry of people experiencing homelessness who are applying
or have applied to housing support programs offered by Los Angeles County

Priority Queues in Action: LA CES

• Algorithm uses personal data to assign a number from 1 to 17,

least to most vulnerable

• This risk score is used to prioritize certain individuals when

assigning housing and housing-related services

21

Priority Queues in Action: LA CES

• Algorithm uses personal data to assign a number from 1 to 17,

least to most vulnerable

• This risk score is used to prioritize certain individuals when

assigning housing and housing-related services

22

A priority queue is a great way to
represent this data…

Priority Queues in Action: LA CES

• Algorithm uses personal data to assign a number from 1 to 17,

least to most vulnerable

• This risk score is used to prioritize certain individuals when

assigning housing and housing-related services

23

But where are these
numbers coming from?

What should we prioritize?

• Fairness and equality?

• Justice?

• Speed and efficiency?

• How do we use demographic information?

24

What should we prioritize?

• Fairness and equality?

• Justice?

• Speed and efficiency?

• How do we use demographic information?

As we study priority queues, think about what values are being

represented when we makes decisions about priority.

25

Priority Queue Operations

Three basic operations:

• peek() - returns the element with the highest priority in the

queue without removing it

• enqueue(elem, priority) - inserts elem with given priority

• dequeue() - removes and returns the element with the highest

priority from the queue

26

Priority Queue Operations

Three more handy operations:

• size() - returns the number of elements in the queue

• isEmpty() - returns true if there are no elements in the queue,

false otherwise

• clear() - empties the queue

27

Implementing a Priority Queue

Client side

We need these basic operations:

• peek()
• enqueue(elem, priority)
• dequeue()

Implementation side

How should we design our PQ?

28

Implementing a Priority Queue

Member functions: What functions might a client want to call? ✅
Member variables: What private information will we need to store in

order to keep track of the data stored in a Priority Queue?

Constructor: How are the member variables initialized when a new

Priority Queue is created?

29

We already told you what important member
functions to implement (peek, enqueue, dequeue)…

you decide the rest!

Implementing a Priority Queue

• We want our basic operations to be pretty fast (< O(n) if possible!)

• There are many ways we could implement a PQ, but they will have

tradeoffs in terms of efficiency

30

Our PQ Data

• Each data point has a value and a priority

31

Our PQ Data

• Each data point has a value and a priority

• Let’s say we’re prioritizing health by giving each food a health

ranking between 1-10 (1 is high, 10 is low)

32

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

First Attempt: Sorted Array

33

PQ Array

34

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

👥 What’s the Big-O runtime of our three basic operations?
Peek, enqueue, and dequeue?

• Return the last (highest priority) element of the array

• This is O(1), we just check what’s at the last index of our array

PQ Array - peek()
35

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
36

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
37

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

Candy, 10

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
38

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 10

0 1 2 3

Candy, 10

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
39

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 10

0 1 2 3

Candy, 10

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
40

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 10

0 1 2 3

Candy, 10

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
41

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 10

0 1 2 3

Candy, 10

• Add the element into the array in the correct position

• This is O(n), worst case we have to shift n other elements over

PQ Array - enqueue()
42

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 10

0 1 2 3

Candy, 10

• Remove and return last (highest priority) element of the array

• This is O(1), don’t need to move any other elements

PQ Array - dequeue()
43

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

• Remove and return last (highest priority) element of the array

• This is O(1), don’t need to move any other elements

PQ Array - dequeue()
44

Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

PQ Array Runtimes

• peek() - O(1)
• enqueue(elem, priority) - O(n)
• dequeue() - O(1)

45

🤔 How would these runtimes be different if we stored the
highest priority element at the beginning of our array?

PQ Array Runtimes

• peek() - O(1)
• enqueue(elem, priority) - O(n)
• dequeue() - O(1)

46

We can do better than this…
Ideally, none of our basic operations are O(n).

Second Attempt: Binary Heap

47

Not related to heap memory

Text

Heap

Stack

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

48

8

7 3

1

10

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

49

8

7 3

1

10

parent

childchild

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

50

8

7 3

1

10

parent

childchild

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

51

8

7 3

1

10

The “root” of the tree always
has the highest priority

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

52

8

7 3

1

10

The “root” of the tree always
has the highest priority

This is a min-heap:
Low value = high priority

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

• For now, we’ll focus on binary heaps
• Each parent has exactly two children

• Exception: last level, which we fill left to right

53

8

7 3

1

10

Which is a valid binary heap?

• Parent priority higher than children

• 2 children per parent except in last row, which is filled left to right

54

8

7 3

1

7 3

1

8

Which is a valid binary heap?

55

8

7 3

1

7 3

1

8

YOU’RE VALID 😎 This heap’s bottom row isn’t
filled left to right

Which is a valid binary heap?

• Parent priority higher than children

• 2 children per parent except in last row, which is filled left to right

56

7

3 8

1

3

7 8

1

Which is a valid binary heap?

57

7

3 8

1

3

7 8

1

YOU’RE VALID 😎 A parent (cheese) has a lower
priority than its child (apple)

Implementing a Heap

58

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

Implementing a Heap

59

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4

Implementing a Heap

60

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
👥 How are parents and children

related in the array?
Hint: take a look at their indices…

Implementing a Heap

61

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Parent index: 0
Left child index: 1
Right child index: 2

Implementing a Heap

62

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Parent index: 0
Left child index: 1
Right child index: 2

Parent index: 1
Left child index: 3
Right child index: 4

Implementing a Heap

63

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Formula: if parent is at index i:
Left child is at 2 * i + 1
Right child is at 2 * i + 2

Implementing a Heap

64

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Child index: 1
Parent index: 0

Implementing a Heap

65

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Child index: 1
Parent index: 0

Child index: 4
Parent index: 1

Implementing a Heap

66

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Child index: 1
Parent index: 0

Child index: 4
Parent index: 1

Child index: 3
Parent index: 1

Implementing a Heap

67

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Formula: if child is at index i:
Parent is at (i - 1) / 2

Implementing a Heap

68

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

• We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

0 1 2 3 4

0

1 2

3 4
Formula: if child is at index i:
Parent is at (i - 1) / 2

Int division rounds down!

Your Turn!

Given this array (representing a heap):

1. What is the parent of “Clue”?

2. What is the left child of “Rack-O”?

3. Draw the tree corresponding to this heap to confirm your answers!

69

{“Codenames”, 1} {“Spyfall”, 4} {“Rack-O”, 2} {“Clue”, 7} {“Boggle”, 5} {“Solitaire”, 6} {“Puzzle”, 3}

0 1 2 3 4 5 6

Formula: if parent is at index i:
Left child is at 2 * i + 1
Right child is at 2 * i + 2

Formula: if child is at index i:
Parent is at (i - 1) / 2

70

“Codenames”
1

“Spyfall”
4

“Rack-O”
2

“Clue”
7

“Boggle”
5

“Solitaire”
6

“Puzzle”
3

{“Codenames”, 1} {“Spyfall”, 4} {“Rack-O”, 2} {“Clue”, 7} {“Boggle”, 5} {“Solitaire”, 6} {“Puzzle”, 3}

0 1 2 3 4 5 6

PQ Heap

71

8

7 3

1

10

 How might a binary heap help us implement a PQ?
How would peek, enqueue, and dequeue work?

• Return the highest priority element, without removing it

• This is O(1), we just check what’s at the first index of our array

PQ Heap - peek()
72

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8}

0 1 2 3

• Add the element into the array in the correct position

• Here’s an easy case…

PQ Heap - enqueue()
73

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8}

0 1 2 3

• Add the element into the array in the correct position

• Here’s an easy case…

PQ Heap - enqueue()
74

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

0 1 2 3 4

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
75

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

0 1 2 3 4

0

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
76

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10} {“water”, 0}

0 1 2 3 4 5

0

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
77

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10} {“water”, 0}

0 1 2 3 4 5

0

Now the heap property is
violated!

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
78

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10} {“water”, 0}

0 1 2 3 4 5

0

Now the heap property is
violated!

🤔 How might we fix this?

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
79

8

7 0

1

10

{“kale”, 1} {“cheese”, 7} {“water”, 0} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

We could swap “apple”
and “water”...

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
80

8

7 0

1

10

{“kale”, 1} {“cheese”, 7} {“water”, 0} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

But we run into another
violation.

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
81

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

Let’s swap again!

• Add the element into the array in the correct position

• What about this?

PQ Heap - enqueue()
82

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

Much better :)
This process was called
“bubbling up”!

To enqueue a new element into our PQ Heap, we “bubble up”:

1. Insert element at the end of array

2. If this element has a greater priority than its parent, swap parent

and child element

3. Repeat 2 until heap property is satisfied or we reach the root!

PQ Heap - enqueue()
83

PQ Heap - enqueue()
84

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

🎟 What’s the Big-O
runtime of enqueue?

PQ Heap - enqueue()
85

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

🎟 What’s the Big-O
runtime of enqueue?

Worst case, we bubble
up from the bottom to
the top of the tree

PQ Heap - enqueue()
86

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

🎟 PQ Heap enqueue has
runtime O(log n)

How many levels are in a
binary heap with n elements?

O(log n) - we’re doubling
the number of elements at
each level

• Remove and return first (highest priority) element of the array

PQ Heap - dequeue()
87

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

• Remove and return first (highest priority) element of the array

PQ Heap - dequeue()
88

8

7 1

10

{“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

Now what?

• Remove and return first (highest priority) element of the array

PQ Heap - dequeue()
89

8

7 1

10

{“apple”, 3} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10}

0 1 2 3 4 5

3
Move last element to first
position in the array

• Remove and return first (highest priority) element of the array

PQ Heap - dequeue()
90

8

7 1

10

{“apple”, 3} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10}

0 1 2 3 4 5

3
Bubble down! Swap with
higher priority child until
heap property is satisfied.

• Remove and return first (highest priority) element of the array

PQ Heap - dequeue()
91

8

7 3

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

0 1 2 3 4 5

1
Bubble down! Swap with
smaller child until heap
property is satisfied.

To dequeue the highest priority element in our PQ Heap:

1. Remove element from the beginning (index 0) of our array

2. Move last element in array to index 0

3. Swap with higher priority child until heap property is satisfied

PQ Heap - dequeue()
92

PQ Heap - dequeue()
93

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

PQ Heap dequeue has
runtime O(log n)

Worst case, we bubble
down from the top to
the bottom of the tree

PQ Heap Runtimes

• peek() - O(1)
• enqueue(elem, priority) - O(log n)
• dequeue() - O(log n)

94

Notice how implementing the same data structure with a
heap versus sorted array leads to different runtimes.

Stay tuned for Assignment 4!

Recap

• What do priority queues (PQs) represent?

• Implementing PQs with a sorted array

• Implementing PQs with a binary heap
• Enqueue and bubble up

• Dequeue and bubble down

Check out this visualization of min heap operations!

95

https://www.cs.usfca.edu/~galles/visualization/Heap.html

Thank you!

96

