Priority Queues and Heaps

Elyse Cornwall
July 26, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

e Assignment 3 is due tonight at 11:59pm

e Assignment 4 will be released this afternoon
* YEAH Hours today from 3-4pm at this zoom link
* For parts of the assignment you’ll need tomorrow’s lecture on pointers

* Midterm regrades must be submitted by tonight at 11:59pm
* All regrade requests will be handled by the weekend

Stanford University

https://stanford.zoom.us/j/5416618770?pwd=dC84V1VqbmRvQXMvN1FSOFNIU2dNdz09

Roadmap

Building Abstractions

Abstract Data

Linked

Structures Advanced
Data Algorithms
Structures
Algorithmic ,
C++ & : Recursion
Analysis

Stanford University

Recap: Implementing Classes

Stanford University

Designing OurVector

Stanford University

OurVector Header File

class OurVector {
public:
OurVector();
~QurVector();
void add(int value);
void insert(int index, int value);
int get(int dindex);
void remove(int index);
int size();
bool isEmpty();
private:
int* elements;
int allocatedCapacity;
int numItems;

I

Stanford University

Arrays

* Lower-level and more limited than Vectors (no member functions!)
* Chunk of space in the computer's memory, split into slots, each of

which can contain one piece of information
* Have a specific type which dictates what information can be held in each slot
* Each slot has an "index" by which we can refer to it
e Don’t dynamically resize like the Vector ADT we’re used to
 WEe'll create arrays on the heap, so they persist until we delete them

@ l 2 3 4 Stanford University

Adding Elements

106 42 -3 27 ? ? ? ?
0] 1 2 3 4 5 6 7
A
| // client code

elements 0x1250 OurVector vec;
vec.add(106);

allocated vec.add(42);

Capacity 8 vec.add(-3);

vec.add(27)

numItems 4

| University

Adding Elements

void OurVector::add(int value){
if (numItems == allocatedCapacity) {
expand() ;
¥
elements[numItems] = value;

numItems++;

Stanford University

10

Adding Elements

void OurVector::add(int value){
if (numItems == allocatedCapacity) {
expand()
¥
elements[numItems] = value;

numItems++;

Stanford University

11

0 1 2 3 4 5 6 7
198 106 -3 27

0 1 2 3

?

1. Create a new, larger array (usually we

choose to double the current size)
elements Ox1250

allocated
Capacity 4
numItems 4

Stanford University

12

198 106 -3 27 ? ? ?
0] 1 2 3 5 6 7
198 106 -3 27
0] 1 2 3
A
' Create a new, larger array (usually we
. . choose to double the current size)
€ Lements 0x1250 Copy the old array elements to the new
array
allocated
Capacity 4
numItems 4

Stanford University

13

198 106 -3 27 ? ? ? ?
0] 1 2 3 4 5 6 7
A
' 1. Create a new, larger array (usually we
1 . choose to double the current size)
€ Lements 0x1250 2. Copy the old array elements to the new
5 o array
allocate
E—— 4 3. Delete (free) the old array
numItems 4
Stanford University

14

198 106 -3 27 [[[[

®
=
N
w
IN
Ul
o
\l

1. Create a new, larger array (usually we

choose to double the current size)

elements 0x3500 2. Copy the old array elements to the new

array
alloca.ted 4 3. Delete (free) the old array
Capacity _ _
4. Point the old array variable to the new
array
numItems 4

Stanford University

15

198 106 -3 27 [[[[

(O]
=
N
w
N
Ul
(0))]
\l

1. Create a new, larger array (usually we

choose to double the current size)

renems X350 2. Copy the old array elements to the new
11 d array

allocate

Capacity 8 3. Delete (free) the old array

4. Point the old array variable to the new

array
numItems 4

5. Update the associated capacity variable

for the array Stanford University

16

Priority Queues

Stanford University

17

What’s a Priority Queue?

* A queue that sorts its elements based on their priority

e Like regular queues, you can only access the element at the front
* Noindices

* Good way to model ER waiting rooms, organ matches, vaccine
availability

Stanford University

18

Priority Queue Uses

* ER waiting rooms, organ matches, vaccine availability
* Airplane boarding groups
e Social media feed

* College admissions

* Welfare allocation

Stanford University

19

What do we prioritize?

Based on slides by Katie Creel and Diana Acosta-Navas

Stanford University

20

Priority Queues in Action: LA CES

LAHSA ‘ Coordinated Entry System @© Help ~ 9 signin

Home About CES CES InAction Get Help

LA COUNTY

Coordinated
Entry System

Connecting LA to Housing Solutions

The Los Angeles County Coordinated Entry System (CES) is the network that aligns homeless services in the County
together to ensure that resources are efficiently and equitably distributed to support people experiencing homelesness.

An electronic registry of people experiencing homelessness who are applying

or have applied to housing support programs offered by Los Angeles County
Stanford University

21

Priority Queues in Action: LA CES

e Algorithm uses personal data to assign a number from 1to 17,
least to most vulnerable

* Thisrisk score is used to prioritize certain individuals when
assigning housing and housing-related services

Stanford University

Priority Queues in Action: LA CES

22

e Algorithm uses personal data to assign a number from 1to 17,

least to most vulnerable
* Thisrisk score is used to prioritize certain individuals when
assigning housing and housing-related services

A priority queue is a great way to
represent this data...

Stanford University

Priority Queues in Action: LA CES

23

* Algorithm uses personal data to assign a number from 1to 17,

least to most vulnerable
* Thisrisk score is used to prioritize certain individuals when
assigning housing and housing-related services

But where are these
numbers coming from?

Stanford University

24

What should we prioritize?

* Fairness and equality?

* Justice?

* Speed and efficiency?

* How do we use demographic information?

Stanford University

25

What should we prioritize?

* Fairness and equality?

* Justice?

* Speed and efficiency?

* How do we use demographic information?

As we study priority queues, think about what values are being
represented when we makes decisions about priority.

Stanford University

26

Priority Queue Operations

Three basic operations:

* peek() - returns the element with the highest priority in the
gueue without removing it

* enqueue(elem, priority) -inserts elem with given priority

* dequeue() - removes and returns the element with the highest
priority from the queue

Stanford University

27

Priority Queue Operations

Three more handy operations:

 size() -returns the number of elements in the queue

* dsEmpty() - returns true if there are no elements in the queue,
false otherwise

e clear () - empties the queue

Stanford University

28

Implementing a Priority Queue

Client side Implementation side
We need these basic operations: How should we design our PQ?
* peek()

* enqueue(elem, priority)

* dequeue()

Stanford University

29

Implementing a Priority Queue

Member functions: What functions might a client want to call? |4

Member variables: What private information will we need to store in
order to keep track of the data stored in a Priority Queue?

Constructor: How are the member variables initialized when a new
Priority Queue is created?

We already told you what important member

functions to implement (peek, enqueue, dequeue)...
you decide the rest!

Stanford University

30

Implementing a Priority Queue

* We want our basic operations to be pretty fast (< 0(n) if possible!)
 There are many ways we could implement a PQ, but they will have
tradeoffs in terms of efficiency

Stanford University

31

Our PQ Data

* Each data point has a value and a priority

Stanford University

32

Our PQ Data

* Each data point has a value and a priority
* Let’s say we’re prioritizing health by giving each food a health
ranking between 1-10 (1 is high, 10 is low)

& - ¢

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

Stanford University

First Attempt: Sorted Array

Stanford Universit

PQ Array

34

@ What’s the Big-O runtime of our three basic operations?

Peek, enqueue, and dequeue?

=

Chocolate, 8

L

Cheese, 7

Apple, 3

Kale, 1

0

1

3

Stanford University

35

PQ Array - peek ()

e Return the last (highest priority) element of the array
* Thisis0(1), we just check what’s at the last index of our array

&

Chocolate, 8 Cheese, 7

0 1

Stanford University

36

PQ Array - enqueue ()

* Add the element into the array in the correct position
 Thisis O(n), worst case we have to shift n other elements over

&

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

Stanford University

37

PQ Array - enqueue ()

Candy, 10

&

Chocolate, 8 Cheese, 7 Apple, 3 Kale, 1

0 1 2 3

Stanford University

38

PQ Array - enqueue ()

Candy, 10

* Add the element into the array in the correct position
 Thisis O(n), worst case we have to shift n other elements over

&

Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

Stanford University

39

PQ Array - enqueue ()

Candy, 10

* Add the element into the array in the correct position
 Thisis O(n), worst case we have to shift n other elements over

&

Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

Stanford University

40

PQ Array - enqueue ()

Candy, 10

* Add the element into the array in the correct position
 Thisis O(n), worst case we have to shift n other elements over

=4 o

Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

Stanford University

41

PQ Array - enqueue ()

Candy, 10

* Add the element into the array in the correct position
 Thisis O(n), worst case we have to shift n other elements over

& |

Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

Stanford University

42

PQ Array - enqueue ()

* Add the element into the array in the correct position
 Thisis O(n), worst case we have to shift n other elements over

& |

Candy, 10 Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

Stanford University

43

PQ Array - dequeue ()

 Remove and return last (highest priority) element of the array
* ThisisO(1), don’t need to move any other elements

&

Chocolate, 8 Cheese, 7

0 1

Stanford University

44

PQ Array - dequeue ()

 Remove and return last (highest priority) element of the array

* ThisisO(1), don’t need to move any other elements

&

Chocolate, 8 Cheese, 7 Apple, 3

0 1 2 3

Stanford University

45

PQ Array Runtimes

* peek() - 0(1)
« enqueue(elem, priority) - 0(n)
« dequeue() - 0(1)

= How would these runtimes be different if we stored the
highest priority element at the beginning of our array?

Stanford University

46

PQ Array Runtimes
« peek() - 0(1)

« enqueue(elem, priority) - 0(n)
« dequeue() - 0(1)

We can do better than this...
Ideally, none of our basic operations are O (n).

Stanford University

47

Not related to heap memory

Second Attempt: Binary Heap

Stanford University

48

What’s a Binary Heap?

* A heapis atree-based data structure that satisfies the “heap
property”: parents have a higher priority than their children

Stanford University

49

What’s a Binary Heap?

* A heapis atree-based data structure that satisfies the “heap
property”: parents have a higher priority than their children

parent

Stanford University

50

What’s a Binary Heap?

* A heapis atree-based data structure that satisfies the “heap
property”: parents have a higher priority than their children

B,

PN

parent @ '

2 7 3
child ‘ M child
8 10

Stanford University

51

What’s a Binary Heap?

* A heapis atree-based data structure that satisfies the “heap
property”: parents have a higher priority than their children

The “root” of the tree always %
has the highest priority
»

Y

“ @
2 7 3
&

Stanford University

52

What’s a Binary Heap?

* A heapis atree-based data structure that satisfies the “heap
property”: parents have a higher priority than their children

The “root” of the tree always % This is a min-heap:
has the highest priority Low value = high priority
» ™~

1

“ @
2 7 3
&

Stanford University

53

What’s a Binary Heap?

* A heapis atree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

* For now, we’ll focus on binary heaps
* Each parent has exactly two children

* Exception: last level, which we fill left to right / . S

o
X 7
&

3

Stanford University

54

Which is a valid binary heap?

e Parent priority higher than children
e 2 children per parent except in last row, which is filled left to right

8 Stanford University

55

Which is a valid binary heap?

This heap’s bottom row isn’t

[YOU’RE VALID ==] filled left to right

Stanford University

56

Which is a valid binary heap?

e Parent priority higher than children

e 2 children per parent except in last row, which is filled left to right

7 3 Stanford University

57

Which is a valid binary heap?

A parent (cheese) has a lower
priority than its child (apple)

[YOU’RE VALID '-']

7 3 Stanford University

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

»
nd

7

&
10

58

{“kale”, 1}

{“cheese”, 7}

{“app'l_e”

, 3}

{“cocoa”, 8}

{“candy”, 10}

0

1

3

4
Stanford University

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

59

from top to bottom, left to right {E :
»
o
{“kale”, 1} {“cheese”, 7} | {“apple”, 3} {“cocoa”, 8} | {“candy”, 10}
0 1 2 3 4

Stanford University

60

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

related in the array?

Hint: take a look at their indices...

»
@ How are parents and children
3
8

{“kale”, l} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, l@}

0] 1 2 3 4
Stanford University

61

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

Parent index: O
Left child index: 1
Right child index: 2

{“kale”, 1} | {“cheese”, 7} | {“apple”, 3} | {“cocoa”, 8} | {“candy”, 10}

0] 1 2 3 4
Stanford University

Implementing a Heap

* We could store this tree’s data in
an array, filling in each element
from top to bottom, left to right

Parent index: O

Left child index: 1
Right child index: 2 Right child index: 4

Parent index: 1
Left child index: 3

62

{“kale”, 1}

{“cheese”, 7}

{“app'l_e”, 3}

{“cocoa”, 8}

{“candy”, 10}

0

1

2

3

4
Stanford University

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

Formula: if parent is at index 1:
Left childisat2 * 1 + 1
Right childisat2 * i1 + 2

¢

»
3
8

63

{“kale”, 1}

{“cheese”, 7}

{“app'l_e”, 3}

{“cocoa”, 8}

{“candy”, 10}

0

1

3

4
Stanford University

64

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right {E
»
Child index: 1
Parent index: O { 4
8

{“kale”, 1} | {“cheese”, 7} | {“apple”, 3} | {“cocoa”, 8} | {“candy”, 10}

0] 1 2 3 4
Stanford University

65

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

Child index: 1 Child index: 4
Parent index: O Parent index: 1

{“kale”, 1} | {“cheese”, 7} | {“apple”, 3} | {“cocoa”, 8} | {“candy”, 10}

0] 1 2 3 4
Stanford University

Implementing a Heap

* We could store this tree’s data in
an array, filling in each element
from top to bottom, left to right

Child index: 1
Parent index: O

Child index: 4
Parent index: 1

Child index: 3
Parent index: 1

66

{“kale”, 1}

{“cheese”, 7}

{“app'l_e”, 3}

{“cocoa”, 8}

{“candy”, 10}

0

1

3

4
Stanford University

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

Formula: if child is at index 1:
Parentisat (1 - 1) / 2

¢

»
3
8

67

{“kale”, 1}

{“cheese”, 7}

{“app'l_e”, 3}

{“cocoa”, 8}

{“candy”, 10}

0

1

3

4
Stanford University

Implementing a Heap

e We could store this tree’s data in

an array, filling in each element

from top to bottom, left to right

Formula: if child is at index 1:
Parentisat (1 - 1) / 2

N\

Int division rounds down!

¢

»
3
8

68

{“kale”, 1}

{“cheese”, 7}

{“app'l_e”

, 3}

{“cocoa”, 8}

{“candy”, 10}

0

1

2

3

4
Stanford University

69

YO ur Tu N I Formula: if parent is at index 1:

Left childisat2 * 1 + 1
Right childisat2 * 1 + 2

Given this array (representing a heap): Formula: if child is at index

1. What is the parent of “Clue”? Parentisat (i = 1) / 2
2. What is the left child of “Rack-O”?
3. Draw the tree corresponding to this heap to confirm your answers!

{“Codenames”, 1} | {“Spyfall”, 4} | {“Rack-07, 2} {“Clue”, 73} {“Boggle”, 5} {“Solitaire”, 6} | {“Puzzle”, 3}

0 1 2 3 4 5 6

Stanford University

70

“Codenames”
/ ' \
“Spyfall” “Rack-0”
4 2
“Clue” “Boggle” “Solitaire” “Puzzle”
7 5 6 3

{“Codenames”, 1} | {“Spyfall”, 4} | {“Rack-07, 2} {“Clue”, 73} {“Boggle”, 5} {“Solitaire”, 6} | {“Puzzle”, 3}

0] 1 2 3 4 5 6
Stanford University

71

PQ Heap

How might a binary heap help us implement a PQ?
How would peek, enqueue, and dequeue work?

7

o
10

¥
> 4

Stanford University

PQ Heap - peek ()

72

e Return the highest priority element, without removing it

 Thisis0(1), we just check what’s at the first index of our array

D

\
3

K 7 N\
8 10
{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8}

0]

2

3 Stanford University

73

PQ Heap - enqueue () a5

10
* Add the element into the array in the correct position
* Here’s an easy case...
7 SEETER N
x 7 3
8
{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8}

0 1 2 3 Stanford University

74

PQ Heap - enqueue ()

* Add the element into the array in the correct position

.
bt
&

8 10

e Here’s an easy case...

\
3

{“kale”, 1} {“cheese”, 7} | {“apple”, 3} {“cocoa”, 8} | {“candy”, 10}

0] 1 2 3 4 Stanford University

PQ Heap - enqueue () ‘

* Add the element into the array in the correct position

* What about this?
=%
K 7N

8 10

\
3

{“kale”, 1} {“cheese”, 7} | {“apple”, 3} {“cocoa”, 8} | {“candy”, 10}

0] 1 2 3 4 Stanford University

PQ Heap - enqueue ()

* Add the element into the array in the correct position
* What about this?

D

S

1

\
3

76

X 7N y 4
8 10 0
{“kale”, 1} {“cheese”, 7} | {“apple”, 3} {“cocoa”, 8} | {“candy”, 10} | {“water”, 0}
0] 1 2 3 4 Stanfprd University

PQ Heap - enqueue ()

* Add the element into the array in the correct position
* What about this?

D

S

1

®

77

X, 7\ 3 Now the heap property is
‘ M u violated!
8 10 0
{“kale”, 1} | {“cheese”, 7} | {“apple”, 3} | {“cocoa”, 8} | {“candy”, 10} | {“water”, 0}
0] 1 2 3 4 Stanfprd University

78

PQ Heap - enqueue ()

Add the element into the array in the correct position

What about this?

D ’ 1 \
=~ How might we fix this? @ ‘
X 7 3 Now the heap property is
‘ W ‘ violated!
8 10 0

{“kale”, 1} {“cheese”, 7} | {“apple”, 3} {“cocoa”, 8} | {“candy”, 10} | {“water”, 0}

0] 1 2 3 4 Stanfprd University

PQ Heap - enqueue ()

* Add the element into the array in the correct position
* What about this?

S

1 A

N

79

X 7\ X0 We could swap “apple”
‘ 9@@& ‘ and “water”..
8 10 3
{“kale”, 1} {“cheese”, 7} {“water”, 0} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}
0] 1 2 3 4 Stanfprd University

PQ Heap - enqueue ()

* Add the element into the array in the correct position

e What about this?

80

% But we run into another

1

A\ Vviolation.

N

y SV \ 0
8 10 3
{“kale”, 1} {“cheese”, 7} {“water”, 0} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}
0] 1 2 3 4 Stanfprd University

PQ Heap - enqueue ()

* Add the element into the array in the correct position
* What about this?

D

RN

u Let’s swap again!
0

81

V S \ 1
8 10 3
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}
0] 1 2 3 4 Stanfprd University

PQ Heap - enqueue ()

* Add the element into the array in the correct position
* What about this?

Much better

)

82

This process was called

“bubbling up

”I
H

V S \ 1
8 10 3
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}
0 1 2 3 4

Stanfprd University

83

PQ Heap - enqueue ()

To enqueue a new element into our PQ Heap, we “bubble up”:

1. Insert element at the end of array

2. If this element has a greater priority than its parent, swap parent
and child element

3. Repeat 2 until heap property is satisfied or we reach the root!

Stanford University

84

PQ Heap - enqueue ()

& What’s the Big-O H
runtime of enqueue?

& O

3
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0] 1 2 3 4 Stanfprd University

85

PQ Heap - enqueue ()

& What’s the Big-O u
runtime of enqueue?

» N
Worst case, we bubble
@ % up from the bottom to
the top of the tree
X 7\ X1

3
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0] 1 2 3 4 Stanfprd University

86

PQ Heap - enqueue ()

§!¥ PQ Heap enqueue has H
runtime O(log n)

How many levels are in a
N binary heap with n elements?

»
V SV N » 1g
‘ O(log n) - we’re doubling
‘ the number of elements at
8 10 3

each level
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0] 1 2 3 4 Stanfprd University

PQ Heap - dequeue ()

87

 Remove and return first (highest priority) element of the array

D

oy

V S \ 1
8 10 3
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}
0] 1 2 3 4 Stanfprd University

PQ Heap - dequeue ()

88

Remove and return first (highest priority) element of the array

Now what?

D

oy

y S \ y &1
8 10 3
{“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}
0] 1 2 3 4 Stanfprd University

89

PQ Heap - dequeue ()

 Remove and return first (highest priority) element of the array

Move last element to first ‘

position in the array @‘, 3
y SR N

8 10

N

1

{“apple”, 3} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10}

0] 1 2 3 4 Stanfprd University

90

PQ Heap - dequeue ()

 Remove and return first (highest priority) element of the array

Bubble down! Swap with p ?
higher priority child until

N\
heap property is satisfied. @ %
y SR N 1

8 10

{“apple”, 3} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10}

0] 1 2 3 4 Stanfprd University

91

PQ Heap - dequeue ()

 Remove and return first (highest priority) element of the array

Bubble down! Swap with %

smaller child until heap 1N

y 3
property is satisfied. @ ‘
y SR N 3
&

8 10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8} {“candy”, 10}

0] 1 2 3 4 Stanfprd University

92

PQ Heap - dequeue ()

To dequeue the highest priority element in our PQ Heap:

1. Remove element from the beginning (index 0) of our array
2. Move last element in array to index 0
3. Swap with higher priority child until heap property is satisfied

Stanford University

93

PQ Heap - dequeue ()

PQ Heap dequeue has u
runtime O(log n)

» N
Worst case, we bubble
@ % down from the top to
the bottom of the tree
X 7\ X1

3 \J
{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0] 1 2 3 4 Stanfprd University

94

PQ Heap Runtimes

* peek() - 0(1)
« enqueue(elem, priority) - 0(log n)
 dequeue() - 0(log n)

Notice how implementing the same data structure with a
heap versus sorted array leads to different runtimes.

Stay tuned for Assignment 4!

Stanford University

95

Recap

 What do priority queues (PQs) represent?
* Implementing PQs with a sorted array

* Implementing PQs with a binary heap
* Enqueue and bubble up
 Dequeue and bubble down

Check out this visualization of min heap operations!

Stanford University

https://www.cs.usfca.edu/~galles/visualization/Heap.html

96

Thank youl!

Stanford University

