
Implementing an ADT
Amrita Kaur

July 25, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 3 due Wednesday at 11:59pm

• Minor change to our grading scheme
• Attendance bonus can be applied to either the final or the midterm

• Downweight final from 25% to as low as 20%, OR

• Downweight midterm from 10% to as low as 5%

• Will calculate both grades and take the better of the two

• Any talking in this room gets amplified, and that’s by design! So

please don’t talk during lecture, because it can be distracting :)

2

Week 4 Feedback

3

Week 4 Feedback

4

Things you liked:

“I've really enjoyed working through examples in class, even if it's

pseudo code”

“Live examples on the white board!!!”

“Walking through code step by step”

“Very understanding to any situation”

“Really appreciate you all taking the feedback into account and

improving the course structure/format based on students' comments”

Week 4 Feedback

5

Places we can improve:

“On longer examples, a little extra time perhaps with a couple baby

steps along the way would go a long way in being able to fully create

and understand examples.”

“it’s hard to see the whiteboard”

“Maybe more real-life examples to show how the basic concepts we

are learning”

Week 4 Feedback

6

We hear you…
“Allocating more time to doing problems together as a class.”

“I think maybe have more time for us to do the problems ourselves”

“I would enjoy a little less lecturing and more coding examples.”

“Speed of the lecture could slow down”

“I wish that there could be opportunities on the homework for us to
have some space to think for ourselves and practice our
problem-solving strategies…In my opinion, there's something to be
said for learning by doing, as opposed to learning by guided
walkthrough.” - Try out some extensions!

Week 4 Feedback

7

Anything else you would like us to know:

“Thank you for listening to our feedback!”

“I almost lost my water bottle 3 times in 106B section and lecture this
week, each incident was uniquely stressful.”

“Homesickness sucks.”

“Watch the Barbie Movie!”

“ty”

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures Linked

Data
Structures

Advanced
Algorithms

8

Algorithmic
Analysis

Recursion

Object-Oriented
Programming

Memory
Management

Question from Last Class

• In an implicit constructor, does an int default initialize to 0?
• Nope!

• You will need to set the value explicitly to 0 in a constructor if that is what

you want

9

Memory on Stack vs Heap

Vector<string> varOnStack;
• Until today, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

10

Memory on Stack vs Heap

Vector<string> varOnStack;
• Until today, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

11

• We can now request memory from
the heap

• This is dynamic memory allocation

• We have more control over
variables on the heap

• But this means that we also have
to handle the memory we’re using
carefully and properly clean it up
when done

string* arr = new string[numValues];

Dynamic Memory Allocation: new

• To request memory from the heap to allocate one element:

type* variable = new type;

• To allocate multiple (n) elements on the heap:

type* variable = new type[n];

12

Dynamic Memory Allocation: new

type* variable = new type;

13

Declaring a variable that will
point at our newly-allocated
memory
● Name is variable
● Type is type* (match the

type of the element)

Allocating heap memory with
the new keyword

Assigning the pointer to point
to the heap memory

Dynamic Memory Allocation: Examples

int* anInteger = new int;

int* tenInts = new int[10];

14

Pointers

• Data type, that like all other data types, takes up space in memory

and stores specific values

• Always stores a memory address, which is like the specific

coordinates of where a piece of memory exists on the computer

• Quite literally "points" to another location on your computer

15

Arrays

• Lower-level and more limited than Vectors

• A contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
• Contiguous means that each slot is located directly next to the others (There

are no "gaps")

• Have a specific type which dictates what information can be held in each slot

• Each slot has an "index" by which we can refer to it

16

0 1 2 3 4

Arrays

int firstTen[10];

int* secondTen = new int[10];

// fill memory with values

for (int i = 0; i < 10; i++) {

 firstTen[i] = i * 2; // evens

 secondTen[i] = i * 2 + 1; // odds

}

int len = firstTen.length(); // ERROR! No functions!

firstTen.add(42); // ERROR! No functions!

17

Under the Hood

int* tenInts = new int[10];

18

Under the Hood

int* tenInts = new int[10];

19

Under the Hood

int* tenInts = new int[10];

20

(Col 4, Row 3)

Pitfalls and Dangers

• The array you get from new[] is fixed-size: it can neither grow nor

shrink once it’s created

• The array you get from new[] has no bounds-checking: accessing

anything past the beginning or end of an array triggers undefined

behavior

21

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory

you allocate

• If you don't, you get a memory leak
• Your program will never be able to use that memory again

• Too many leaks can cause a program to crash – it’s important to not leak

memory!

22

Cleaning Up: delete

• You can deallocate (free) memory with the delete keyword

• To deallocate a single element:

delete var;

• To deallocate an array of elements:

delete[] arr;

23

Cleaning Up: delete

• This destroys the array pointed to by the given pointer, not the

pointer itself

• You can think of this operation as relinquishing control over the

memory back to the computer

• Once you’ve deleted the memory pointed at by a pointer, you have a

dangling pointer and shouldn’t read or write from it.

24

Designing OurVector

25

What is OurVector?

• Goal: Let's make our very own version of the Stanford C++ Vector that
we've been using all quarter long
• It all will feel so much cooler when we've built it ourselves!

• We will only implement a subset of the functionality that the Stanford
Vector provides
• OurVector will only store integers and will not be configurable to store

other types
• Generic, or "templated" classes that allow the client to specify the data type that is

stored, are possible in C++, but they are beyond the scope of this class.

• At first, OurVector will be limited to storing a fixed number of elements,
but we will lift this restriction by the end of class. For now, if we run out space
we'll just throw an error.

26

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• What private information will we need to store in order to keep track of

the data stored in OurVector?

• Member functions (What functions can you call on a variable of this type?)

• What public interface should OurVector support? What functions

might a client want to call? What functions might we need?

• Constructor (What happens when you make a new instance of this type?)
• How are the member variables initialized when a new instance of

OurVector is created?

27

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• What private information will we need to store in order to keep track of

the data stored in OurVector?

• Member functions (What functions can you call on a variable of this type?)

• What public interface should OurVector support? What functions

might a client want to call?

• Constructor (What happens when you make a new instance of this type?)
• How are the member variables initialized when a new instance of

OurVector is created?

28

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• What private information will we need to store in order to keep track of

the data stored in OurVector?

• Member functions (What functions can you call on a variable of this type?)

• What public interface should OurVector support? What functions

might a client want to call?

• Constructor (What happens when you make a new instance of this type?)
• How are the member variables initialized when a new instance of

OurVector is created?

29

OurVector Header File

class OurVector {
public:

/* What goes here? */

void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);

private:
/* To be defined soon! */

};

30

OurVector Header File

class OurVector {
public:

void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
/* To be defined soon! */

};

31

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• What private information will we need to store in order to keep track of

the data stored in OurVector?

• Member functions (What functions can you call on a variable of this type?)

• What public interface should OurVector support? What functions might

a client want to call?

• Constructor (What happens when you make a new instance of this type?)
• How are the member variables initialized when a new instance of

OurVector is created?

32

OurVector Member Variables

33

OurVector Member Variables

• int* elements;
• A pointer to an array of integers, which will act as our underlying data

storage mechanism

•

34

OurVector Member Variables

• int* elements;
• A pointer to an array of integers, which will act as our underlying data

storage mechanism

• int allocatedCapacity;
• An integer that stores the size of the allocated elements array.
• Arrays don't have any conception/knowledge of their own size, so we

must manually track this!

• int numItems;
• An integer that stores the number of elements currently stored in the

vector

35

OurVector Member Variables

• int* elements;
• A pointer to an array of integers, which will act as our underlying data

storage mechanism

• int allocatedCapacity;
• An integer that stores the size of the allocated elements array.
• Arrays don't have any conception/knowledge of their own size, so we

must manually track this!

• int numItems;
• An integer that stores the number of elements currently stored in the

vector

36

OurVector Header File

class OurVector {
public:

void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
int* elements;
int allocatedCapacity;
int numItems;

};

37

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• What private information will we need to store in order to keep track of

the data stored in OurVector?

• Member functions (What functions can you call on a variable of this type?)

• What public interface should OurVector support? What functions might

a client want to call?

• Constructor (What happens when you make a new instance of this type?)
• How are the member variables initialized when a new instance of

OurVector is created?

38

OurVector Header File

class OurVector {
public:

// Constructor

void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
int* elements;
int allocatedCapacity;
int numItems;

};

39

OurVector Header File

class OurVector {
public:

OurVector();

void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
int* elements;
int allocatedCapacity;
int numItems;

};

40

OurVector Constructor

Must initialize all the values of our member variables to be things that

initially make sense

• elements

• allocatedCapacity

• numItems

41

��

OurVector Constructor

Must initialize all the values of our member variables to be things that

initially make sense

• elements: should be allocated using the new[] keyword

• allocatedCapacity

• numItems

42

OurVector Constructor

Must initialize all the values of our member variables to be things that

initially make sense

• elements: should be allocated using the new[] keyword

• allocatedCapacity: should be set to some small integer

• numItems

43

OurVector Constructor

Must initialize all the values of our member variables to be things that

initially make sense

• elements: should be allocated using the new[] keyword

• allocatedCapacity: should be set to some small integer

• numItems: should be initialized to 0

44

Let’s Code It Up!
Member Variables and Constructor

45

Destructor

• Specially defined method for classes
• Special naming convention defined as ~ClassName()

• Does not take in parameters and does not return anything

• Automatically called when the object’s lifetime ends (for example,

if it’s a local variable that goes out of scope)

• Responsible for cleaning up an object's memory

46

OurVector Header File

class OurVector {
public:

OurVector();
// Destructor
void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
int* elements;
int allocatedCapacity;
int numItems;

};

47

OurVector Header File

class OurVector {
public:

OurVector();
~OurVector();
void add(int value);
void insert(int index, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();

private:
int* elements;
int allocatedCapacity;
int numItems;

};

48

OurVector Destructor

• Take responsibility for freeing any allocated memory currently in

use by an instance of the class

• This means calling the delete[] operator on the elements

array to officially give that memory back to the computer and avoid

any memory leaks

• The other member variables (allocatedCapacity and

numItems) are both simple stack-allocated variables, so nothing

special is needed to clean them up

49

Let’s Code It Up!
Destructor

50

Takeaways

• Member variables define the key data storage components of a
class implementation.

• The constructor is the special method that gets called when a new
instance of a class is declared. In this method, we initialize all of
our member variables to the appropriate values, including
allocating any necessary memory.

• The destructor is a special method that gets called when an
instance of a class goes out of scope and thus is destroyed. In this
method, we most often are responsible for freeing any dynamically
allocated memory used by the instance.

51

Visualizing Operations

52

Initialization via the Constructor

53

Initialization via the Constructor

54

// client code

OurVector vec;

Initialization via the Constructor

55

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec; elements

allocated
Capacity

numItems

0x1250

8

0

Adding Elements

add(): takes a specified element and adds it to the first open spot at

the end of the vector

56

Adding Elements

57

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);

elements

allocated
Capacity

numItems

0x1250

8

0

Adding Elements

58

106 ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);

elements

allocated
Capacity

numItems

?

?

?

Adding Elements

59

106 ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);

elements

allocated
Capacity

numItems

1250

8

1

0x1250

Adding Elements

60

106 ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);

elements

allocated
Capacity

numItems

1250

8

1

0x1250

Adding Elements

61

106 42 ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);

elements

allocated
Capacity

numItems

1250

?

?

?

Adding Elements

62

106 42 ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);

elements

allocated
Capacity

numItems

1250

8

2

0x1250

Adding Elements

63

106 42 ? ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);

elements

allocated
Capacity

numItems

1250

8

2

0x1250

Adding Elements

64

106 42 -3 ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Adding Elements

65

106 42 -3 ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Adding Elements

66

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Removing Elements

remove(): allows the client to specify an index at which to remove

an element, and then removes the value at that index

67

Removing Elements

68

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Removing Elements

69

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Removing Elements

70

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Removing Elements

71

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Removing Elements

72

106 -3 27 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Removing Elements

73

106 -3 27 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Removing Elements

74

106 -3 27 ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

insert(): allows the client to specify which index they want the

value to be inserted at

• similar to add(), but doesn’t have to add to back

75

Inserting Elements

76

106 -3 27 ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

77

106 -3 27 ? ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

78

106 -3 27 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

79

106 -3 27 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

80

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

81

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

82

106 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

3

0x1250

Inserting Elements

83

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

elements

allocated
Capacity

numItems

1250

8

4

0x1250

Remaining Operations

• get(): return the array element at a specified index

• size(): return the number of items the array currently holds

• isEmpty(): returns true if the number of items is 0

84

Let’s Code It Up!
Member functions

85

Takeaways

• Using an array as a backing store of data involves shifting elements

around – this kind of code is ripe for off-by-one errors!

• With good member variable member choices, most public methods

are relatively straightforward to implements.

• We've now gained an appreciation for why insertion/removal on

Vectors is an "expensive" O(n) operation.

86

Running Out of Space

• Our current implementation very quickly runs out of space to store

elements.

• What should we do when this happens?
• Currently, we just throw an error.

• Instead, we need a way to dynamically resize (grow) our internal data

storage mechanism.

87

Dynamic Array Growth

88

Day in the Life of a Hermit Crab

• Hermit crabs live in scavenged shells that they find on the seafloor. Once in a

shell, this is their lifestyle (with a bit of poetic license):

• Grow until they have outgrown their current shell. Then, follow these 5 steps.
• Find another, larger shell

• Move all their stuff into the new shell

• Leave the old shell on the seafloor

• Update their address with the Hermit Crab Postal Service

• Make note of their new shell's spacious capacity

• While this is purposefully a bit of a silly analogy, this process models almost

exactly what we need to do in order to dynamically resize our internal data

storage mechanism

89

Day in the Life of a Growable Array

• When we run out of space in our array, we want to allocate a new array that is
bigger than our old array so we can store the new data and keep growing.

• These "growable arrays" follow a five-step expansion that mirrors the hermit
crab model (with poetic license).
• Grow the array until we run out of space (how can we tell if we've run out of

space?)
• Create a new, larger array (usually we choose to double the current size)
• Copy the old array elements to the new array
• Delete (free) the old array
• Point the old array variable to the new array
• Update the associated capacity variable for the array

90

91

198 106 -3 27
0 1 2 3

elements

allocated
Capacity

numItems

1250

4

4

0x1250

92

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)
elements

allocated
Capacity

numItems

1250

4

4

0x1250

93

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)
elements

allocated
Capacity

numItems

1250

4

4

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

94

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

elements

allocated
Capacity

numItems

1250

4

4

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

95

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

elements

allocated
Capacity

numItems

1250

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

96

198 106 -3 27
0 1 2 3

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

elements

allocated
Capacity

numItems

1250

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

97

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

elements

allocated
Capacity

numItems

1250

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

98

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

4. Point the old array variable to the new

array

elements

allocated
Capacity

numItems

1250

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x1250

99

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

4. Point the old array variable to the new

array

elements

allocated
Capacity

numItems

3500

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x3500

100

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

4. Point the old array variable to the new

array

5. Update the associated capacity variable

for the array

elements

allocated
Capacity

numItems

3500

4

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x3500

101

1. Create a new, larger array (usually we

choose to double the current size)

2. Copy the old array elements to the new

array

3. Delete (free) the old array

4. Point the old array variable to the new

array

5. Update the associated capacity variable

for the array

elements

allocated
Capacity

numItems

3500

8

4

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7

0x3500

Let’s Code It Up!
Dynamic Array Growth

102

Summary

• The first step of implementing an ADT class (as with any class) is

answering the three important questions regarding its member

variables, member functions, and initialization procedures.

• Most ADT classes will need to store their data in an underlying

array. The organizational patterns of data in that array may vary, so

it is important to illustrate and visualize the contents and any

operations that may be done.

• The paradigm of "growable" arrays allows for fast and flexible

containers with dynamic resizing capabilities that enable storage of

large amounts of data.

103

