Implementing an ADT

Amrita Kaur
July 25, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

e Assignment 3 due Wednesday at 11:59pm

* Minor change to our grading scheme

* Attendance bonus can be applied to either the final or the midterm

Downweight final from 25% to as low as 20%, OR
 Downweight midterm from 10% to as low as 5%

* Will calculate both grades and take the better of the two
* Any talking in this room gets amplified, and that’s by design! So
please don’t talk during lecture, because it can be distracting :)

Stanford University

Week 4 Feedback

Rate the pace of lecture

58 responses

@® Way too slow
@® A little too slow
@ Perfect

@ A little too fast
@ Way too fast

Stanford University

Week 4 Feedback

Things you liked:

“I've really enjoyed working through examples in class, even if it's
pseudo code”

“Live examples on the white board!!!”
“Walking through code step by step”
“Very understanding to any situation”

“Really appreciate you all taking the feedback into account and
improving the course structure/format based on students' comments”

Stanford University

Week 4 Feedback

Places we can improve:

“On longer examples, a little extra time perhaps with a couple baby
steps along the way would go a long way in being able to fully create
and understand examples.”

“it’s hard to see the whiteboard”

“Maybe more real-life examples to show how the basic concepts we
are learning”

Stanford University

Week 4 Feedback

We hear you...

“Allocating more time to doing problems together as a class.”

“I think maybe have more time for us to do the problems ourselves”
“I would enjoy a little less lecturing and more coding examples.”
“Speed of the lecture could slow down”

“I wish that there could be opportunities on the homework for us to
have some space to think for ourselves and practice our
problem-solving strategies...In my opinion, there's something to be
said for learning by doing, as opposed to learning by guided
walkthrough.” - Try out some extensions!

Stanford University

Week 4 Feedback

Anything else you would like us to know:
“Thank you for listening to our feedback!”

“I almost lost my water bottle 3 times in 106B section and lecture this
week, each incident was uniquely stressful.”

“Homesickness sucks.”

“Watch the Barbie Moviel”

1

llty

Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

o
- Analysis

Building Abstractions

Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

Question from Last Class

* In an implicit constructor, does an 1nt default initialize to 07
* Nope!
* You will need to set the value explicitly to 0 in a constructor if that is what
you want

Stanford University

10

Memory on Stack vs Heap

Vector<string> varOnStack;

Until today, all variables we’ve
created get defined on the stack

This is static memory allocation

Variables on the stack are stored
directly to the memory and access
to this memory is very fast

We don’t have to worry about
memory management

Stanford University

11

Memory on Stack vs Heap

Vector<string> varOnStack; string* arr = new string[numValues];
Until today, all variables we’ve - We can now request memory from
created get defined on the stack the heap

We have more control over

Variables on the stack are stored)
variables on the heap

directly to the memory and access

to this memory is very fast - But this means that we also have

) to handle the memory we’re using
We don’t have to worry about carefully and properly clean it up
memory management when done

Stanford University

Dynamic Memory Allocation: new

* Torequest memory from the heap to allocate one element:

typex variable = new type;

* To allocate multiple (n) elements on the heap:

type*x variable = new type[n];

12

Stanford University

13

Dynamic Memory Allocation: new

type* variable = new type;

. J . J
Y Y
Declaring a variable that will Allocating heap memory with
point at our newly-allocated the new keyword

memory
e Nameisvariable
e Typeis typex (match the
type of the element) Assigning the pointer to point
to the heap memory

Stanford University

14

Dynamic Memory Allocation: Examples

int*x anInteger = new 1int;

int*x tenInts = new 1nt[10];

Stanford University

15

Pointers

* Data type, that like all other data types, takes up space in memory
and stores specific values

* Always stores a memory address, which is like the specific
coordinates of where a piece of memory exists on the computer

e Quite literally "points" to another location on your computer

Stanford University

16

Arrays

* Lower-level and more limited than Vectors
* A contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
* Contiguous means that each slot is located directly next to the others (There
are no "gaps")
* Have a specific type which dictates what information can be held in each slot
* Each slot has an "index" by which we can refer to it

@ l 2 3 4 Stanford University

17

Arrays

int firstTen[10];
int* secondTen = new int[10];
// fill memory with values
for (int i = 0; i < 10; i++) {
firstTen[i] = 1 * 25 // evens
secondTen[i] = 1 x 2 + 1; // odds
by
int len = firstTen.length(); // ERROR! No functions!
firstTen.add(42); // ERROR! No functions!

Stanford University

18

Under the Hood

int* tenInts = new int[10];

Stanford University

19

Under the Hood

int* tenInts = new int[10];

Stanford University

20

Under the Hood

int* tenInts = new int[10];
(Col 4, Row 3)

Stanford University

21

Pitfalls and Dangers

* The array you get from new/[] is fixed-size: it can neither grow nor
shrink once it’s created

 The array you get from new[] has no bounds-checking: accessing

anything past the beginning or end of an array triggers undefined
behavior

Stanford University

22

Cleaning Up

 When declaring local variables or parameters, C++ automatically
handles memory allocation and deallocation for you

 When using new, you are responsible for deallocating the memory
you allocate

* If you don't, you get a memory leak

* Your program will never be able to use that memory again

* Too many leaks can cause a program to crash —it’s important to not leak
memory!

Stanford University

23

Cleaning Up: delete

* You can deallocate (free) memory with the delete keyword
* To deallocate a single element:
delete var;

* To deallocate an array of elements:
delete[] arr;

Stanford University

24

Cleaning Up: delete

* This destroys the array pointed to by the given pointer, not the
pointer itself
* You can think of this operation as relinquishing control over the
memory back to the computer
* Once you’ve deleted the memory pointed at by a pointer, you have a
dangling pointer and shouldn’t read or write from it.

Stanford University

25

Designing OurVector

Stanford University

26

What is QurVector?

* Goal: Let's make our very own version of the Stanford C++ Vector that

we've been using all quarter long
e |t all will feel so much cooler when we've built it ourselves!

 We will only implement a subset of the functionality that the Stanford

Vector provides
e OurVector will only store integers and will not be configurable to store

other types
* Generic, or "templated" classes that allow the client to specify the data type that is
stored, are possible in C++, but they are beyond the scope of this class.

* At first, OurVector will be limited to storing a fixed number of elements,
but we will lift this restriction by the end of class. For now, if we run out space
we'll just throw an error.

Stanford University

27

Three Main Parts

* Member variables (What subvariables make up this new variable type?)

 Member functions (What functions can you call on a variable of this type?)

* Constructor (What happens when you make a new instance of this type?)

Stanford University

28

Three Main Parts

* Member variables (What subvariables make up this new variable type?)

* What private information will we need to store in order to keep track of
the data stored in OurVector?

 Member functions (What functions can you call on a variable of this type?)
 What publicinterface should OurVector support? What functions
might a client want to call?

* Constructor (What happens when you make a new instance of this type?)
* How are the member variables initialized when a new instance of
OurVector is created?

Stanford University

29

Three Main Parts

 Member variables (What subvariables make up this new variable type?)

* What private information will we need to store in order to keep track of
the data stored in OurVector?

e Member functions (What functions can you call on a variable of this type?)
* What public interface should OurVector support? What functions
might a client want to call?

* Constructor (What happens when you make a new instance of this type?)
* How are the member variables initialized when a new instance of
OurVector is created?

Stanford University

OurVector Header File

class OurVector {
public:
/* What goes here? x/

private:
/* To be defined soon! */

}s

Stanford University

OurVector Header File

class OurVector {
public:
void add(int value);
void dnsert(int dindex, int value);
int get(int index);
void remove(int index);
int size();
bool isEmpty();
private:
/* To be defined soon! x/

}s

31

Stanford University

32

Three Main Parts

* Member variables (What subvariables make up this new variable type?)

* What private information will we need to store in order to keep track of
the data stored in OurVector?

 Member functions (What functions can you call on a variable of this type?)
* What public interface should OurVector support? What functions might
a client want to call?

* Constructor (What happens when you make a new instance of this type?)
* How are the member variables initialized when a new instance of
OurVector is created?

Stanford University

33

OurVector Member Variables

Stanford University

34

OurVector Member Variables

e 1nt*x elements;
* A pointer to an array of integers, which will act as our underlying data
storage mechanism

Stanford University

35

OurVector Member Variables

e 1nt*x elements;
* A pointer to an array of integers, which will act as our underlying data
storage mechanism

e 1int allocatedCapacity;
* Aninteger that stores the size of the allocated elements array.
* Arrays don't have any conception/knowledge of their own size, so we
must manually track this!

Stanford University

36

OurVector Member Variables

e 1nt*x elements;
* A pointer to an array of integers, which will act as our underlying data
storage mechanism

e 1int allocatedCapacity;
* Aninteger that stores the size of the allocated elements array.
* Arrays don't have any conception/knowledge of their own size, so we
must manually track this!

e 1nt numItems;
* Aninteger that stores the number of elements currently stored in the
vector

Stanford University

OurVector Header File

class OurVector {
public:
void add(int value);
void dnsert(int index, int value);
int get(int dindex);
void remove(int dindex);
int size();
bool isEmpty();
private:
int* elements;
int allocatedCapacity;
int numItems;

I

37

Stanford University

38

Three Main Parts

 Member variables (What subvariables make up this new variable type?)

* What private information will we need to store in order to keep track of
the data stored in OurVector?

 Member functions (What functions can you call on a variable of this type?)
* What public interface should OurVector support? What functions might
a client want to call?

* Constructor (What happens when you make a new instance of this type?)
* How are the member variables initialized when a new instance of
OurVector is created?

Stanford University

39

OurVector Header File

class OurVector {
public:
// Constructor

void add(int value);
void insert(int index, int value);
int get(int dindex);
void remove(int index);
int size();
bool isEmpty();
private:
int* elements;
int allocatedCapacity;
int numItems;

I

Stanford University

OurVector Header File

class OurVector {
public:
OurVector();

void add(int value);
void insert(int index, int value);
int get(int dindex);
void remove(int index);
int size();
bool isEmpty();
private:
int* elements;
int allocatedCapacity;
int numItems;

I

40

Stanford University

41

OurVector Constructor

Must initialize all the values of our member variables to be things that
initially make sense

« elements
« allocatedCapacity

e numltems

Stanford University

42

OurVector Constructor

Must initialize all the values of our member variables to be things that
initially make sense

« elements: should be allocated using the new|[] keyword
« allocatedCapacity

e numltems

Stanford University

43

OurVector Constructor

Must initialize all the values of our member variables to be things that
initially make sense

« elements: should be allocated using the new|[] keyword
« allocatedCapacity: should be set to some small integer

e numltems

Stanford University

44

OurVector Constructor

Must initialize all the values of our member variables to be things that
initially make sense

« elements: should be allocated using the new|[] keyword
« allocatedCapacity: should be set to some small integer

e numlItems: should be initialized to O

Stanford University

45

Let’s Code It Up!

Member Variables and Constructor

Stanford University

46

Destructor

* Specially defined method for classes
» Special naming convention defined as ~ClassName ()

* Does not take in parameters and does not return anything

* Automatically called when the object’s lifetime ends (for example,
if it’s a local variable that goes out of scope)

* Responsible for cleaning up an object's memory

Stanford University

47

OurVector Header File

class OurVector {
public:
OurVector();
// Destructor
void add(int value);
void insert(int index, int value);
int get(int dindex);
void remove(int index);
int size();
bool isEmpty();
private:
int* elements;
int allocatedCapacity;
int numItems;

I

Stanford University

48

OurVector Header File

class OurVector {
public:
OurVector();
~QurVector();
void add(int value);
void insert(int index, int value);
int get(int dindex);
void remove(int index);
int size();
bool isEmpty();
private:
int* elements;
int allocatedCapacity;
int numItems;

I

Stanford University

49

OurVector Destructor

* Take responsibility for freeing any allocated memory currently in
use by an instance of the class

e This means calling the delete|[] operator on the elements
array to officially give that memory back to the computer and avoid
any memory leaks

* The other member variables (allocatedCapacity and
numItems) are both simple stack-allocated variables, so nothing
special is needed to clean them up

Stanford University

50

Let’s Code It Up!

Destructor

Stanford University

51

Takeaways

* Member variables define the key data storage components of a
class implementation.

* The constructor is the special method that gets called when a new
instance of a class is declared. In this method, we initialize all of
our member variables to the appropriate values, including
allocating any necessary memory.

* The destructor is a special method that gets called when an
instance of a class goes out of scope and thus is destroyed. In this
method, we most often are responsible for freeing any dynamically
allocated memory used by the instance.

Stanford University

52

Visualizing Operations

Stanford University

53

Initialization via the Constructor

Stanford University

54

Initialization via the Constructor

// client code

OurVector vec;

| University

Initialization via the Constructor

55

2 ? ? ? ?
T
// client code
elements Ox1250 OurVector vec}
allocated
Capacity 8
numItems 0]

| University

56

Adding Elements

add () : takes a specified element and adds it to the first open spot at
the end of the vector

Stanford University

57

Adding Elements

) 2 2 ? ? ? ? ?
0 1 2 3 4 5 6 7
T
// client code
elements Ox1250 OurVector vec;
vec.add(106);
allocated
Capacity 8
numItems 0]

| University

58

Adding Elements

106 ? ? ? ? ? ? ?
0] 1 2 3 4 5 6 7
!

// client code
elements ? OurVector vec;
vec.add(106);
allocated
Capacity ?
numItems ?

| University

59

Adding Elements

106 ? ? ? g ? ? E
0 1 2 3 4 5 6 7
A
| // client code

elements Ox1250 OurVector vec;
vec.add(106);

allocated

Capacity 8

numItems 1

| University

60

Adding Elements

106 2 ? g ? ? ’ !
0 1 2 3 4 5 6 7
A
| // client code

elements Ox1250 OurVector vec;
vec.add (106) ;

allocated vec.add(42);

Capacity 8

numItems 1

| University

61

Adding Elements

106 42 ? ? ? ? ? ?
0] 1 2 3 4 5 6 7
!

// client code
elements ? OurVector vec;
vec.add (106) ;
allocated vec.add(42);
. ?
Capacity .
numItems ?

| University

62

Adding Elements

106 42 ? ? Z ? ? g
0 1 2 3 4 5 6 7
A
| // client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42)
Capacity 8
numItems 2

| University

63

Adding Elements

106 42 ? ? ? ? ? ?
0] 1 2 3 4 5 6 7
A
| // client code

elements 0x1250 OurVector vec;
vec.add(106);

allocated vec.add(42);

Capacity 8 vec.add(-3);

numItems 2

| University

64

Adding Elements

106 42 -3 ? ? ? ? ?
0 1 2 3 4 5 6 7
A
| // client code

elements 0x1250 OurVector vec;
vec.add(106);

allocated vec.add(42);

Capacity 8 vec.add(-3);

numItems 3

| University

65

Adding Elements

106 42 -3 ? ? ? ? ?
0] 1 2 3 4 5 6 7
A
| // client code

elements 0x1250 OurVector vec;
vec.add(106);

allocated vec.add(42);

Capacity 8 vec.add(-3);

vec.add(27)

numItems 3

| University

66

Adding Elements

106 42 -3 27 ? ? ? ?
0] 1 2 3 4 5 6 7
A
| // client code

elements 0x1250 OurVector vec;
vec.add(106);

allocated vec.add(42);

Capacity 8 vec.add(-3);

vec.add(27)

numItems 4

| University

67

Removing Elements

remove () : allows the client to specify an index at which to remove
an element, and then removes the value at that index

Stanford University

Removing Elements

68

106 42 -3 27 ? ?
0 1 2 3 4 S
A
| // client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
numItems 4 vec.remove(1l);

| University

Removing Elements

69

Y

N/
106 42 -3 27 ? ?
0] 1 2 3 4 5
!
// client code
elements 0x1250 OurVector vec;
vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
TUIREETE 4 vec.remove(l);

| University

Removing Elements

70

106 -3 -3 27 ? 4
0 1 2 3 4 S
i
// client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
numItems 4 vec.remove (1)}

| University

Removing Elements

71

)

106 -3 -3 27 ? 4
0 1 2 3 4 S
i
// client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
numItems 4 vec.remove (1)}

| University

Removing Elements

72

106 -3 27 27 ? g
0 1 2 3 4 S
A
| // client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
numItems 4 vec.remove (1)}

| University

Removing Elements

73

106 -3 27 27 ? g
0 1 2 3 4 S
A
| // client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
numItems 3 vec.remove (1)}

| University

Removing Elements

74

106 -3 27 ? ?
i
// client code
elements Ox1250 OurVector vec;
vec.add (106) ;
allocated vec.add(42);
Capacity 8 vec.add(-3);
vec.add(27);
numItems 3 vec.remove (1)}

| University

75

Inserting Elements

insert() : allows the client to specify which index they want the
value to be inserted at

* similarto add (), but doesn’t have to add to back

Stanford University

76

Inserting Elements

106 -3 27 ? ? ? ? ?
0] 1 2 3 4 5 6 7
T

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

77

Inserting Elements

YA

106 -3 27 ? ? ? ? ?
0] 1 2 3 4 5 6 7
T

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

78

Inserting Elements

106 -3 27 27 ? ? ? ?
0] 1 2 3 4 5 6 7
!

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

79

Inserting Elements

7

106 -3 27 27 ? ? ? ?
0] 1 2 3 4 5 6 7
!

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

80

Inserting Elements

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
T

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

81

Inserting Elements

YA

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
T

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

82

Inserting Elements

106 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
T

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 3

vec.remove(l);
vec.insert(0, 198);

| University

83

Inserting Elements

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
T

// client code
elements 0x1250 OurVector vec;

vec.add(106);
allocated vec.add(42);
Capacity 8 vec.add(-3);

vec.add (27);

numItems 4

vec.remove(l);
vec.insert(0, 198);

| University

84

Remaining Operations

« get () : return the array element at a specified index
 size(): return the number of items the array currently holds

 isEmpty () : returns true if the number of items is 0

Stanford University

85

Let’s Code It Up!

Member functions

Stanford University

86

Takeaways

* Using an array as a backing store of data involves shifting elements
around — this kind of code is ripe for off-by-one errors!

* With good member variable member choices, most public methods
are relatively straightforward to implements.

* We've now gained an appreciation for why insertion/removal on
Vectors is an "expensive" O(n) operation.

Stanford University

87

Running Out of Space

e QOur current implementation very quickly runs out of space to store
elements.

* What should we do when this happens?
e Currently, we just throw an error.
* Instead, we need a way to dynamically resize (grow) our internal data
storage mechanism.

Stanford University

88

Dynamic Array Growth

Stanford University

89

Day in the Life of a Hermit Crab

Hermit crabs live in scavenged shells that they find on the seafloor. Once in a

shell, this is their lifestyle (with a bit of poetic license):

e Grow until they have outgrown their current shell. Then, follow these 5 steps.

Find another, larger shell

Move all their stuff into the new shell

Leave the old shell on the seafloor

Update their address with the Hermit Crab Postal Service
Make note of their new shell's spacious capacity

While this is purposefully a bit of a silly analogy, this process models almost

exactly what we need to do in order to dynamically resize our internal data

storage mechanism

Stanford University

90

Day in the Life of a Growable Array

When we run out of space in our array, we want to allocate a new array that is
bigger than our old array so we can store the new data and keep growing.
 These "growable arrays" follow a five-step expansion that mirrors the hermit

crab model (with poetic license).

* Grow the array until we run out of space (how can we tell if we've run out of
space?)

* Create a new, larger array (usually we choose to double the current size)
* Copy the old array elements to the new array
* Delete (free) the old array
* Point the old array variable to the new array
* Update the associated capacity variable for the array

Stanford University

198 106 -3 27
0] 1 2 3
A
|

elements Ox1250
allocated

Capacity 4
numItems 4

91

1 University

198 106 -3 27
0 1 2 3
A
|

elements Ox1250
allocated

Capacity 4
numItems 4

1.

92

Create a new, larger array (usually we
choose to double the current size)

Stanford University

93

? ? ? ? ? ? ? ?
0] 1 2 3 4 5 6 7
198 106 -3 27
0] 1 2 3
!

1. Create a new, larger array (usually we

choose to double the current size)
elements Ox1250

allocated
Capacity 4
numItems 4

Stanford University

94

? ? ? ? ? ? ? ?
0] 1 2 3 4 5 6 7
198 106 -3 27
0] 1 2 3
A
' 1. Create a new, larger array (usually we
1 . choose to double the current size)
elements
0x1250 2. Copy the old array elements to the new
array
allocated
Capacity 4
numItems 4
Stanford University

95

198 106 -3 27 ? ? ?
0] 1 2 3 5 6 7
198 106 -3 27
0] 1 2 3
A
' Create a new, larger array (usually we
. . choose to double the current size)
€ Lements 0x1250 Copy the old array elements to the new
array
allocated
Capacity 4
numItems 4

Stanford University

96

198 106 -3 27 ? ? ?
0] 1 2 3 5 6 7
198 106 -3 27
0] 1 2 3
A
! Create a new, larger array (usually we
1 . choose to double the current size)
€ Lements 0x1250 Copy the old array elements to the new
o . array
allocate
T 4 Delete (free) the old array
numItems 4

Stanford University

97

198 106 -3 27 ? ? ? ?
0] 1 2 3 4 5 6 7
A
' 1. Create a new, larger array (usually we
1 . choose to double the current size)
€ Lements 0x1250 2. Copy the old array elements to the new
5 o array
allocate
E—— 4 3. Delete (free) the old array
numItems 4
Stanford University

98

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

' 1. Create a new, larger array (usually we

choose to double the current size)

elements Ox1250 2. Copy the old array elements to the new

array
alloca.ted 4 3. Delete (free) the old array
Capacity _ _
4. Point the old array variable to the new
array
numItems 4

Stanford University

99

198 106 -3 27 [[[[

®
=
N
w
IN
Ul
o
\l

1. Create a new, larger array (usually we

choose to double the current size)

elements 0x3500 2. Copy the old array elements to the new

array
alloca.ted 4 3. Delete (free) the old array
Capacity _ _
4. Point the old array variable to the new
array
numItems 4

Stanford University

100

198 106 -3 27 [[[[

(O]
=
N
w
N
Ul
(0))]
\l

1. Create a new, larger array (usually we

choose to double the current size)

elements OXx3500 2. Copy the old array elements to the new
1L d i f he old arra
a ocate
ty 1 3. Delete (free) the old array

4. Point the old array variable to the new

array
numItems 4

5. Update the associated capacity variable

for the array Stanford University

101

198 106 -3 27 [[[[

(O]
=
N
w
N
Ul
(0))]
\l

1. Create a new, larger array (usually we

choose to double the current size)

renems X350 2. Copy the old array elements to the new
11 d array

allocate

Capacity 8 3. Delete (free) the old array

4. Point the old array variable to the new

array
numItems 4

5. Update the associated capacity variable

for the array Stanford University

102

Let’s Code It Up!

Dynamic Array Growth

Stanford University

103

Summary

* The first step of implementing an ADT class (as with any class) is
answering the three important questions regarding its member
variables, member functions, and initialization procedures.

* Most ADT classes will need to store their data in an underlying
array. The organizational patterns of data in that array may vary, so
it is important to illustrate and visualize the contents and any
operations that may be done.

* The paradigm of "growable" arrays allows for fast and flexible
containers with dynamic resizing capabilities that enable storage of
large amounts of data.

Stanford University

