Dynamic Memory

Amrita Kaur
July 24, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

e Assignment 3 due Wednesday at 11:59pm

 Midterm Grades are out!
* Regrade requests due Wednesday at 11:59pm

Stanford University

Let’s talk Midterm

Stats

« Mean: 101/120 (83.93%)
Median: 109/120 (90.83%)
 Std dev: 22

Stanford University

Let’s talk Midterm

Stats

« Mean: 101/120 (83.93%)
Median: 109/120 (90.83%)
 Std dev: 22

How to interpret your score:

 Between 100-120 points: Rock on! There’s always a little more to learn :)
 Between 80-99: Solid, just review those few concepts your forgot
 Below 79: Come check-in with us, now is the time to recalibrate

Stanford University

Regrade Requests

* Solutions are here

e If you think one of your problems was misgraded, file a regrade

request on Gradescope

* Make sure to check solutions before you submit!
* Not for advocating for changes to the rubric itself

* Ifyou file a request, we reserve the right to regrade the entire
problem and make any necessary corrections
* Requests are due by Wednesday, July 26 at 11:59pm

Stanford University

https://web.stanford.edu/class/cs106b/assessments/1-midterm/CS106B_Midterm_Solutions.pdf

Roadmap

Abstract Data
Structures

C++

Algorithmic
Analysis

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

e

-

abstraction

Design that hides the details of how
something works while still allowing the user to access
complex functionality

N

/

Stanford University

Struct

 Way to bundle different types of information
* Package data into one place

e Like creating a custom data structure or variable

Stanford University

Examples of structs

struct GridLocation {
int row;
int col;

}s

Stanford University

Examples of structs

struct Date {
int year;
int month;

int day;
s

10

Stanford University

Examples of structs

struct Lunchable {
string dessert;
int numCrackers;

bool hasCheese;

}s

11

Stanford University

12

Examples of structs

struct Album {
string title;

int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height;
I

Stanford University

13

Examples of structs

struct Album {
string title;

int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height;
s

Stanford University

Structs in structs

struct Album {
string title;
int year;
Artist artist;

s

struct Artist {

}

string name;
int age;
string favorite_food;

int height;

14

Stanford University

Structs in structs

struct Album {
string title;

int year;
Artist artist; J

s

struct Artist {
string name;
int age;
string favorite_food;
int height;
s

15

Stanford University

Structs in structs

struct Album {
string title;
int year;
Album album;
s

struct Artist {

s

string name;
int age;
string favorite_food;

int height;

16

Stanford University

17

Structs in structs

struct Album { struct Artist {
string title; string name;
int year; int age;

Album album; string favorite_food;

s

int height;
s

error: field has incomplete type 'Album'
note: definition of 'Album' 1is not
complete until the closing '}'

Stanford University

Structs in structs

struct Album {
string title;
int year;
Artist artist;

s

struct Artist {

s

string name;

int age;

string favorite_food;
int height;

Album album;

18

Stanford University

Structs in structs

struct Album {
string title;
int year;
Artist artist;

s

struct Artist {

string name;

int age;

string favorite_food;
int height;

Album album;

s

19

Stanford University

20

Class

* Defines a new data type for our program to use

* Help us create types of objects
* Which is why we call this object-oriented programming!

Stanford University

21

Class

* Defines a new data type for our program to use

* Help us create types of objects
* Which is why we call this object-oriented programming!

Struct

* Way to bundle different types of information
* Package data into one place

* Like creating a custom data structure or variable

Stanford University

22

What is a class?

e The main difference between structs and classes are the

encapsulation defaults
» Struct defaults to public members (accessible outside the struct itself).
* Class defaults to private members (accessible only inside the class
implementation).

Stanford University

23

What is a class?

e The main difference between structs and classes are the

encapsulation defaults
» Struct defaults to public members (accessible outside the struct itself).
* Class defaults to private members (accessible only inside the class
implementation).
* Every class has two parts:

e aninterface specifying what operations can be performed on instances of
the class
* an implementation specifying how those operations are to be performed

Stanford University

24

Another way to think about classes...

* A blueprint for a new type of C++ object!
* The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Stanford University

25

Three Main Parts

* Member variables (What subvariables make up this new variable type?)
e These are the variables stored within the class
e Usually not accessible outside the class implementation
 Member functions (What functions can you call on a variable of this type?)
* Functions you can call on the object
* Known as methods
e Constructor (What happens when you make a new instance of this type?)
* Gets called when you create the object
* Sets the initial state of each new object

Stanford University

26

Random Bags

Let’s write our first class!

Stanford University

27

Random Bag

* Arandom bag is a data structure similar to a stack or queue

* It supports two operations:
e add, which puts an element into the random bag, and
* remove random, which returns and removes a random element from the
bag

Stanford University

28

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:
* Create a header file (typically suffixed with . h) describing what
operations the class can perform and what internal state it needs.
* Create an implementation file (typically suffixed with . cpp) that
contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.

Stanford University

29

Header Files

RandomBag.h

Stanford University

30

What is in a header file?

Stanford University

nat is in a header file?

31

#pragma once

This code is called a
preprocessor directive.
It’s used to make sure
weird things don’t happen
if you include the same
header twice.

Stanford University

32

Preprocessor directives

* Include guards
#ifndef FILENAME_H
#define FILENAME_H

#endif /x FILENAME_H

Stanford University

https://en.wikipedia.org/wiki/Pragma_once

33

Preprocessor directives

* Include guards
#ifndef FILENAME_H
#define FILENAME_H

#endif /x FILENAME_H

e #pragma once
e Non-standard, widely supported
e Advantages: less code, avoidance of name clashes, sometimes improvement in
compilation speed
e Disadvantages: not necessarily available in all compilers

e Read more here

Stanford University

https://en.wikipedia.org/wiki/Pragma_once

nat is in a header file?

34

#pragma once

This code is called a
preprocessor directive.
It’s used to make sure
weird things don’t happen
if you include the same
header twice.

Stanford University

35

What is in a header file?

#pragma once

This is a class definition. We're
creating a new class called
RandomBag. Like a struct,
this defines the name of a new
type that we can use in our
programs.

class RandomBag {

When naming classes, use
UpperCamelCase.

33

Stanford University

36

What is in a header file?

#pragma once

class RandomBag {

Don’t forget to add the
semicolon!

You'll run into some scary
compiler errors if you leave it out!

i

Stanford University

37

What is in a header file?

Interface
#pragma once (What it looks like)
class RandomBag {
public:
private:
. Implementation
} ’ (How it works)

Stanford University

38

What is in a header file?

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

#pragma once

class RandomBag { Think things like the Vector
public: 3 .add () function or the string’s
.find ().
S
private:
I

Stanford University

nat is in a header file?

#pragma once

class RandomBag {
public:

private:

s

\

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

Think things like the Vector

.add () function or the string’s
.find().

}/

The private implementation
contains information that objects
of this class type will need in order
to do their job properly. This is
invisible to people using the class.

39

Stanford University

nat is in a header file?

40

#pragma once

class RandomBag {
public:
void add(int value);
int removeRandom()

private:

s

These are member functions of
the RandomBag class. They're
functions you can call on
objects of type RandomBag.

All member functions must be
defined in the class definition.
We'll implement these
functions in the C++ file.

Stanford University

41

What is in a header file?

#pragma once
#include "vector.h"
class RandomBag {

This is a member variable of
the class. This tells us how the

public: class is implemented. Internally,
void add(int value); we're going to store a

elements. The only code that
can access or touch this
Vector is the RandomBag
private: implementation
Vector<int> elems}

s

Stanford University

42

What is in a header file?

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;

private:
Vector<int> elems;

s

Stanford University

43

Implementation Files

RandomBag.cpp

Stanford University

#include "RandomBag.h"

If we're going to implement the
RandomBag type, the . cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

44

Stanford Unjiversity

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

45

njiversity

46

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

The syntax RandomBag: : add means “the
add function defined inside of RandomBag."
The : : operator is called the scope
resolution operator in C++ and is used to
say where to look for things.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

47

njiversity

48

#include "RandomBag.h"

void RandemBagttadd(int value){

elems.add(value);

}

If we had written something like this
instead, then the compiler would think we
were just making a free function named add
that has nothing to do with RandomBag’s
version of add. That’s an easy mistake to
make!

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

We don't need to specify where elems is. The
compiler knows that we're inside RandomBag,
and so it knows that this means "the current
RandomBag's collection of elements."

Using the scope resolution operator is like
passing in an invisible parameter to the function
to indicate what the current instance is.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

49

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!")
}
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

50

njiversity

51

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size()3
bool disEmpty()3
private:
Vector<int> elems;

}s

njiversity

52

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size()}

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

njiversity

53

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size();

bool RandomBag::isEmpty() {
return size() == 03

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

This code calls our own
size () function. The
class implementation can
use the public interface.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

54

njiversity

55

#include "RandomBag.h"

void RandomBag::add(int value){

elems.add(value);

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {

}

return elems.size();

bool RandomBag::isEmpty() {

return size() == 0;

Let’s use it another
place too!

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

njiversity

56

#include "RandomBag.h"

void RandomBag::add(int value){

elems.add(value);

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {

}

return elems.size();

bool RandomBag::isEmpty() {

return size() == 0;

This use of the const keyword
means "l promise that this
function doesn't change the
state of the object.”

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size() const;
bool isEmpty() const;
private:
Vector<int> elems;

}s

njiversity

57

#include "RandomBag.h"

void RandomBag::add(int value){

elems.add(value);

int RandomBag: :removeRandom() {

if (elems.isEmpty())

{

error ("Aaaaahhh!");

}

int index = randomInteger (0, size() - 1);

int result = elems[i
elems.remove (index) ;
return result;

| |

We have to remember to add it
to the implementation as well!

int RandomBag::size() const {

}

return elems.size();

bool RandomBag::isEmpty() const {

return size() == 0;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size() const;
bool isEmpty() const;
private:
Vector<int> elems;

}s

njiversity

58

#include "RandomBag.h"

void RandomBag::add(int value){ Note: There are some

elems.add(value); additional #includes that
’ we’ll need. (We'll see them
int RandomBag::removeRandom() { in the actual . cpp file.)

if (elems.isEmpty()) {
error ("Aaaaahhh!");

ks

int index = randomInteger (0, size() - 1);

int result = elems[index];

elems.remove (index) ;

return result;

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);

int RandomBag::size() const {
int removeRandom();

return elems.size();

} int size() const;
bool isEmpty() const;
bool RandomBag::isEmpty() const { private:
return size() == 0; Vector<int> elems;
} s

njiversity

59

Three Main Parts

* Member variables (What subvariables make up this new variable type?)
e These are the variables stored within the class
e Usually not accessible outside the class implementation
 Member functions (What functions can you call on a variable of this type?)
* Functions you can call on the object
* Known as methods
e Constructor (What happens when you make a new instance of this type?)

* Gets called when you create the object
* Sets the initial state of each new object

Stanford University

60

Constructor

* Specially defined method for classes that initializes the state of

new objects as they are created
» Often accepts parameters for the initial state of the fields.
e Special naming convention defined as ClassName ()
* You can never directly call a constructor, but one will always be called
when declaring a new instance of an object

Stanford University

61

Stanford University

// MyClass.h
class MyClass {
public:

returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
type varl;
type var2;

type func4();
+s

62

Stanford University

// MyClass.h
class MyClass {
public:

MyClass ()

returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
type varl;
type var2;

type func4();
+s

63

Stanford University

// MyClass.h

class MyClass {

public:
MyClass () ;

returnType
returnType
returnType

private:
type varl;
type var2;

funcl(parameters);
func2(parameters);
func3 (parameters) ;

type func4();

}s

// MyClass.cpp
MyClass::MyClass() {
varl = 1;
var2 = 1;

64

Stanford University

// MyClass.h

class MyClass {

public:
MyClass () ;

returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
type varl;
type var2;

type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

65

// main.cpp
int main() {

MyClass firstInstance;

rsity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(parameters)
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
type varl;
type var2;

type func4();
s

// MyClass.cpp
MyClass: :MyClass() {

66

varl = 1;
var2 = 1;
}
// main.cpp

int main() {

MyClass firstInstance;

rsity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(parameters) ;
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
type varl;
type var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass: :MyClass(parameters) {

}

67

// main.cpp
int main() {

MyClass firstInstance;

rsity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(parameters) ;
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
type varl;
type var2;
type func4();
s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass: :MyClass(parameters) {

}

68

// main.cpp

int main() {
MyClass firstInstance;
MyClass secInstance(params)

rsity

69

Vector Constructors

& The Stanford 1ibcs106 library, Fall Quarter 2022

#include "vector.h"

class Vector<ValueType>

Constructor
Vector(). O(1) | Initializes a new empty vector.
Vector(n,_value) O(N) Initializes a new vector storing n copies of the given value.

Stanford University

70

Vector Constructors

& The Stanford 1ibcs106 library, Fall Quarter 2022

#include "vector.h"

class Vector<ValueType>

Constructor
Vector(). O(1) Initializes a new empty vector.
Vector(n,_value) O(N) Initializes a new vector storing n copies of the given value.

Vector<string> myVec; // calls default constructor

Stanford University

71

Vector Constructors

& The Stanford 1ibcs106 library, Fall Quarter 2022

#include "vector.h"

class Vector<ValueType>

Constructor
Vector(). O(1) Initializes a new empty vector.
Vector(n,_value) O(N) Initializes a new vector storing n copies of the given value.

Vector<string> myVec; // calls default constructor

Vector<string> myVec2(3, “hi”); // calls second constructor

Stanford University

72

Grid Constructors

& The Stanford 1ibcs106 library, Fall Quarter 2022

#include "grid.h"

class Grid<ValueType>

Constructor
Grid() O(1) Initializes a new empty 0x0 grid.
Grid(nRows,_nCols) O(N) Initializes a new grid of the given size.

Grid(nRows, nCols, value) O(N) Initializes a new grid of the given size, with every element set to the specified value.

Grid<int> myGrid; // calls default constructor

Stanford University

73

Grid Constructors

& The Stanford 1ibcs106 library, Fall Quarter 2022

#include "grid.h"

class Grid<ValueType>

Constructor
Grid() O(1) Initializes a new empty 0x0 grid.
Grid(nRows,_nCols) O(N) Initializes a new grid of the given size.

Grid(nRows, nCols, value) O(N) Initializes a new grid of the given size, with every element set to the specified value.

Grid<int> myGrid; // calls default constructor
Grid<int> myGrid2(3, 4); // calls second constructor

Stanford University

74

Grid Constructors

& The Stanford 1ibcs106 library, Fall Quarter 2022

#include "grid.h"
class Grid<ValueType>

Constructor
Grid() O(1) Initializes a new empty 0x0 grid.
Grid(nRows,_nCols) O(N) Initializes a new grid of the given size.

Grid(nRows, nCols, value) O(N) Initializes a new grid of the given size, with every element set to the specified value.

Grid<int> myGrid; // calls default constructor
Grid<int> myGrid2(3, 4); // calls second constructor
Grid<int> myGrid3(3, 4, 0); // calls third constructor

Stanford University

75

#include "RandomBag.h"
There is no explicit
void RandomBag::add(int value){ t tor for this cl
elems. add (value) ; con's rl.JC or for this class,
1 which is okay! Instead,
there’s a default,
int RandomBag:: Rand
int RandomBag: : removeRandom() { zero-argument constructor
if (elems.isEmpty()) { .) .
error ("Aaaaahhh!"); that instantiates all private

} member variables.
int index = randomInteger (0, size() - 1);

int result = elems[index];
. #pragma once
elems.remove (index) ;)
feturn result: #include "vector.h"
1 ’ class RandomBag {
public:
int RandomBag::size() const { void add(int value);
return elems.size(); int removeRandom() ;
} int size() const;
bool isEmpty() const;
bool RandomBag::isEmpty() const { private:
return size() == 0; Vector<int> elems;
} }s
njiversity

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(int varl, 1int var2);
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varil;
int var2;
type func4();
T

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass: :MyClass(parameters)

}

76

Stanford University

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(int varl, int var2);
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varil;
int var2;
type func4();
}s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass::MyClass(int varl, 1int var2) {

}

Stanford University

// MyClass.h

class MyClass {

public:
MyClass () ;
MyClass(int varl, int var2);
returnType funcl(parameters);
returnType func2(parameters);
returnType func3(parameters);

private:
int varil;
int var2;
type func4();
}s

// MyClass.cpp
MyClass: :MyClass() {
varl = 1;
var2 = 1;

MyClass::MyClass(int varl, int var2) {
this->varl = varil;
this->var2 = var2;

Stanford University

this

* Refers to the current instance of an object that a method is being
called on

e Similar to the self keyword in Python and the th1is keyword in
Java

* Syntax: this->member

« Common usage: In the constructor, so parameter names can match
the names of the object's member variables

* this uses -> not . because it is a pointer

Stanford University

80

RandomBag Code

Stanford University

81

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file.

Stanford University

82

Takeaways

e Public member variables declared in the header file are automatically

accessible in the . cpp file.
* As a best practice, member variables should be private, and you can

create public member functions to allow users to edit them

Stanford University

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file.

* As a best practice, member variables should be private, and you can
create public member functions to allow users to edit them

 Member functions have an implicit parameter that allows them to know
what instance of the class (i.e. which object) they’re operating on

Stanford University

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file.

* As a best practice, member variables should be private, and you can
create public member functions to allow users to edit them

 Member functions have an implicit parameter that allows them to know
what instance of the class (i.e. which object) they’re operating on

* When you don’t have a constructor, there’s a default, zero-argument
constructor that instantiates all private member variables

Stanford University

85

BankAccount Code

Structs vs Classes

Stanford University

86

Recap

* We can create our own abstractions for defining data types using
classes. Classes allow us to encapsulate information in a structured
way.

* C(Classes have three main parts to keep in mind when designing

them:
e Member variables — these are always private
 Member functions (methods) — these can be private or public
e Constructor — this is created by default if you don’t define one

* Writing classes requires the creation of a header (.h) file for the
interface and an implementation (.cpp) file.

Stanford University

Roadmap

Abstract Data
Structures

C++

Algorithmic
Analysis

87

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Algorithmic

o
- Analysis

88

Building Abstractions

Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

89

Readymade containers are great!

* You can do so much with the ADTs that you have!
e Write code that sorts names in the U.S. census
* Use vectors, grids to search for optimal paths in a maze
* Generate combinations recursively using sets

* You used their interfaces

Stanford University

90

But how are those containers implemented?

 WEe’'ll need to learn about more basic building blocks in C++: arrays,
pointers
 Tomorrow, we’re building our own vector!

Stanford University

91

But how are those containers implemented?

 WEe’'ll need to learn about more basic building blocks in C++: arrays,
pointers
 Tomorrow, we’re building our own vector!

And what if we need custom containers / objects?

 We have to define our own classes
* In A4, you’ll be building a priority queue class!

Stanford University

92

For example, Google Chrome

3 chromium / chromium Publ > Watch 508 ~ Fork 4.8k % Star 12.6k

Code Pull requests 54 ») Actions Security Insights

¥ main ~ chromium / chrome / browser [apps / platform_apps / Go to file Add file ~

Maria Petrisor and Chromium LUCI CQ Make AddAppOptions.iconUrl optional . 3 lays O History

api

BUILD.gn

app_browsertest.cc
app_browsertest_util.cc
app_browsertest_util.h
app_load_service.cc
app_load_service.h
app_load_service_factory.cc
app_load_service_factory.h
app_pointer_lock_interactive_uitest.cc
app_shim_interactive_uitest_mac.mm

app_shim_quit_interactive_uitest_mac.mm

Stanford University

93

Squares

* Let’s say we want to write a function squares that accepts an
integer and creates a Vector of integers that contains all perfect
squares, up to and including the square of the input

* Ex:

* Inputinteger: 4
* Output Vector: {1, 4, 9, 16}

Stanford University

94

Squares

Vector<int> squares(int numSquares) {
Vector<int> vec;
for (int i = 0; i1 < numSquares; i++) {
vec.add(i * 1);
}

return vec;

Stanford University

95

Squares, Take 2

void squares(Vector<int>& vec, int numSquares) {
for (int i = 0; i < numSquares; i++) {

vec.add(i * 1);

Stanford University

96

Squares, Take 3

Vector<int>& squares(int numSquares) {
Vector<int> vec;
for (int i = 0; i1 < numSquares; i++) {
vec.add(i * 1);
}

return vec;

Stanford University

97

What do we want?

1. away to reserve a section of memory so that it remains available
to us throughout our entire program, or until we want to destroy it

2. away to reserve any amount of memory we want at the time we
need it

Stanford University

98

Global Variables

* (Can be accessed by any function in our program
e Thatisn't what we want
* Want to control which function has access to the data, just like we
normally would when passing data between functions
* Have a fixed size at compile time
e Thatisn't what we want.

Stanford University

99

Dynamic Memory Allocation Stack

* Use dynamic memory allocation to acquire storage space
on the heap

T

Heap

Text

Stanford University

Dynamic Memory Allocation

Use dynamic memory allocation to acquire storage space

on the heap
* Variables on the stack have a scope based on the function
they are declared in
* Heap memory is allocated to your program from the time you
request the memory until the time you tell the operating
system you no longer need it, or until your program ends.

You can, at runtime, ask for extra storage space, which
C++ will give you

You can use that storage space however you’d like

You have to explicitly tell the language when you’re done
using the memory.

100

Stack

T

Heap

Text

Stanford University

Dynamic Memory Allocation: new

* Torequest memory from the heap to allocate one element:

typex variable = new type;

* To allocate multiple (n) elements on the heap:

type*x variable = new type[n];

101

Stanford University

102

Dynamic Memory Allocation: new

type* variable = new type;

. J . J
Y Y
Declaring a variable that will Allocating heap memory with
point at our newly-allocated the new keyword

memory
e Nameisvariable
e Typeis typex (match the
type of the element) Assigning the pointer to point
to the heap memory

Stanford University

103

Dynamic Memory Allocation: Examples

int*x anInteger = new 1int;

int*x tenInts = new 1nt[10];

Stanford University

104

Pointers

* A pointeris a brand new data type that becomes very prominent
when working with dynamically allocated memory.

* Just like all other data types, pointers take up space in memory and
can store specific values.

* A pointer always stores a memory address, which is like the specific
coordinates of where a piece of memory exists on the computer.

* They quite literally "point" to another location on your computer.

Stanford University

105

Arrays

* Lower-level and more limited than Vectors
* A contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
* Contiguous means that each slot is located directly next to the others (There
are no "gaps")
* Have a specific type which dictates what information can be held in each slot
* Each slot has an "index" by which we can refer to it

@ l 2 3 4 Stanford University

106

Arrays

e int firstTen[10];

e Create an array of 10 ints on the stack

e Only accessible within the function that created it
e intx secondTen = new int[1l0];

* Creates an array of 10 ints on the heap

* Accessible for the rest of the program (if we wish)

Stanford University

107

Arrays

int firstTen[10];

int* secondTen = new int[10];

Stanford University

Arrays

int firstTen[10];

int* secondTen = new int[10];

// fill memory with values

for (int 1 = 0; 1 < 10; i++) {
firstTen[i] = 1 * 2; // evens

secondTen[i] = 1 x 2 + 1; // odds

108

Stanford University

109

Arrays

int firstTen[10];
int* secondTen = new int[10];
// fill memory with values
for (int i = 0; i < 10; i++) {
firstTen[i] = 1 * 25 // evens
secondTen[i] = 1 x 2 + 1; // odds
by
int len = firstTen.length(); // ERROR! No functions!
firstTen.add(42); // ERROR! No functions!

Stanford University

110

Under the Hood

int* tenInts = new int[10];

Stanford University

111

Under the Hood

int* tenInts = new int[10];

Stanford University

112

Under the Hood

int* tenInts = new int[10];

Stanford University

113

Under the Hood

int* tenInts = new int[10];
(Col 4, Row 3)

Stanford University

114

Tracing Example

Stanford University

115

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

Stanford University

116

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

117

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

118

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

119

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {

arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

120

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {

arr[i] = getLine("Enter a string: ");

numValues: 7

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

121

int main () {

int numValues = getInteger ("How many words?");

stringx arr = new striné[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

122

int main () {

int numValues = getInteger ("How many words?");

stringx arr = new striné[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

arr.

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

123

int main () {

int numValues = getInteger ("How many words?");

stringx arr = new striné[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

arr.

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

124

int main () {

int numValues = getInteger ("How many words?");

stringx arr = new striné[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥
for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

arr: | 1,4

Of1[2[3[4[5[6[7]8

gl |O|IN]|=]|O

10111{12]13)14[15

Stanford University

125

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new striné[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");

numValues: 7

arr: | 1,4

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

gl |O|IN]|=]|O

Stanford University

126

int main () {

int numValues = getInteger ("How many words?");

stringx arr = new striné[numValues];

for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

arr: | 1,4

0]1[2[3]4[5[6]|7(8

gl |O|IN]|=]|O

10111{12]13)14[15

Stanford University

127

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");

numValues: 7

arr: | 1,4

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

128

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

129

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

0]1[2[3]4[5[6]|7(8

gl |O|IN]|=]|O

10111{12]13)14[15

Stanford University

130

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

}

return 0;

main()

numValues: 7

Watch

0]1[2[3]4[5[6]|7(8

gl |O|IN]|=]|O

10111{12]13)14[15

Stanford University

131

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << 4 << M: M << arr[i] << endl;
}
return 0;
}
0]11]12]3]|4[5]|6]|7]8 10(11]12]13[14[15
0
1
2
3
Watch -
5

0 1 2 3 4 5 6 Stanford University

132

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << 4 << M: M << arr[i] << endl;
}
return 0;
}
0]11]12]3]|4[5]|6]|7]8 10(11]12]13[14[15
0
1
2
3
Watch -
5

0 1 2 3 4 5 6 Stanford University

133

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

main()

numValues: 7

}
return 0;
}
Watch me

0]1[2[3]4[5[6]|7(8

gl |O|IN]|=]|O

10111{12]13)14[15

Stanford University

134

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;
}
0]1[2[3]4[5[6]|7(8 10111{12]13)14[15
0
1
2
3
Watch me "
)

0 1 2 3 4 5 6 Stanford University

135

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;
}
0]1[2[3]4[5[6]|7(8 10111{12]13)14[15
0
1
2
3
Watch me "
)

0 1 2 3 4 5 6 Stanford University

136

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

Watch me dance,

main()
numValues: 7
01123456718 10111112(13]|14|15
0
1
2
3
4
S

Stanford University

137

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

Watch me dance,

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

138

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

Watch me dance,

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

139

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

Watch me dance, | dance

main()
numValues: 7
01123456718 10111112(13]|14|15
0
1
2
3
4
S

Stanford University

140

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

Watch me dance, | dance

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

141

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

Watch me dance, | dance

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

142

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

Watch me dance, | dance the

main()
numValues: 7
01123456718 10111112(13]|14|15
0
1
2
3
4
S

Stanford University

143

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

Watch me dance, | dance the

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

144

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];

for (int i = 0; i < numValues; 1i++) {

numValues: 7

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; 1 < numValues; 1i++) {
cout << i << MM << arr[i] << endl;
}
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

Watch me dance, | dance the

gl |O|IN]|=]|O

0 1 2 3 4 5 6 Stanford University

145

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
Watch me dance, | dance the night

main()
numValues: 7
01123456718 10111112(13]|14|15
0
1
2
3
4
S

Stanford University

146

int main () { main()
int numValues = getInteger ("How many words?");
. &) ger(Y) numValues: | 7
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
011]12]|3|4|5|6|7]8 1011112131415
0
1
2
3
Watch me dance, | dance the night 4
5

0 1 2 3 4 5 6 Stanford University

147

int main () { main()
int numValues = getInteger ("How many words?");
. &) ger(Y) numValues: | 7
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
011]12]|3|4|5|6|7]8 1011112131415
0
1
2
3
Watch me dance, | dance the night 4
5

0 1 2 3 4 5 6 Stanford University

148

int main () { main()
int numValues = getInteger ("How many words?")
) &) ger(Y)5 numValues: | 7
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
01123456718 10111112(13]|14|15
0
1
2
3
Watch me dance, | dance the night | away! 4
S

0 1 2 3 4 5 6 Stanford University

149

int main () {

int numValues = getInteger ("How many words?");

stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {

arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
Watch me dance, | dance the night | away!
0] 1 2 3 4 5 6

main()
numValues: 7
01123456718 10111112(13]|14|15
0
1
2
3
4
S

Stanford University

150

int main () { main()
int numValues = getInteger ("How many words?")
) &) ger(Y)5 numValues: | 7
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
01123456718 10111112(13]|14|15
0
1
2
3
Watch me dance, | dance the night | away! 4
S

0 1 2 3 4 5 6 Stanford University

151

int main () { main()
int numValues = getInteger ("How many words?");
, & -©6 (y)5 numValues: | 7
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");
3
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0; /,
¥ 0: Watch
1: me B
2: dance,
3: dance
vo Lhe 0O[1)12]|3[4|5[|6]7]8 10]11]12[13[14]15
5: night .
6: away! y
\ L
3
Watch me dance, | dance the night | away! 4
5

0 1 2 3 4 5 6 Stanford University

152

Pitfalls and Dangers

 C++’s language philosophy prioritizes speed over safety and
simplicity
 The array you get from new/[] is fixed-size: it can neither grow nor

shrink once it’s created
e C++ does not make that size available to the programmer
* So, programs that work with arrays typically need an additional variable
to keep track of the number of elements

 The array you get from new[] has no bounds-checking: accessing
anything past the beginning or end of an array triggers undefined
behavior

Stanford University

153

Attendance Ticket

What are potential examples of "undefined behavior" that could occur
if you access beyond the bounds of an array? Select all that apply.

* Nothing happens.
* You get a random, garbage value back.

* Your program crashes.
* You make your computer vulnerable to a hacker.

Stanford University

154

Attendance Ticket

What are potential examples of "undefined behavior" that could occur
if you access beyond the bounds of an array? Select all that apply.

* Nothing happens.

* You get a random, garbage value back.

* Your program crashes.

* You make your computer vulnerable to a hacker.
* You make the front page of the New York Times!

Stanford University

Lats Edton
Newr York: Today, paedy sarery, rmilder.
Hygh 24 T
u-«.u._'rmm mm.

4o el T3 s s Svw Tk iy wtomin o0 Ly Il

== | @lye New Pork Eimes

VOLCXXX VI, .. N 47877 copyryhe €500 S e Yool T ~

@ 10 yearobd Tam 31 3 toum msesing Iy

Fa., daring 3 voar of the Norveast in which be s
phagingd the drag prablers. Fage A10. Vice e

Registration Off

ince e

There Ras boes & proseesced
dectine in e peroertage of of)-
bl Americars whe sov regie.
sered 13 veds, 8 reasarch groop
repans

Hatuaally, Ihe pefcesiage of E
cighlt Ancxam wiw e
| mephiend b oilzmsied o be
Thd-parceew, dawn 11 pola
feam e 1554 bl -

Tho pras's Uidy e aded
that In many of B¢ ¥ Pews
wheire faal lgured are sl
ghic Lhe decloe was arsang

Guorv. Michael 8 lekﬂmﬁ—W
FalrSer T,

——

TN TR IR S
dent Bosh sdcrezmd » naily in Cotum-
e, Oftis. Leex than 3 week after Mr. Dukakds ac-
kenorwledged being 2 Sheral, Mir, Bizeh sxid
thixt "thiz sloction ks not abow Labels. * Faps A LS.

>
'

“Virus’ in Military Computers
Disrupts Systems Nationwide:

IyJWIAm

Ilmnmumxraluqxw
Uass ahgl e vulrerabiiy =f

tively chpging tnmi m'ﬂ
hoasands of avlicary, esrpicule
sround

oripuics exjperls worr calleg
the wites the Mrges! wewmak ever
o= (be ration’s casrpaters.

The Rig b

“The big b b i & rcla-
Urely Sivegn sallware pregram
OO0 viFTsaly Brizg oor campatng
coezrranity 29 il Eases aad b
M there for aome tiee™ sald
Chack Cole, Gepaty 0pmpeter s
corky masager M Lawsesce

curizy axpent 3t Harvard Unevey
dry, added; “Thers bs ot oo 545
0 MAfeger s B ol icarsg
Bty ha¥r el I’ cunisg escor-
m3us haachcbac "

Thoe slfectnd corepet ors carTy 2
sremendous variety of dusieesd
and research lormation arsomg

Wb same ssasithy mddtary
daia are levelved e compurers

PENTAGON REPORTS
FOR CONSULTANTS

CONTRRCTDRS CRH’IBIZED

zscan"rsl

INPROPER CHARGES *

Imzwy Snows Routing Blllmg
of Government by Industry =

Coorpaces vinumes &% w0 i
becazas dy parslel s 0 tosy
pumer warkd the Sehwvier &l bls-
lepitd) viruses. A varus i3 3 pea-
Fam, or & sl of Entructions ta &
corsputer, Gt b ekdwr plarced
o= 3 Soppy dhik meare 13 be ueg
with ch COMpUIEr oF W roadeoed
whan 158 OReAer |8 comman
Taling weer Lses o=
uln setwaths with other corepet-
en

The prugrarza caz cagy thems-
scives seothe TR
scllware, or operaang TR,
mvﬂmnlumuu:
o 13 dwwmsehves Froe there,
the pIogram can be pazsed
l-ﬂlmulmpdm

l.leamh & pon e et o

he saftware’s cromor, the pro-
Erars mighl CIAs & PrOVICIOVE
but ctherwins RAIWEed tesde g
12 mppear o (he Corspulers

on Foes, Some Dubiows

By JOMN H, CUSHMAN J¢
RO B U P T T

VA!HINL‘!DM BMov. 3 — A l'clb-

are ddscrmvs w1 sertere thar S Gow.
STRRRenl-Goeg B Improperty pay for
prsmiely arrangsd cossaling wark
Scame Delense DeparGoend offickds

Whie 2 bx not Srproper for rmiltary
CORITRONEE 30 WEe Somalias I per-

formeing wark for de Penagon, ihe

WO il OreCLLy Dt D reiNArY
o0 o e e pad Jor By he

e O i1 could 1y
deilryy dils b 2w]

e wd, this oot bx not et

mexsary. In thiz cams, the wirus
prigrars & rothing more han |
reprodacs o] rapedly ‘
The progre wes sppetily & |
read of an opercesy which

Continesd on Pope A21, Coluree ?

Beoador Lotk o1 Comseliants
The Justce Dopsir Lrses(s com Ly

the ceagrory xad seliing of wespona,
and the Dedorme Degarumaect bas e
crkiped for wing comseliams w00

155

University

“All the News
That's Fit to Print"

VOLCXXX VI, No. 47479

There Ras boes & proseesced
dectine in e peroertage of of)-
#ble Arvericars whe sov regls
sernd 13 voie, 8 reanarch groop
repans

Hatuaally, Ihe pefcesiage of
cighlt Ancxam wiw e
mephiend & oiimsied o be
Thd-parceew, dawn 11 pola
feam e 1554 bl -

Tho pras's Uidy e aded
that In many of B¢ ¥ Pews
wheire faal lgured are sl
ghic Lhe dechor was amang

UDGMVIENT DAY

The Sentencing of Robert Morris Jr.

P.57

Saw Tk Tl waom o0 Lang hland

PENTAGON REPORTS
INPROPER CHARGES
FOR CONSULTANTS

CONTRACTOR CRI‘I’ICIZED

Imzwy Shows Rnulms Blllmg
of Government by Industry =
— on Foes, Some Debions

By JOMN H CUSHMAN J¢
SR B B P TN D
VA!HINL‘!DN, BMov. 3 — A h:lb-
by foursd e ra-

Ofle=,
wre discovernd, this tont lx not et
Beoador Lotk o1 Comseliants
The Justce Dopsir Lrses(s com Ly

157

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have
access to

Stanford University

158

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have
access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

Buffer Overflow
(8 bytes) (2 bytes)

0 1 2 3 % 5 6 7 8 9

Stanford University

159

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then

a. Programs would let you access memory on the computer that you shouldn’t have
access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

Buffer Overflow
(8 bytes) (2 bytes)

0 1 2 3 0 5 6 7 8 9

3. Inject some malicious code right after that array
a. The computer will get tricked into running the code

Stanford University

160

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then

a. Programs would let you access memory on the computer that you shouldn’t have
access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

Buffer Overflow
(8 bytes) (2 bytes)

3. Inject some maI|C|ous code rlght after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer

Stanford University

161

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then

a. Programs would let you access memory on the computer that you shouldn’t have
access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

Buffer Overflow
(8 bytes) (2 bytes)

3. Inject some maI|C|ous code rlght after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer
9. Crash the entire internet

Stanford University

The Morris Internet Worm source code

This disk contains the complete source code of the Morris Internet
worm program. This tiny, 99-line program brought large pieces
of the Internet to a standstill on November 2"° 1988.

The worm was the first of many intrusive programs that use the
Internet to spread.

ioiio Computer
to:Jo History
'ro * Museum

162

University

163

"Responsible” Hacking

* The story of Robert Morris and his Internet Worm illustrates the
core dilemma at the heart of security research

* Identifying and exposing security vulnerabilities is very important!

* Exposing security vulnerabilities in an irresponsible manner can
result in devastating damages (monetary, physical, etc.)

* Responsible Disclosure: a vulnerability disclosure model in which a
vulnerability or an issue is disclosed only after a period of time that
allows for the vulnerability or issue to be patched or mended.

Stanford University

164

Memory on Stack vs Heap

Vector<string> varOnStack;

Until today, all variables we’ve
created get defined on the stack

This is static memory allocation

Variables on the stack are stored
directly to the memory and access
to this memory is very fast

We don’t have to worry about
memory management

Stanford University

165

Memory on Stack vs Heap

Vector<string> varOnStack; string* arr = new string[numValues];

Until today, all variables we’ve
created get defined on the stack

This is static memory allocation

Variables on the stack are stored
directly to the memory and access
to this memory is very fast

We don’t have to worry about
memory management

Stanford University

166

Memory on Stack vs Heap

Vector<string> varOnStack; string* arr = new string[numValues];
Until today, all variables we’ve - We can now request memory from
created get defined on the stack the heap

We have more control over

Variables on the stack are stored)
variables on the heap

directly to the memory and access

to this memory is very fast - But this means that we also have

) to handle the memory we’re using
We don’t have to worry about carefully and properly clean it up
memory management when done

Stanford University

167

Cleaning Up

 When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you
« Memory allocation is the process by which the computer hands you a
piece of computer memory in which you can store data
* Memory deallocation is the process by which control of this memory
(data storage location) is relinquished back to the computer

Stanford University

Cleaning Up

 When declaring local variables or parameters, C++ automatically
handles memory allocation and deallocation for you

 When using new, you are responsible for deallocating the memory
you allocate

Stanford University

169

Cleaning Up

 When declaring local variables or parameters, C++ automatically
handles memory allocation and deallocation for you

 When using new, you are responsible for deallocating the memory
you allocate

* If you don't, you get a memory leak

Stanford University

170

Cleaning Up

 When declaring local variables or parameters, C++ automatically
handles memory allocation and deallocation for you

 When using new, you are responsible for deallocating the memory
you allocate

* If you don't, you get a memory leak

* Your program will never be able to use that memory again

Stanford University

171

Cleaning Up

 When declaring local variables or parameters, C++ automatically
handles memory allocation and deallocation for you

 When using new, you are responsible for deallocating the memory
you allocate

* If you don't, you get a memory leak

* Your program will never be able to use that memory again

* Too many leaks can cause a program to crash —it’s important to not leak
memory!

Stanford University

172

Cleaning Up: delete

* You can deallocate (free) memory with the delete keyword
* To deallocate a single element:
delete var;

* To deallocate an array of elements:
delete[] arr;

Stanford University

173

Cleaning Up: delete

* This destroys the array pointed to by the given pointer, not the
pointer itself
* You can think of this operation as relinquishing control over the
memory back to the computer
* Once you’ve deleted the memory pointed at by a pointer, you have a
dangling pointer and shouldn’t read or write from it.

Stanford University

174

int main () { main()
int numValues = getInteger ("How many words?")
) &) ger(Y)5 numValues: | 7
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");
}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;
}
return 0;
}
01123456718 10111112(13]|14|15
0
1
2
3
Watch me dance, | dance the night | away! 4
S

0 1 2 3 4 5 6 Stanford University

175

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; 1i++) {
arr[i] = getLine("Enter a string: ");

numValues: 7

}
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

}

delete[] arr;
return 0;

0]1[2[3]4[5[6]|7(8 10111{12]13)14[15

gl |O|IN]|=]|O

Watch me dance, | dance the night | away!

0 1 2 3 4 5 6 Stanford University

176

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");
} it | 7
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

numValues: 7

arr: 227

}

delete[] arr;
return 0;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

gl |O|IN]|=]|O

Stanford University

177

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");
} it | 7
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

numValues: 7

arr: 227

}

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

return 0;

gl |O|IN]|=]|O

Stanford University

178

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");
} it | 7
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

numValues: 7

arr: 227

}

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

return 0;

gl |O|IN]|=]|O

Stanford University

179

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

¥

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

return 0;

main()

numValues: 7

arr: 4,5

Stanford University

180

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

¥

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

return 0;

main()

numValues: 7

arr: 4,5

Stanford University

181

int main () {
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

¥

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

¥

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

return 0;

main()

numValues: 7

arr: 4,5

Stanford University

182

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");
} it | 7
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

numValues: 7

arr: 227

}

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

return 0;

gl |O|IN]|=]|O

Stanford University

183

int main () { main()
int numValues = getInteger ("How many words?");
stringx arr = new string[numValues];
for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");
} it | 7
for (int i = 0; i < numValues; 1i++) {
cout << i << ": " << arr[i] << endl;

numValues: 7

arr: 227

}

delete[] arr;

arr = new string[10];
arr[4] = “weird”;
delete[] arr;

Of1[2[3[4[5]|6[7|8]9]10|11]12]13]14]15

cout << arr[1l] << endl; // DO NOT DO THIS
arr = new int[4]; // ERROR

gl |O|IN]|=]|O

return 0;

Stanford University

184

Recap

 We've learned about classes, which have an interface and implementation.
* When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much

memory something needs.
* We use the keyword new to allocate dynamic memory.
* We keep track of that memory with a pointer. (more on pointers Thursday!)
* We must clean up the memory when we’re done with delete.

 We've learned how to allocate dynamic memory using arrays, which give us a
contiguous block of memory that all stores one particular type (int, string,
double, etc.).

 Without knowing it, we have been using dynamic memory all along, through the
use of the standard and Stanford library classes. The string, Vector, Map, Set,
Stack, Queue, etc., all use dynamic memory to give you the data structures we
have used for all our programs.

Stanford University

185

Next Class - Implementing a Dynamic ADT

We’re going to build a vector!

Stanford University

