
Dynamic Memory
Amrita Kaur

July 24, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 3 due Wednesday at 11:59pm

• Midterm Grades are out!
• Regrade requests due Wednesday at 11:59pm

2

Let’s talk Midterm

Stats

• Mean: 101/120 (83.93%)
• Median: 109/120 (90.83%)
• Std dev: 22

3

Let’s talk Midterm

Stats

• Mean: 101/120 (83.93%)
• Median: 109/120 (90.83%)
• Std dev: 22

How to interpret your score:

• Between 100-120 points: Rock on! There’s always a little more to learn :)
• Between 80-99: Solid, just review those few concepts your forgot
• Below 79: Come check-in with us, now is the time to recalibrate

4

Regrade Requests

• Solutions are here

• If you think one of your problems was misgraded, file a regrade

request on Gradescope
• Make sure to check solutions before you submit!

• Not for advocating for changes to the rubric itself

• If you file a request, we reserve the right to regrade the entire

problem and make any necessary corrections

• Requests are due by Wednesday, July 26 at 11:59pm

5

https://web.stanford.edu/class/cs106b/assessments/1-midterm/CS106B_Midterm_Solutions.pdf

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

6

Algorithmic
Analysis

Recursion

Object-Oriented
Programming

7

abstraction
Design that hides the details of how

something works while still allowing the user to access
complex functionality

8

Struct

• Way to bundle different types of information
• Package data into one place

• Like creating a custom data structure or variable

Examples of structs

struct GridLocation {

int row;

int col;

};

9

Examples of structs

struct Date {

int year;

int month;

int day;

};

10

Examples of structs

struct Lunchable {

string dessert;

int numCrackers;

bool hasCheese;

};

11

Examples of structs

struct Album {
string title;
int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height;

};

12

Examples of structs

struct Album {
string title;
int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height;

};

13

Structs in structs

struct Album {

string title;

int year;

Artist artist;

};

14

struct Artist {

string name;

int age;

string favorite_food;

int height;

};

Structs in structs

struct Album {

string title;

int year;

Artist artist;

};

15

struct Artist {

string name;

int age;

string favorite_food;

int height;

};

Structs in structs

struct Album {

string title;

int year;

Album album;

};

16

struct Artist {

string name;

int age;

string favorite_food;

int height;

};

Structs in structs

struct Album {

string title;

int year;

Album album;

};

17

struct Artist {

string name;

int age;

string favorite_food;

int height;

};

error: field has incomplete type 'Album'
note: definition of 'Album' is not
complete until the closing '}'

Structs in structs

struct Album {

string title;

int year;

Artist artist;

};

18

struct Artist {

string name;

int age;

string favorite_food;

int height;

Album album;

};

Structs in structs

struct Album {

string title;

int year;

Artist artist;

};

19

struct Artist {

string name;

int age;

string favorite_food;

int height;

Album album;

};

Class

• Defines a new data type for our program to use

• Help us create types of objects
• Which is why we call this object-oriented programming!

20

Class

• Defines a new data type for our program to use

• Help us create types of objects
• Which is why we call this object-oriented programming!

21

Struct

• Way to bundle different types of information
• Package data into one place

• Like creating a custom data structure or variable

What is a class?

• The main difference between structs and classes are the

encapsulation defaults
• Struct defaults to public members (accessible outside the struct itself).

• Class defaults to private members (accessible only inside the class

implementation).

22

What is a class?

• The main difference between structs and classes are the

encapsulation defaults
• Struct defaults to public members (accessible outside the struct itself).

• Class defaults to private members (accessible only inside the class

implementation).

• Every class has two parts:
• an interface specifying what operations can be performed on instances of

the class

• an implementation specifying how those operations are to be performed

23

Another way to think about classes…

• A blueprint for a new type of C++ object!

• The blueprint describes a general structure, and we can create

specific instances of our class using this structure.

24

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• These are the variables stored within the class

• Usually not accessible outside the class implementation

• Member functions (What functions can you call on a variable of this type?)

• Functions you can call on the object

• Known as methods

• Constructor (What happens when you make a new instance of this type?)
• Gets called when you create the object

• Sets the initial state of each new object

25

Random Bags
Let’s write our first class!

26

Random Bag

• A random bag is a data structure similar to a stack or queue

• It supports two operations:
• add, which puts an element into the random bag, and

• remove random, which returns and removes a random element from the

bag

27

Creating C++ Class

• Defining a class in C++ (typically) requires two steps:
• Create a header file (typically suffixed with .h) describing what

operations the class can perform and what internal state it needs.

• Create an implementation file (typically suffixed with .cpp) that

contains the implementation of the class.

• Clients of the class can then include (using the #include directive)

the header file to use the class.

28

Header Files
RandomBag.h

29

What is in a header file?

30

What is in a header file?

31

#pragma once

This code is called a
preprocessor directive.
It’s used to make sure
weird things don’t happen
if you include the same
header twice.

Preprocessor directives

• Include guards

#ifndef FILENAME_H

#define FILENAME_H

...

#endif /* FILENAME_H

• #pragma once
• Non-standard, widely supported
• Advantages: less code, avoidance of name clashes, sometimes improvement in

compilation speed
• Disadvantages: not necessarily available in all compilers

• Read more here

32

https://en.wikipedia.org/wiki/Pragma_once

Preprocessor directives

• Include guards

#ifndef FILENAME_H

#define FILENAME_H

...

#endif /* FILENAME_H

• #pragma once
• Non-standard, widely supported
• Advantages: less code, avoidance of name clashes, sometimes improvement in

compilation speed
• Disadvantages: not necessarily available in all compilers

• Read more here

33

https://en.wikipedia.org/wiki/Pragma_once

What is in a header file?

34

#pragma once

This code is called a
preprocessor directive.
It’s used to make sure
weird things don’t happen
if you include the same
header twice.

What is in a header file?

35

#pragma once

class RandomBag {

};

This is a class definition. We’re
creating a new class called
RandomBag. Like a struct,
this defines the name of a new
type that we can use in our
programs.

When naming classes, use
UpperCamelCase.

What is in a header file?

36

#pragma once

class RandomBag {

};

Don’t forget to add the
semicolon!

You'll run into some scary
compiler errors if you leave it out!

What is in a header file?

37

#pragma once

class RandomBag {
public:

private:

};

What is in a header file?

38

#pragma once

class RandomBag {
public:

private:

};

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

Think things like the Vector
.add() function or the string’s
.find().

What is in a header file?

39

#pragma once

class RandomBag {
public:

private:

};

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

Think things like the Vector
.add() function or the string’s
.find().

The private implementation
contains information that objects
of this class type will need in order
to do their job properly. This is
invisible to people using the class.

What is in a header file?

40

#pragma once

class RandomBag {
public:

void add(int value);
int removeRandom();

private:

};

These are member functions of
the RandomBag class. They're
functions you can call on
objects of type RandomBag.

All member functions must be
defined in the class definition.
We'll implement these
functions in the C++ file.

What is in a header file?

41

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();

private:
Vector<int> elems;

};

This is a member variable of
the class. This tells us how the
class is implemented. Internally,
we're going to store a
Vector<int> holding all the
elements. The only code that
can access or touch this
Vector is the RandomBag
implementation

What is in a header file?

42

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);
int removeRandom();

private:
Vector<int> elems;

};

Implementation Files
RandomBag.cpp

43

44
#include "RandomBag.h"

If we're going to implement the
RandomBag type, the .cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

45
#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

46
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

47
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

The syntax RandomBag::add means “the
add function defined inside of RandomBag."
The :: operator is called the scope
resolution operator in C++ and is used to
say where to look for things.

48
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

If we had written something like this
instead, then the compiler would think we
were just making a free function named add
that has nothing to do with RandomBag’s
version of add. That’s an easy mistake to
make!

49
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

We don't need to specify where elems is. The
compiler knows that we're inside RandomBag,
and so it knows that this means "the current
RandomBag's collection of elements."

Using the scope resolution operator is like
passing in an invisible parameter to the function
to indicate what the current instance is.

50
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

51
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

52
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

53
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

54
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

This code calls our own
size() function. The
class implementation can
use the public interface.

55
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

Let’s use it another
place too!

56
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

This use of the const keyword
means "I promise that this
function doesn't change the
state of the object.”

57
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() const {
return elems.size();

}

bool RandomBag::isEmpty() const {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

We have to remember to add it
to the implementation as well!

58
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() const {
return elems.size();

}

bool RandomBag::isEmpty() const {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

Note: There are some
additional #includes that
we’ll need. (We’ll see them
in the actual .cpp file.)

Three Main Parts

• Member variables (What subvariables make up this new variable type?)

• These are the variables stored within the class

• Usually not accessible outside the class implementation

• Member functions (What functions can you call on a variable of this type?)

• Functions you can call on the object

• Known as methods

• Constructor (What happens when you make a new instance of this type?)
• Gets called when you create the object

• Sets the initial state of each new object

59

Constructor

• Specially defined method for classes that initializes the state of

new objects as they are created
• Often accepts parameters for the initial state of the fields.

• Special naming convention defined as ClassName()
• You can never directly call a constructor, but one will always be called

when declaring a new instance of an object

60

61

62

// MyClass.h
class MyClass {
public:

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

63

// MyClass.h
class MyClass {
public:
 MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

64

// MyClass.h
class MyClass {
public:
 MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

65

// MyClass.h
class MyClass {
public:
 MyClass();

 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

// main.cpp
int main() {

MyClass firstInstance;
}

66

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(parameters);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

...

// main.cpp
int main() {

MyClass firstInstance;
}

67

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(parameters);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(parameters) {
...

}
...

// main.cpp
int main() {

MyClass firstInstance;
}

68

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(parameters);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 type var1;
 type var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(parameters) {
...

}
...

// main.cpp
int main() {

MyClass firstInstance;
MyClass secInstance(params);

}

Vector Constructors

69

Vector Constructors

Vector<string> myVec; // calls default constructor

70

Vector Constructors

Vector<string> myVec; // calls default constructor
Vector<string> myVec2(3, “hi”); // calls second constructor

71

Grid Constructors

Grid<int> myGrid; // calls default constructor

72

Grid Constructors

Grid<int> myGrid; // calls default constructor
Grid<int> myGrid2(3, 4); // calls second constructor

73

Grid Constructors

Grid<int> myGrid; // calls default constructor
Grid<int> myGrid2(3, 4); // calls second constructor
Grid<int> myGrid3(3, 4, 0); // calls third constructor

74

75
#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
if (elems.isEmpty()) {

error("Aaaaahhh!");
}
int index = randomInteger(0, size() - 1);
int result = elems[index];
elems.remove(index);
return result;

}

int RandomBag::size() const {
return elems.size();

}

bool RandomBag::isEmpty() const {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

There is no explicit
constructor for this class,
which is okay! Instead,
there’s a default,
zero-argument constructor
that instantiates all private
member variables.

76

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(parameters) {
...

}
...

77

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
...

}
...

78

// MyClass.h
class MyClass {
public:
 MyClass();

MyClass(int var1, int var2);
 returnType func1(parameters);
 returnType func2(parameters);
 returnType func3(parameters);

private:
 int var1;
 int var2;
 type func4();
};

// MyClass.cpp
MyClass::MyClass() {

var1 = 1;
var2 = 1;

}

MyClass::MyClass(int var1, int var2) {
this->var1 = var1;
this->var2 = var2;

}
...

this

• Refers to the current instance of an object that a method is being

called on

• Similar to the self keyword in Python and the this keyword in

Java

• Syntax: this->member
• Common usage: In the constructor, so parameter names can match

the names of the object's member variables

• this uses -> not . because it is a pointer

79

RandomBag Code

80

Takeaways

• Public member variables declared in the header file are automatically

accessible in the .cpp file.

81

Takeaways

• Public member variables declared in the header file are automatically

accessible in the .cpp file.

• As a best practice, member variables should be private, and you can

create public member functions to allow users to edit them

82

Takeaways

• Public member variables declared in the header file are automatically

accessible in the .cpp file.

• As a best practice, member variables should be private, and you can

create public member functions to allow users to edit them

• Member functions have an implicit parameter that allows them to know

what instance of the class (i.e. which object) they’re operating on

83

Takeaways

• Public member variables declared in the header file are automatically

accessible in the .cpp file.

• As a best practice, member variables should be private, and you can

create public member functions to allow users to edit them

• Member functions have an implicit parameter that allows them to know

what instance of the class (i.e. which object) they’re operating on

• When you don’t have a constructor, there’s a default, zero-argument

constructor that instantiates all private member variables

84

BankAccount Code
Structs vs Classes

85

Recap

• We can create our own abstractions for defining data types using
classes. Classes allow us to encapsulate information in a structured
way.

• Classes have three main parts to keep in mind when designing
them:

• Member variables → these are always private
• Member functions (methods) → these can be private or public
• Constructor → this is created by default if you don’t define one

• Writing classes requires the creation of a header (.h) file for the
interface and an implementation (.cpp) file.

86

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

87

Algorithmic
Analysis

Recursion

Object-Oriented
Programming

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures Linked

Data
Structures

Advanced
Algorithms

88

Algorithmic
Analysis

Recursion

Object-Oriented
Programming

Memory
Management

Readymade containers are great!

• You can do so much with the ADTs that you have!
• Write code that sorts names in the U.S. census

• Use vectors, grids to search for optimal paths in a maze

• Generate combinations recursively using sets

• You used their interfaces

89

But how are those containers implemented?

• We’ll need to learn about more basic building blocks in C++: arrays,

pointers

• Tomorrow, we’re building our own vector!

And what if we need custom containers / objects?

• We have to define our own classes

• In A4, you’ll be building a priority queue class!

90

But how are those containers implemented?

• We’ll need to learn about more basic building blocks in C++: arrays,

pointers

• Tomorrow, we’re building our own vector!

And what if we need custom containers / objects?

• We have to define our own classes

• In A4, you’ll be building a priority queue class!

91

For example, Google Chrome

92

Squares

• Let’s say we want to write a function squares that accepts an

integer and creates a Vector of integers that contains all perfect

squares, up to and including the square of the input

• Ex:
• Input integer: 4
• Output Vector: {1, 4, 9, 16}

93

Squares

Vector<int> squares(int numSquares) {

 Vector<int> vec;

 for (int i = 0; i < numSquares; i++) {

 vec.add(i * i);

 }

 return vec;
}

94

Squares, Take 2

void squares(Vector<int>& vec, int numSquares) {

 for (int i = 0; i < numSquares; i++) {

 vec.add(i * i);

 }

}

95

Squares, Take 3

Vector<int>& squares(int numSquares) {

 Vector<int> vec;

 for (int i = 0; i < numSquares; i++) {

 vec.add(i * i);

 }

 return vec;
}

96

What do we want?

1. a way to reserve a section of memory so that it remains available

to us throughout our entire program, or until we want to destroy it

2. a way to reserve any amount of memory we want at the time we

need it

97

Global Variables

• Can be accessed by any function in our program
• That isn't what we want

• Want to control which function has access to the data, just like we

normally would when passing data between functions

• Have a fixed size at compile time
• That isn't what we want.

98

Dynamic Memory Allocation

• Use dynamic memory allocation to acquire storage space
on the heap

• Variables on the stack have a scope based on the function
they are declared in

• Heap memory is allocated to your program from the time you
request the memory until the time you tell the operating
system you no longer need it, or until your program ends.

• You can, at runtime, ask for extra storage space, which
C++ will give you

• You can use that storage space however you’d like
• You have to explicitly tell the language when you’re done

using the memory.

99

Text
0

Heap

Stack

Dynamic Memory Allocation

• Use dynamic memory allocation to acquire storage space
on the heap

• Variables on the stack have a scope based on the function
they are declared in

• Heap memory is allocated to your program from the time you
request the memory until the time you tell the operating
system you no longer need it, or until your program ends.

• You can, at runtime, ask for extra storage space, which
C++ will give you

• You can use that storage space however you’d like
• You have to explicitly tell the language when you’re done

using the memory.

100

Text
0

Heap

Stack

Dynamic Memory Allocation: new

• To request memory from the heap to allocate one element:

type* variable = new type;

• To allocate multiple (n) elements on the heap:

type* variable = new type[n];

101

Dynamic Memory Allocation: new

type* variable = new type;

102

Declaring a variable that will
point at our newly-allocated
memory

● Name is variable
● Type is type* (match the

type of the element)

Allocating heap memory with
the new keyword

Assigning the pointer to point
to the heap memory

Dynamic Memory Allocation: Examples

int* anInteger = new int;

int* tenInts = new int[10];

103

Pointers

• A pointer is a brand new data type that becomes very prominent

when working with dynamically allocated memory.

• Just like all other data types, pointers take up space in memory and

can store specific values.

• A pointer always stores a memory address, which is like the specific

coordinates of where a piece of memory exists on the computer.

• They quite literally "point" to another location on your computer.

104

Arrays

• Lower-level and more limited than Vectors

• A contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
• Contiguous means that each slot is located directly next to the others (There

are no "gaps")

• Have a specific type which dictates what information can be held in each slot

• Each slot has an "index" by which we can refer to it

105

0 1 2 3 4

Arrays

• int firstTen[10];
• Create an array of 10 ints on the stack

• Only accessible within the function that created it

• int* secondTen = new int[10];
• Creates an array of 10 ints on the heap

• Accessible for the rest of the program (if we wish)

106

Arrays

int firstTen[10];

int* secondTen = new int[10];

107

Arrays

int firstTen[10];

int* secondTen = new int[10];

// fill memory with values

for (int i = 0; i < 10; i++) {

 firstTen[i] = i * 2; // evens

 secondTen[i] = i * 2 + 1; // odds

}

108

Arrays

int firstTen[10];

int* secondTen = new int[10];

// fill memory with values

for (int i = 0; i < 10; i++) {

 firstTen[i] = i * 2; // evens

 secondTen[i] = i * 2 + 1; // odds

}

int len = firstTen.length(); // ERROR! No functions!

firstTen.add(42); // ERROR! No functions!

109

Under the Hood

int* tenInts = new int[10];

110

Under the Hood

int* tenInts = new int[10];

111

Under the Hood

int* tenInts = new int[10];

112

Under the Hood

int* tenInts = new int[10];

113

(Col 4, Row 3)

Tracing Example

114

115

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

116

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

117

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

118

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()

119

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()

120

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

121

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

122

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: ?

123

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: ?

124

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

125

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

126

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

0 1 2 3 4 5 6

127

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

0 1 2 3 4 5 6

128

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

0 1 2 3 4 5 6

i: 0

129

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

0 1 2 3 4 5 6

i: 0

130

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

Watch

0 1 2 3 4 5 6

i: 0

131

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

Watch

0 1 2 3 4 5 6

i: 0

132

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

Watch

0 1 2 3 4 5 6

i: 1

133

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

Watch me

0 1 2 3 4 5 6

i: 1

134

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

Watch me

0 1 2 3 4 5 6

i: 1

135

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can

0 1 2 3 4 5 6

i: 2

Watch me

136

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance,

0 1 2 3 4 5 6

i: 2

Watch me

137

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance,

0 1 2 3 4 5 6

i: 2

Watch me

138

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance,

0 1 2 3 4 5 6

i: 3

Watch me

139

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance

0 1 2 3 4 5 6

i: 3

Watch me

140

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance

0 1 2 3 4 5 6

i: 2

Watch me

141

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance

0 1 2 3 4 5 6

i: 4

Watch me

142

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the

0 1 2 3 4 5 6

i: 4

Watch me

143

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the

0 1 2 3 4 5 6

i: 4

Watch me

144

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the

0 1 2 3 4 5 6

i: 5

Watch me

145

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night

0 1 2 3 4 5 6

i: 5

Watch me

146

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night

0 1 2 3 4 5 6

i: 5

Watch me

147

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night

0 1 2 3 4 5 6

i: 6

Watch me

148

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night away!

0 1 2 3 4 5 6

i: 6

Watch me

149

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night away!

0 1 2 3 4 5 6

i: 7

Watch me

150

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night away!

0 1 2 3 4 5 6

i: 7

Watch me

151

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night away!

0 1 2 3 4 5 6

i: 7

0: Watch
1: me
2: dance,
3: dance
4: the
5: night
6: away!

Watch me

Pitfalls and Dangers

• C++’s language philosophy prioritizes speed over safety and
simplicity

• The array you get from new[] is fixed-size: it can neither grow nor
shrink once it’s created

• C++ does not make that size available to the programmer
• So, programs that work with arrays typically need an additional variable

to keep track of the number of elements
• The array you get from new[] has no bounds-checking: accessing

anything past the beginning or end of an array triggers undefined
behavior

152

Attendance Ticket

What are potential examples of "undefined behavior" that could occur

if you access beyond the bounds of an array? Select all that apply.

• Nothing happens.

• You get a random, garbage value back.

• Your program crashes.

• You make your computer vulnerable to a hacker.

153

��

Attendance Ticket

What are potential examples of "undefined behavior" that could occur

if you access beyond the bounds of an array? Select all that apply.

• Nothing happens.

• You get a random, garbage value back.

• Your program crashes.

• You make your computer vulnerable to a hacker.

• You make the front page of the New York Times!

154

��

155

156

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have

access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

3. Inject some malicious code right after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer

5. Crash the entire internet

157

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have

access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

3. Inject some malicious code right after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer

5. Crash the entire internet

158

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have

access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

3. Inject some malicious code right after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer

5. Crash the entire internet

159

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have

access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

3. Inject some malicious code right after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer

5. Crash the entire internet

160

How to take down the internet (in 1988)

1. Many programs were not “memory-safe” back then
a. Programs would let you access memory on the computer that you shouldn’t have

access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to

3. Inject some malicious code right after that array
a. The computer will get tricked into running the code

4. Accidentally add a bug that eats up all of the memory on each host computer

5. Crash the entire internet

161

162

"Responsible" Hacking

• The story of Robert Morris and his Internet Worm illustrates the

core dilemma at the heart of security research

• Identifying and exposing security vulnerabilities is very important!

• Exposing security vulnerabilities in an irresponsible manner can

result in devastating damages (monetary, physical, etc.)

• Responsible Disclosure: a vulnerability disclosure model in which a

vulnerability or an issue is disclosed only after a period of time that

allows for the vulnerability or issue to be patched or mended.

163

Memory on Stack vs Heap

Vector<string> varOnStack;
• Until today, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

164

Memory on Stack vs Heap

Vector<string> varOnStack;
• Until today, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

165

string* arr = new string[numValues];

Memory on Stack vs Heap

Vector<string> varOnStack;
• Until today, all variables we’ve

created get defined on the stack

• This is static memory allocation

• Variables on the stack are stored
directly to the memory and access
to this memory is very fast

• We don’t have to worry about
memory management

166

• We can now request memory from
the heap

• This is dynamic memory allocation

• We have more control over
variables on the heap

• But this means that we also have
to handle the memory we’re using
carefully and properly clean it up
when done

string* arr = new string[numValues];

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you
• Memory allocation is the process by which the computer hands you a

piece of computer memory in which you can store data

• Memory deallocation is the process by which control of this memory

(data storage location) is relinquished back to the computer

167

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory

you allocate

168

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory

you allocate

• If you don't, you get a memory leak

169

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory

you allocate

• If you don't, you get a memory leak
• Your program will never be able to use that memory again

170

Cleaning Up

• When declaring local variables or parameters, C++ automatically

handles memory allocation and deallocation for you

• When using new, you are responsible for deallocating the memory

you allocate

• If you don't, you get a memory leak
• Your program will never be able to use that memory again

• Too many leaks can cause a program to crash – it’s important to not leak

memory!

171

Cleaning Up: delete

• You can deallocate (free) memory with the delete keyword

• To deallocate a single element:

delete var;

• To deallocate an array of elements:

delete[] arr;

172

Cleaning Up: delete

• This destroys the array pointed to by the given pointer, not the

pointer itself

• You can think of this operation as relinquishing control over the

memory back to the computer

• Once you’ve deleted the memory pointed at by a pointer, you have a

dangling pointer and shouldn’t read or write from it.

173

174

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night away!

0 1 2 3 4 5 6

i: 7

Watch me

175

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;
 return 0;
}

main()
numValues: 7

arr: 1,4

We can dance, dance the night away!

0 1 2 3 4 5 6

i: 7

Watch me

176

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;
 return 0;
}

main()
numValues: 7

arr: ???

i: 7

177

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 return 0;
}

main()
numValues: 7

arr: ???

i: 7

178

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 return 0;
}

main()
numValues: 7

arr: ???

i: 7

179

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 return 0;
}

main()
numValues: 7

arr: 4,5

i: 7

180

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 return 0;
}

main()
numValues: 7

arr: 4,5

i: 7

181

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 return 0;
}

main()
numValues: 7

arr: 4,5

i: 7

182

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 return 0;
}

main()
numValues: 7

arr: ???

i: 7

183

int main () {
 int numValues = getInteger("How many words?");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
 delete[] arr;

 arr = new string[10];
 arr[4] = “weird”;
 delete[] arr;

 cout << arr[1] << endl; // DO NOT DO THIS
 arr = new int[4]; // ERROR

 return 0;
}

main()
numValues: 7

arr: ???

i: 7

Recap
• We’ve learned about classes, which have an interface and implementation.
• When implementing classes at the lowest level of abstraction, we need to use

dynamic memory as a fundamental building block for specifying how much
memory something needs.

• We use the keyword new to allocate dynamic memory.
• We keep track of that memory with a pointer. (more on pointers Thursday!)
• We must clean up the memory when we’re done with delete.

• We’ve learned how to allocate dynamic memory using arrays, which give us a
contiguous block of memory that all stores one particular type (int, string,
double, etc.).

• Without knowing it, we have been using dynamic memory all along, through the
use of the standard and Stanford library classes. The string, Vector, Map, Set,
Stack, Queue, etc., all use dynamic memory to give you the data structures we
have used for all our programs.

184

Next Class - Implementing a Dynamic ADT

We’re going to build a vector!

185

