Recursive Backtracking 1

Elyse Cornwall
July 18th, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

 Exam is confidential through the end of the week
* No discussing the exam with other students or posting about it on Ed
* Grades will be released over the weekend
e Second part of Assignment 3 will be released Wednesday
e Part 2 will cover recursive backtracking, this week’s topic!
e Assignment 3 YEAH hours 3pm on Wednesday

2
Stanford University

Week 3 Feedback

Rate the pace of lecture
52 responses

@® Way too slow
@ A little too slow
© Perfect

@ A little too fast
@ Way too fast

3
Stanford University

Week 3 Feedback

Things you liked:
“| like when you go over our feedback.” (meta %)

“I like how you guys do whiteboarding explanations and went through
more examples in class.”

“loved exam review”

“I really like the stop and code parts of the lecture, as it helps us think
and learn on the spot!”

4
Stanford University

Week 3 Feedback

Places we can improve:
“Maybe more practice examples on unwrapping files”
“I wish instead of talking to the person next to us we just got to think.”

“Look at different approaches to solving the example questions and
analyse them (which is better/worse)”

“I wish we had more opportunities to try to write code in class.”

5
Stanford University

Week 3 Feedback

We hear you...

“More review sessions like the midterm one.” Friday Review Sessions!
“LAIR during Fridays”

“Giving us a rubric for the midterm would be helpful”

“Sections are really good for learning. Aside from section being longer, |
don't think anything could be improved.”

“Would it be too big of an ask to as that CS106B changes the weekly
assignment submission date?” Coincidentally, assignment deadlines

will be on Wednesdays for the rest of the quarter. ;

Stanford University

Week 3 Feedback

Anything else you would like us to know:
“Recursive code truly works like magic”

“Keep it up!” ==

7
Stanford University

Roadmap

Abstract Data
Structures

Core

++
Tools e

Even more recursion...

Object-Oriented
Programming

Algorithmic
Analysis

Memory
Management

Linked
Data
Structures

Advanced
Algorithms

8
Stanford University

Recursion Recap
Why do we use recursion?

Stanford University

Why do we use recursion?

* Elegant
* Some problems have beautiful, concise recursive solutions
» Efficient

* Recursive solutions can have faster runtimes
* Dynamic
* We’ll explore recursive backtracking TODAY

10
Stanford University

An elegant solution:
Tower of Hanoi

11
Stanford University

Solving with 4 Disks

L1l

Stanford University

Solving with 4 Disks

14|

We’ll need to get the smaller 3 disks out of the way,

13
Stanford University

Solving with 4 Disks

141

Move the bottom piece over...

14
Stanford University

Solving with 4 Disks

114

Then stack the 3 smaller disks on top.

15
Stanford University

Solving with N Disks

1. Move tower of N-1 disks onto middle peg
2. Move Nth disk over
3. Move tower of N-1 disks onto end peg

16
Stanford University

Solution

void solveTowers(int n, char start, char end, char aux) {
if (n == 0) {
return;
k;
solveTowers(n-1, start, aux, end);
moveSingleDisk(start, end);

solveTowers(n-1, aux, end, start);

17
Stanford University

An efficient solution:
Binary Search

18
Stanford University

Binary Search

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 - 8

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

Let’s try to find the number 6 in our Vector

19
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 - 8

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

Too big, look left

20
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 @ 3

-1 2 6 12 37 | 41 12 88 90

21
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 @ 3

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

Too small, look right

22
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

23
Stanford University

Binary Search

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

Found it! &: & &
24
Stanford University

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. |If element is greater than our target, do binary search to the left

25
Stanford University

Runtime of Binary Search

* Binary search has runtime O(log n)
« Common runtime for algorithms that halve search space at every step

Quadratic O(n?)
/ Linear O(n)

Runtime /

____Logarithmic O(log n)

Constant O(1)

/ ? 4 26

Input size (n) Stanford University

Recursive Backtracking

27
Stanford University

The Limits of Iteration

 We've seen how problems can be solved iteratively or recursively
 The approach we chose was mostly a stylistic choice

28
Stanford University

The Limits of Iteration

 We've seen how problems can be solved iteratively or recursively
 The approach we chose was mostly a stylistic choice

* However, some problems are nearly impossible to solve without

recursion!
* |terative approaches are inherently linear: each step builds upon the next
moving from the start to the end of your solution
e Recursion allows us to explore many possible solutions by branching into
multiple recursive calls

29
Stanford University

A Linear Program: Reverse a String

“Cat”

€ — “t” — “ta” — “tac”

An iterative approach works well; we can do this with a loop!

30
Stanford University

A Branching Program: Permute a String

“Cat”

)
C

€€

T}
a

“t”

A

“Cat”
“Ca” /
/ “Cta”
“C-t”
“3c” —Pp “act?”
“5t” — | gt
“tC” \
“-tca”
“ta” \
“-tac”

Can we do this iteratively?

31
Stanford University

TEYPT f oo 1)

amg? 7 S Yous
TOTOH

void permute5(string s) { <:1 K:j K:)

for (int i = 0; i < 4; i++) {
for (int j = 0; j <4 ; j++) { NINWOM

FY Y Y Y Y YV)
0000000

A OO

G = seen
continue; // ignore

; .

for (int k = 0; k < 4; k++) { <:j<:j | K:j \ZERO SAID THERE WAS -—-

if (k == j or k == 1) {
continue; // ignore

}
for (int w = 0; w < 4; w++) {
if (w == k or w == j or w == i) {
continue; // ignore
}
for (int x = @; x < 5; x++) {
if (x ==k or x == j or x == 1 or x == w) {
continue;
}
cout << " " << s[i] << s[]j] << s[k] << s[w] << s[x] << endl;
}
}
}
}
} 32

} Stanford University

A dynamic solution:
Coin Sequences

33
Stanford University

Coin Sequences

* You’re playing a (rather boring) game in which you flip some
number of coins one by one and see whether you get heads or tails
* You'd like to know all of the possible sequences you might flip

34
Stanford University

Coin Sequences

* You’re playing a (rather boring) game in which you flip some
number of coins one by one and see whether you get heads or tails
* You'd like to know all of the possible sequences you might flip

= What are all of the possible
sequences when flipping 2 coins?

35
Stanford University

Coin Sequences

* You’re playing a (rather boring) game in which you flip some
number of coins one by one and see whether you get heads or tails
* You'd like to know all of the possible sequences you might flip

HH HT TH TT

36
Stanford University

Coin Sequences

* You’re playing a (rather boring) game in which you flip some
number of coins one by one and see whether you get heads or tails
* You'd like to know all of the possible sequences you might flip

How about for 3 coins?

37
Stanford University

Coin Sequences

* You’re playing a (rather boring) game in which you flip some
number of coins one by one and see whether you get heads or tails
* You'd like to know all of the possible sequences you might flip

HHH HHT HTH HTT THH THT TTH TTT

38
Stanford University

Coin Sequences

* You’re playing a (rather boring) game in which you flip some
number of coins one by one and see whether you get heads or tails
* You'd like to know all of the possible sequences you might flip

HHH HHT HTH HTT THH THT TTH TTT

How do we know that we got all the possibilities?

How do we avoid repeats? 39

Stanford University

COi N Seq uences This is called a decision tree:

at each point we have
branching decisions.

Flip heads Flip tails

Stanford University

Decision Trees

* Decisions trees can help us illustrate our recursive process
e At each pointin the tree, we make some decision about how to
proceed in our exploration (making a recursive call)

41
Stanford University

Coin Sequences as a Recursive Process

2 flips left
Flip heads Flip tails
1 flip left
Flip heads Flip tails Flip heads Flip tails
O flips left

Stanford University

Coin Sequences as a Recursive Process

2 flips left

1 flip left

Flip heads Flip tails

Base case:
Out of flips

Stanford University

Let’s Code it Up!

44
Stanford University

Solution

void generateSequenceHelper (int flipsRemaining, string sequence) {
// Base case: flipsRemaining = 0, no more flips
if (flipsRemaining == 0) {
cout << sequence << endl;
} else {
// Recursive cases (when flipsRemaining > 0)
generateSequenceHelper (flipsRemaining - 1, sequence + 'H'); // Add H to the sequence

generateSequenceHelper (flipsRemaining - 1, sequence + 'T'); // OR add T to the sequence
void generateSequences(int numCoins) {
generateSequenceHelper (numCoins, "");

45
Stanford University

Coin Sequences

Flip heads Flip tails

& Attendance ticket: How many different
sequences can we form when we flip N coins?

Flip he"y Np tails Flip heads Flip tails
fi» g w %%;) @ ‘“ \ LA RS / jj, ” 1Y " N
v

Stanford University

Coin Sequences

Flip heads Flip tails

We can form 2" possible sequences
(doubling at each level, opposite of Log).

Flip he"y Np tails Flip heads Flip tails
fi» g w %%;) @ ‘“ \ LA RS / jj, ” 1Y " N
v

Stanford University

Two Types of Recursion

Basic recursion

* One repeated task that builds up a
solution as you come back up the call
stack

 The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

l

factorial(3)

l

factorial(2)

'

factorial(1l)

'

factorial(0)

48
Stanford University

Two Types of Recursion

Basic recursion

* One repeated task that builds up a
solution as you come back up the call
stack

 The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

T 2*3=6

factorial(3)

T 1*2=2

factorial(2)

T 1*1=1

factorial(1l)

T

factorial(0)

49
Stanford University

Two Types of Recursion

Backtracking recursion

Build up many possible solutions
through multiple recursive calls at
each step

Seed the initial recursive call with an
“empty” solution

At each base case, you have a
potential solution

50
Stanford University

Two Types of Recursion

Basic recursion

* One repeated task that builds up a
solution as you come back up the call
stack

 The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

Backtracking recursion

Build up many possible solutions
through multiple recursive calls at
each step

Seed the initial recursive call with an
“empty” solution

At each base case, you have a
potential solution

@& @
CRGE ({;x @ @@ Stanford University

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions
2. Find one specific solution or prove that one exists
3. Find the best possible solution to a problem

All of these involve exploring many possible
solutions, rather than proceeding down a linear
path towards one solution.

52
Stanford University

TEYPT [winon and———)

five times —Snml zilch. |

e
TOTOH
FY Y Y Y YV YV
TTT T OO0
NINWOM 'YV N YV
TT OOR0®
SlIatERe WHEN ASKED IF BEING THE
NUMBER ZERO WAS EASY, THE
QQ O | ZERO SAID THERE WAS -)

Word Jumble

Generate all solutions

53
Stanford University

Word Jumble

* We'd like to print every ordering of “TEYPT” to solve the puzzle
* This is much like coin sequences, but instead of choosing H or T, we
are choosing a letter at each step

TEYPT

o0

54
Stanford University

Word Jumble

5 letters left

4 letters left

3 letters left

0 letters left

oWy

o,

llT”

(" TII (o E ” IIYII {“ P ”
IIT EII {“ TY” llT P ” 14 TTII
“TEYPT” “TEYTP” “TEPYT” “TEPTY”

55
Stanford University

Word Jumble

Recursive cases:
Choose one of remaining letters _—~+~—

5 letters left
4 letters left

3 letters left

Base case:
Out of letters

0 letters left

7 -I-” “« E no N o~y u P ” 7 -I-”
“TE” “Ty” “Tp” “TT”
“TEYPT” “TEYTP” “TEPYT” “TEPTY” 56
Stanford University

From Coins Flips...

void generateSequenceHelper (int flipsRemaining, string sequence) {
// Base case: flipsRemaining = 0, no more flips
if (flipsRemaining == 0) {
cout << sequence << endl;
} else {
// Two recursive cases (when flipsRemaining > 0)
generateSequenceHelper (flipsRemaining - 1, sequence + 'H'); // Add H to the sequence

generateSequenceHelper (flipsRemaining - 1, sequence + 'T'); // OR add T to the sequence

void generateSequences(int numCoins) {

generateSequenceHelper (numCoins, "");

57
Stanford University

... To Permutations

void generatePermutationsHelper(string lettersRemaining, string sequence) {
// Base case: lettersRemaining = 0, no more letters to choose from
if (lettersRemaining.length() == 0) {
cout << sequence << endl;
} else {
// Many recursive cases (when lettersRemaining > 0)
for (int i = 0; i1 < lettersRemaining.length(); i++) {
char letter = lettersRemaining[i]; // choose one of our remaining letters to build onto sequence

generatePermutationsHelper (lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1), sequence + letter);

void generatePermutations(string word) {

generatePermutationsHelper (word, "");

58
Stanford University

Let’s Check Out the Codel

Stanford Universit

Takeaways

e "Choose / explore / unchoose" pattern in backtracking

for (int i = 0; i < lettersRemaining.length(); i++) {
// choose a letter

char letter = lettersRemainingl[i];

// explore this choice by making a recursive call
generatePermutationsHelper (lettersRemaining.substr(0, i) +

lettersRemaining.substr(i + 1), sequence + letter)

// unchoose this letter by not including it in our sequence next loop

} 60
Stanford University

Takeaways
e "Choose / explore / unchoose" pattern in backtracking
* Itisimportant to keep track of the decisions we've made so far and

the decisions we have left to make

void generatePermutationsHelper(string lettersRemaining, string sequence) {

61
Stanford University

Takeaways

e "Choose / explore / unchoose" pattern in backtracking

* Itisimportant to keep track of the decisions we've made so far and

the decisions we have left to make

* Backtracking recursion can have variable branching factors at each

level

SR,
T)
&

lITElI

an

" TY”

IITPII

" TT"

62
Stanford University

Shrinkable Words

Find a solution

63
Stanford University

“What nine-letter word can be reduced to a
single-letter word one letter at a time, leaving it a
legal word at each step?”

64
Stanford University

startling — starling — staring — @ Finish the sequence!

65
Stanford University

startling — starling — staring — string — sting — sing — sin — in — |

66
Stanford University

Shrinkable Words

A shrinkable word is a word that can be reduced down to one letter
by removing one letter at a time, leaving a valid word at each step

Idea: Let’s use a decision tree to remove letters and determine
shrinkability!

67
Stanford University

®)

-
[}

Shrinkable Words =

Take a few minutes to think:

 What are we choosing at each step?
 Whatis our base case?

e Information to store along the way?

68
Stanford University

Shrinkable Words

Take a few minutes to think:

 What are we choosing at each step?
* Which remaining letter to remove from our word

 Whatis our base case?
* When we get down to 1 (or 07?) letters

e Information to store along the way?
e Current state of our shrinking string (letters remaining)

69
Stanford University

Shrinkable Words Decision Tree

“cart”
/\»
llart” llcrt” llcatll llcar”
LN N N N
II ll I H
J\l\l\A!\l\AA!\/lA/\

70
Stanford University

Shrinkable Words Decision Tree

Recursive cases: “cart”
Choose one of remaining letters
o ” o ” o ” o ”
art crt cat car
Track state of
shrinking word
ll ll I H

71
Stanford University

Shrinkable Words Decision Tree

“Cart” is shrinkable!

“cart”
m
‘lart” llcrt” llcatll llcarll
/l\ /l\ /l\ /l\
llat’I ” l H
J\l\l\A!\l\AA!\/lA/\

72
Stanford University

Shrinkable Words Decision Tree

“Cart” is shrinkable!

“cart”
m
llart” llcrt” llcat" llcar”
N AN N N
ll ll I llatll H
J\l\l\A!\l\AA!\/lA/\

73
Stanford University

Shrinkable Words Decision Tree

“Cusp” is not shrinkable.

“cu Sp”

e

o ” o ” '{} ”n o ”

usp csp cup cus

SN N N N

II ll II II II ll II

AANANNAANAAA

ll ” " II ll ” ||« ” ll ” ll ” ll ” “ ” ll 7 “ ” ll ” II ” o II o II II ” o II ll ” ll ” ll ” ll ” ll ” ll ” ll 27 ll ”

74
Stanford University

Shrinkable Words

Base cases:

* We reach an invalid word (failure)
 We get down to a single letter (success)

75
Stanford University

Shrinkable Words

Base cases:

 We reach an invalid word (failure)
 We get down to a single letter (success)

Recursive cases:

The word is shrinkable if you can remove any letter and get a
shrinkable word

The word is not shrinkable if no matter what letter you remove, it’s
not shrinkable

76

Stanford University

Lexicon

How do we check if a word is valid? We have an ADT for that:

e #include “lexicon.h” (documentation here)

Lexicon lex("res/EnglishWords.txt"); // create from file
lex.contains("koala"); // returns true
lex.contains("zzzzz"); // returns false

// returns true if there are any words starting with "fi" in the lexicon

lex.containsPrefix("fi");

77
Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1136/materials/cppdoc/Lexicon-class.html

Let’s Code it Up!

78
Stanford University

Solution

bool isShrinkable(Lexicon& lex, string word) {
// base case 1) reach invalid word 2) reach final letter
if (!lex.contains(word)) {
return false;
3
if (word.length() == 1) {
return true;

}

// recursive case: try removing every letter and if any succeeds, return true
for (int i = 0; i < word.length(); i++) {
string remainingWord = word.substr(0, i) + word.substr(i + 1);
if (isShrinkable(lex, remainingWord)) {
return true;

}

return false;

79
Stanford University

Alternative Solution

bool isShrinkable(Lexicon& lex, string word) {
// base case 1) run out of letters 2) reach 1invalid word
if (word.length() == 0) {
return true;
3
if (!lex.contains(word)) {
return false;

}

// recursive case: try removing every letter and if any succeeds, return true
for (int i = 0; i < word.length(); i++) {
string remainingWord = word.substr(0, i) + word.substr(i + 1);
if (isShrinkable(lex, remainingWord)) {
return true;

}

return false;

80
Stanford University

Takeaways

Notice the pattern we used to solve this problem:

for all options at each decision point {
if (recursive call returns true) {
return true;

}
}

return false after all options are exhausted;

This pattern works well when we’re checking if any solution exists.

81
Stanford University

Recap

* Generating coin sequences: our first backtracking program!
* Two types of recursion: basic vs. backtracking
* Backtracking allows us to branch and explore many potential solutions

* Three main categories of backtracking

e All possible solutions: Word Jumble, revisited
* Find solution: Shrinkable Words
* Find best solution: we’ll explore in the future

82
Stanford University

See you here tomorrow for
more backtracking!

83
Stanford University

