
Recursive Backtracking 1
Elyse Cornwall

July 18th, 2023

Contributions made from previous CS106B Instructors

Announcements

• Exam is confidential through the end of the week
• No discussing the exam with other students or posting about it on Ed

• Grades will be released over the weekend

• Second part of Assignment 3 will be released Wednesday
• Part 2 will cover recursive backtracking, this week’s topic!

• Assignment 3 YEAH hours 3pm on Wednesday

2

Week 3 Feedback

3

Week 3 Feedback

4

Things you liked:

“I like when you go over our feedback.” (meta 🤯)

“I like how you guys do whiteboarding explanations and went through

more examples in class.”

“loved exam review”

“I really like the stop and code parts of the lecture, as it helps us think

and learn on the spot!”

Week 3 Feedback

5

Places we can improve:

“Maybe more practice examples on unwrapping files”

“I wish instead of talking to the person next to us we just got to think.”

“Look at different approaches to solving the example questions and

analyse them (which is better/worse)”

“I wish we had more opportunities to try to write code in class.”

Week 3 Feedback

6

We hear you…
“More review sessions like the midterm one.” Friday Review Sessions!

“LAIR during Fridays”

“Giving us a rubric for the midterm would be helpful”

“Sections are really good for learning. Aside from section being longer, I
don't think anything could be improved.”

“Would it be too big of an ask to as that CS106B changes the weekly
assignment submission date?” Coincidentally, assignment deadlines
will be on Wednesdays for the rest of the quarter.

Week 3 Feedback

7

Anything else you would like us to know:

“Recursive code truly works like magic”

“Keep it up!” 😎

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

8

Algorithmic
Analysis

Recursion

Even more recursion…

Recursion Recap
Why do we use recursion?

9

Why do we use recursion?

• Elegant
• Some problems have beautiful, concise recursive solutions

• Efficient
• Recursive solutions can have faster runtimes

• Dynamic
• We’ll explore recursive backtracking TODAY

10

An elegant solution:
Tower of Hanoi

11

Solving with 4 Disks

12

Solving with 4 Disks

We’ll need to get the smaller 3 disks out of the way,
13

Solving with 4 Disks

Move the bottom piece over…
14

Solving with 4 Disks

Then stack the 3 smaller disks on top.
15

Solving with N Disks

1. Move tower of N-1 disks onto middle peg

2. Move Nth disk over

3. Move tower of N-1 disks onto end peg

16

Solution

void solveTowers(int n, char start, char end, char aux) {
 if (n == 0) {
 return;
 }
 solveTowers(n-1, start, aux, end);
 moveSingleDisk(start, end);
 solveTowers(n-1, aux, end, start);
}

17

An efficient solution:
Binary Search

18

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Let’s try to find the number 6 in our Vector

0 8

19

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Too big, look left

0 8

Let’s try to find the number 6

20

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Let’s try to find the number 6

21

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Too small, look right

Let’s try to find the number 6

22

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Let’s try to find the number 6

23

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Found it! 🎉🎉🎉
24

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. If element is greater than our target, do binary search to the left

25

Runtime of Binary Search

• Binary search has runtime O(log n)
• Common runtime for algorithms that halve search space at every step

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2)

26

Recursive Backtracking

27

The Limits of Iteration

• We’ve seen how problems can be solved iteratively or recursively
• The approach we chose was mostly a stylistic choice

28

The Limits of Iteration

• We’ve seen how problems can be solved iteratively or recursively
• The approach we chose was mostly a stylistic choice

• However, some problems are nearly impossible to solve without

recursion!
• Iterative approaches are inherently linear: each step builds upon the next

moving from the start to the end of your solution

• Recursion allows us to explore many possible solutions by branching into

multiple recursive calls

29

A Linear Program: Reverse a String

30

“” “t” “ta” “tac”

“cat”

An iterative approach works well; we can do this with a loop!

A Branching Program: Permute a String

31

“”

“c” “ca”“cat”

“a”

“t”

“ct”

“ac”

“cat”

“ta”

“tc”

“at”

“cta”

“act”

“atc”

“tca”

“tac”

Can we do this iteratively?

Not Really…
void permute5(string s) {

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (j == i) {
continue; // ignore

}
for (int k = 0; k < 4; k++) {

if (k == j or k == i) {
continue; // ignore

}
for (int w = 0; w < 4; w++) {

if (w == k or w == j or w == i) {
continue; // ignore

}
for (int x = 0; x < 5; x++) {

if (x == k or x == j or x == i or x == w) {
continue;

}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;

}
}

}
}

}
}

32

A dynamic solution:
Coin Sequences

33

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

34

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

35

🤔 What are all of the possible
sequences when flipping 2 coins?

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

36

HH HT TH TT

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

37

How about for 3 coins?

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

38

HHH HHT HTH HTT THH THT TTH TTT

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

39

How do we know that we got all the possibilities?
How do we avoid repeats?

HHH HHT HTH HTT THH THT TTH TTT

Coin Sequences This is called a decision tree:
at each point we have

branching decisions.

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Decision Trees

• Decisions trees can help us illustrate our recursive process

• At each point in the tree, we make some decision about how to

proceed in our exploration (making a recursive call)

41

Coin Sequences as a Recursive Process

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

2 flips left

1 flip left

0 flips left

Coin Sequences as a Recursive Process

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

2 flips left

1 flip left

0 flips left

Base case:
Out of flips

Recursive cases:
Add H or T to sequence

Let’s Code it Up!

44

Solution

void generateSequenceHelper(int flipsRemaining, string sequence) {

 // Base case: flipsRemaining = 0, no more flips

 if (flipsRemaining == 0) {

 cout << sequence << endl;

 } else {

 // Recursive cases (when flipsRemaining > 0)

 generateSequenceHelper(flipsRemaining - 1, sequence + 'H'); // Add H to the sequence

 generateSequenceHelper(flipsRemaining - 1, sequence + 'T'); // OR add T to the sequence

 }

}

void generateSequences(int numCoins) {

 generateSequenceHelper(numCoins, "");

}

45

Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

🎟 Attendance ticket: How many different
sequences can we form when we flip N coins?

Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

We can form 2N possible sequences
(doubling at each level, opposite of log).

Two Types of Recursion

Basic recursion

• One repeated task that builds up a
solution as you come back up the call
stack

• The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

48

factorial(3)

factorial(2)

factorial(1)

factorial(0)

Two Types of Recursion

Basic recursion

• One repeated task that builds up a
solution as you come back up the call
stack

• The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

49

factorial(3)

factorial(2)

factorial(1)

factorial(0)

1

1*1 = 1

1*2 = 2

2*3 = 6

Two Types of Recursion

50

Backtracking recursion

• Build up many possible solutions
through multiple recursive calls at
each step

• Seed the initial recursive call with an
“empty” solution

• At each base case, you have a
potential solution

Two Types of Recursion

Basic recursion

• One repeated task that builds up a
solution as you come back up the call
stack

• The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

51

Backtracking recursion

• Build up many possible solutions
through multiple recursive calls at
each step

• Seed the initial recursive call with an
“empty” solution

• At each base case, you have a
potential solutionfactorial(3)

factorial(2)

factorial(1)

factorial(0)

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

52

All of these involve exploring many possible
solutions, rather than proceeding down a linear

path towards one solution.

Word Jumble
Generate all solutions

53

Word Jumble

• We’d like to print every ordering of “TEYPT” to solve the puzzle

• This is much like coin sequences, but instead of choosing H or T, we

are choosing a letter at each step

54

Word Jumble

55

“”

“T” “E” “T”“P”“Y”

“TE” “TT”“TP”“TY” …

5 letters left

4 letters left

3 letters left

0 letters left “TEYPT” “TEYTP” “TEPTY”“TEPYT” …
…

Word Jumble

56

“”

“T” “E” “T”“P”“Y”

“TE” “TT”“TP”“TY” …

5 letters left

4 letters left

3 letters left

0 letters left “TEYPT” “TEYTP” “TEPTY”“TEPYT” …

Base case:
Out of letters

Recursive cases:
Choose one of remaining letters

From Coins Flips…
void generateSequenceHelper(int flipsRemaining, string sequence) {

 // Base case: flipsRemaining = 0, no more flips

 if (flipsRemaining == 0) {

 cout << sequence << endl;

 } else {

 // Two recursive cases (when flipsRemaining > 0)

 generateSequenceHelper(flipsRemaining - 1, sequence + 'H'); // Add H to the sequence

 generateSequenceHelper(flipsRemaining - 1, sequence + 'T'); // OR add T to the sequence

 }

}

void generateSequences(int numCoins) {

 generateSequenceHelper(numCoins, "");

}

57

… To Permutations

void generatePermutationsHelper(string lettersRemaining, string sequence) {

 // Base case: lettersRemaining = 0, no more letters to choose from

 if (lettersRemaining.length() == 0) {

 cout << sequence << endl;

 } else {

 // Many recursive cases (when lettersRemaining > 0)

 for (int i = 0; i < lettersRemaining.length(); i++) {

 char letter = lettersRemaining[i]; // choose one of our remaining letters to build onto sequence

 generatePermutationsHelper(lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1), sequence + letter);

 }

 }

}

void generatePermutations(string word) {

 generatePermutationsHelper(word, "");

}

58

Let’s Check Out the Code!

59

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

60

for (int i = 0; i < lettersRemaining.length(); i++) {

// choose a letter

char letter = lettersRemaining[i];

// explore this choice by making a recursive call

generatePermutationsHelper(lettersRemaining.substr(0, i) +

lettersRemaining.substr(i + 1), sequence + letter)

// unchoose this letter by not including it in our sequence next loop

}

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and

the decisions we have left to make

61

void generatePermutationsHelper(string lettersRemaining, string sequence) {

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and

the decisions we have left to make

• Backtracking recursion can have variable branching factors at each

level

62

“”

“T” “E” “T”“P”“Y”

“TE” “TT”“TP”“TY” …

Shrinkable Words
Find a solution

63

64

“What nine-letter word can be reduced to a
single-letter word one letter at a time, leaving it a

legal word at each step?”

65

startling → starling → staring → string → sting → sing → sin → in → i👥 Finish the sequence!

66

startling → starling → staring → string → sting → sing → sin → in → i

Shrinkable Words

• A shrinkable word is a word that can be reduced down to one letter

by removing one letter at a time, leaving a valid word at each step

• Idea: Let’s use a decision tree to remove letters and determine

shrinkability!

67

Shrinkable Words 🤔
Take a few minutes to think:

• What are we choosing at each step?
• Which remaining letter to remove from our word

• What is our base case?
• When we get down to 1 letter remaining

• Information to store along the way?
• Current state of our shrinking string (letters remaining)

68

Shrinkable Words

Take a few minutes to think:

• What are we choosing at each step?
• Which remaining letter to remove from our word

• What is our base case?
• When we get down to 1 (or 0?) letters

• Information to store along the way?
• Current state of our shrinking string (letters remaining)

69

Shrinkable Words Decision Tree

70

“cart”

“art” “crt” “car”“cat”

“rt” “ar”“at” “rt” “cr”“ct” “at” “ca”“ct” “ar” “ca”“cr”

“a” “t” “a” “r” “r” “t” “c” “t” “c” “r” “a” “t” “c” “t” “c” “a” “a” “r” “c” “r” “c” “a”“r” “t”

Shrinkable Words Decision Tree

71

“cart”

“art” “crt” “car”“cat”

“rt” “ar”“at” “rt” “cr”“ct” “at” “ca”“ct” “ar” “ca”“cr”

“a” “t” “a” “r” “r” “t” “c” “t” “c” “r” “a” “t” “c” “t” “c” “a” “a” “r” “c” “r” “c” “a”“r” “t”

Recursive cases:
Choose one of remaining letters

Track state of
shrinking word

Shrinkable Words Decision Tree

72

“cart”

“art” “crt” “car”“cat”

“rt” “ar”“at” “rt” “cr”“ct” “at” “ca”“ct” “ar” “ca”“cr”

“a” “t” “a” “r” “r” “t” “c” “t” “c” “r” “a” “t” “c” “t” “c” “a” “a” “r” “c” “r” “c” “a”“r” “t”

“Cart” is shrinkable!

Shrinkable Words Decision Tree

73

“cart”

“art” “crt” “car”“cat”

“rt” “ar”“at” “rt” “cr”“ct” “at” “ca”“ct” “ar” “ca”“cr”

“a” “t” “a” “r” “r” “t” “c” “t” “c” “r” “a” “t” “c” “t” “c” “a” “a” “r” “c” “r” “c” “a”“r” “t”

“Cart” is shrinkable!

Shrinkable Words Decision Tree

74

“cusp”

“usp” “csp” “cus”“cup”

“sp” “us”“up” “sp” “cs”“cp” “up” “cu”“cp” “us” “cu”“cs”

“u” “p” “u” “s” “s” “p” “c” “p” “c” “s” “u” “p” “c” “p” “c” “u” “u” “s” “c” “s” “c” “u”“s” “p”

“Cusp” is not shrinkable.

Shrinkable Words

Base cases:

• We reach an invalid word (failure)

• We get down to a single letter (success)

75

Shrinkable Words

Base cases:

• We reach an invalid word (failure)
• We get down to a single letter (success)

Recursive cases:

• The word is shrinkable if you can remove any letter and get a
shrinkable word

• The word is not shrinkable if no matter what letter you remove, it’s
not shrinkable

76

Lexicon

How do we check if a word is valid? We have an ADT for that:

• #include “lexicon.h” (documentation here)

Lexicon lex("res/EnglishWords.txt"); // create from file

lex.contains("koala"); // returns true

lex.contains("zzzzz"); // returns false

// returns true if there are any words starting with "fi" in the lexicon

lex.containsPrefix("fi");

77

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1136/materials/cppdoc/Lexicon-class.html

Let’s Code it Up!

78

Solution

bool isShrinkable(Lexicon& lex, string word) {
 // base case 1) reach invalid word 2) reach final letter
 if (!lex.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }
 // recursive case: try removing every letter and if any succeeds, return true
 for (int i = 0; i < word.length(); i++) {
 string remainingWord = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(lex, remainingWord)) {
 return true;
 }
 }
 return false;
}

79

Alternative Solution

bool isShrinkable(Lexicon& lex, string word) {
 // base case 1) run out of letters 2) reach invalid word
 if (word.length() == 0) {
 return true;
 }
 if (!lex.contains(word)) {
 return false;
 }
 // recursive case: try removing every letter and if any succeeds, return true
 for (int i = 0; i < word.length(); i++) {
 string remainingWord = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(lex, remainingWord)) {
 return true;
 }
 }
 return false;
}

80

Takeaways

Notice the pattern we used to solve this problem:

This pattern works well when we’re checking if any solution exists.
81

for all options at each decision point {
if (recursive call returns true) {

return true;
}

}

return false after all options are exhausted;

Recap

• Generating coin sequences: our first backtracking program!

• Two types of recursion: basic vs. backtracking
• Backtracking allows us to branch and explore many potential solutions

• Three main categories of backtracking
• All possible solutions: Word Jumble, revisited

• Find solution: Shrinkable Words

• Find best solution: we’ll explore in the future

82

See you 🔙 here tomorrow for
more backtracking!

83

